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INTRODUCTION
Cements used for root end seal dur-
ing endodontic microsurgery must 
be biocompatible with periapical tis-
sue to favour healing and treatment 
success (1, 2). Mineral trioxide aggre-
gate (MTA), is a bioactive material 
widely used for root end seal, and its 
osteoconductive and osteoinductive 
properties have been extensively 
documented (2, 3). MTA is currently 
available in two presentations: gray 
MTA (GMTA) and white MTA (WMTA) 
(ProRoot MTA, Dentsply Tulsa, OK, 
USA). For both presentations, the 
main components are tricalcium 

silicate, bismuth oxide, dicalcium silicate, tricalcium aluminate, and calcium sodium dehydrate (2). 
GMTA has in addition tetracalcium aluminoferrite, which is absent in WMTA. Both formulations are 
75 wt% Portland cement, 20 wt% bismuth oxide, and 5 wt% gypsum (2). Additional types of MTA 
are the Angelus MTAs (AMTA; Angelus, Soluções Odontológicas, Londrina, PR, Brazil) from Brazil, of-
fering both gray (AGMTA) and white (AWMTA) MTAs composed of 80 wt% Portland cement and 20 
wt% bismuth oxide (2). Drawbacks of these materials include extended curing time, difficulties in 
manipulation, discolouration potential of the dental structure, and arsenic release with the excep-

• This study investigated the biocompatibility of 
an aluminate calcium-based cement, EB, and An-
gelus white MTA, (AWMTA), using genotoxicity 
(comet assay) and hemocompatibility (hemolysis/
fibrinogen quantification) assays.

• Results showed that, with regard to hemocom-
patibility, both cements–EB and AWMTA–induced 
high and low hemolysis and fibrinogen levels, re-
spectively.

• None of the endodontic cements showed geno-
toxic behavior.

HIGHLIGHTS

Objective: The aim of this in vitro study was to evaluate the genotoxicity and hemocompatibility of a novel 
calcium aluminate-based cement, EndoBinder (EB) ( Binderware, São Carlos, SP, Brazil) and compare it with 
Angelus White Mineral Trioxide Aggregate (MTA) (AWMTA) (Angelus, Soluções Odontológicas, Londrina, PR, 
Brazil).
Methods: For evaluation of genotoxicity, a comet assay was performed with Chinese hamster ovary (CHO) 
cells that had been grown for 24 h in Dulbecco’s Modified Eagle Medium incubated with each of the cements 
for 24 h at 37°C. DNA percentage in head and Olive tail moment were analyzed. For assessment of hemo-
compatibility, erythrocyte lysis quantification, and concentration of plasma fibrinogen were determined in 
human blood samples placed in contact with each of the materials. One way analysis of variance (ANOVA) 
followed by post hoc Tukey test and Student t-test were used for data analysis of genotoxicity and hemocom-
patibility, respectively.
Results: Results showed that the genotoxic effects of EB and AWMTA were comparable to that of the nega-
tive control, with no statistically significant differences between AWMTA and negative control (P>0.05). Com-
pared to AWMTA, EB showed greater hemolytic potential when placed in direct contact with erythrocytes 
(P<0.05). Fibrinogen values were low for both materials, with protein concentration being greater in samples 
exposed to EB than to AWMTA.
Conclusion: Both materials presented a higher hemolytic behaviour compared to what is established by 
international standards. Fibrinogen formation was low for both materials, and DNA damage induction was 
not observed in a comet assay.
Keywords: Biocompatibility, blood compatibility, calcium aluminate cement, cytotoxicity, mineral trioxide 
aggregate
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Preparation of samples
Fresh cement samples, were prepared, weighed, and imme-
diately placed in direct contact with the cell culture medium 
(720 μL DMEM/280 μL FBS) (MilliporeSigma), and incubated at 
37°C for 24 h. With regard to controls, as a positive control for 
genotoxicity, 4-mM H2O2 was added to the culture medium, 
whereas the negative control consisted of the culture medium 
alone. Eight wells were allocated for each of AWMTA and EB. 
Four wells served for the control group.

Comet assay
Two experiments with four wells exposed to the material, 
and at least 40 comets read in every well were made for alka-
line comet assay as previously described by Araldi et al. (12). 
Briefly, samples of cells subjected to each of the treatments 
(100 μl) were embedded in a regular 1.5% agarose slide, and 
immediately covered with a coverslip. Once the agarose had 
solidified at 4°C, the coverslip was removed and the slides 
placed for 1 h in 26.7 mL of 89% lysis buffer (2.5 mL NaCl, 100-
mM EDTA, 10- mM Tris–HCL, 12 g NaOH/ 1.2%, and 1 g sodium 
lauroyl sarcocinate/1%; pH 10–10.5) supplemented with 3 mL 
of dimethyl sulfoxide/10% and 0.3 mL Triton-X100/1%. 

After treatment with lysis solution, slides were incubated in 
alkaline buffer (300-mM NaOH and 1-mM EDTA; pH>13) for 
20 min, and subjected to electrophoresis at 25 V (0.86 V/cm) 
and 200 mA for 20 min. Slides were then neutralized in 400- 
mM Tris–HCl (pH 7.5) and fixed in absolute ethanol. Samples 
were stored at room temperature until being analyzed by flu-
orescent microscopy (Nikon, Optihot-2, Tokyo, Japan). Forty 
comets or nuclei were analyzed from each slide. To minimize 
DNA damage induced by environmental UV light, all experi-
mental steps were performed under low lighting. The auto-
mated analysis system CometScore (Tritek Corp, Sumerduck, 
VA, USA) software was used to assess DNA damage, taking into 
account the percentage of DNA in the head and the Olive tail 
moment. To avoid risk of bias, the principal investigator was 
blinded for this analysis.

Hemocompatibility
Blood samples
Blood samples from a consenting healthy volunteer meeting 
the inclusion criteria were collected in BD vacutainer heparin 
tubes (Vacutainer 367871, México DF, México) for hemolysis 
assays, and in BD Vacutainer EDTA tubes (Vacutainer 368171) 
for fibrinogen quantification assays. To maintain homogene-
ity, 3 mL of blood was collected for all samples. Blood from a 
different donor was used for each assay performed on differ-
ent days.

Hemolysis
Two experiments each with four samples were made for 
hemolysis percentage determination. Blood was centrifuged, 
and plasma was removed by aspiration. Red blood cells (RBC) 
were washed three times with phosphate-buffered saline (PBS) 
pH 7.4 (MilliporeSigma), centrifuging at 3000 rpm (Biomet Bi-
ologics, IN, USA), and 300 μl blood precipitate was diluted in 
12 mL of PBS. Then, 600 μl of the latter dilution was placed in 
direct contact with each of the materials (EB or AWMTA) and 
was incubated for 1 h at 37°C in 5% CO2. Tubes consisting of 
RBC solutions with or without distilled water, respectively, 

tion of AMTA, which does not have an extended setting time (4, 
5). However, only noticeable differences have been determined 
for curing time and particle size, between ProRoot MTA (WMTA, 
GMTA) and AMTA (AGMTA, AWMTA) (2, 6). Therefore, there is an 
ongoing effort to develop new materials with optimal mechani-
cal and biocompatibility properties. One of such materials is En-
doBinder (EB) (patent-PI0704502-6, 2007) (Binderware, São Car-
los, SP, Brazil), a calcium aluminate-based endodontic cement 
that is currently in the experimental phase, and that was devel-
oped to keep MTA’s clinical properties and applications while 
improving its negative features (4). EB is primarily composed 
of Al2O3 (68 wt%) and CaO (31 wt%), SiO2 (0.3–0.8 wt%), MgO 
(0.4–0.5), and Fe2O3 (<0.3)+Bi2O3 (20 wt% wt%), to guarantee its 
radiopacity as required by ISO 6876 standard (4, 7, 8). In vitro and 
in vivo studies have previously shown its optimal physical/me-
chanical properties and favourable cellular response, allowing 
osteoblastic differentiation to be superior to that achieved with 
the use of MTA (4, 9). However, other aspects of biocompatibility 
such as genotoxicity and hemocompatibility have not been re-
ported for EB. To evaluate these properties, the American Dental 
Association and ISO 7405/10993 standards recommend comet 
assay to determine DNA damage and hemolysis/fibrinogen 
quantification to establish hemocompatibility (10-12). There-
fore, in this study we have evaluated and comparatively ana-
lyzed biocompatibility of aluminate calcium-based cement EB 
and AWMTA by performing genotoxicity and hemocompatibil-
ity assays. The null hypothesis was that there is no difference in 
genotoxicity and hemocompatibility profile of EB and AWMTA.

MATERIALS AND METHODS
This study was approved by the Institutional Ethics Committee 
(Minute N°85, code 471) of CES University, Medellin, Colombia; 
and was developed in accordance with the recommendations 
for biomedical research stated in the Declaration of Helsinki.

Preparation of cements
Cements used for all assays were EB (Binderware, São Carlos, 
SP, Brazil) and Angelus white MTA (AWMTA) (Angelus, Soluções 
Odontológicas, Londrina, PR, Brazil), which were used at a ra-
tio of 0.14 g of powder per one drop of distilled water from 
the AWMTA dropper bottle, according to the manufacturer’s 
instructions. For each material, 0.1 g was placed into an acrylic 
mold forming cylinders of 4.2 mm (±0.2 mm) in height and 0.5 
mm in diameter.

Genotoxicity assay
Cell culture
One vial of Chinese hamster ovary (CHO) cell line was cul-
tured in four cell culture plates T-75 (MilliporeSigma, St. Louis, 
MO, USA) with Dulbecco’s Modified Eagle Media (DMEM) and 
Ham’s F12 nutrient mixture (MilliporeSigma), supplemented 
with 10% heat-inactivated fetal bovine serum (FBS) (Milli-
poreSigma). Cells were cultured for 3 days in a humidified in-
cubator at 37°C, 5% CO2, and 95% humidity. Fresh medium was 
added on a daily basis. Confluent cultures were collected by 
adding Trypsin–EDTA (0.5%) for 5 min, quenching with 2 mL of 
complete media, and centrifuged at 1200 rpm for 5 min (Sigma 
2-16K centrifuge, Osterode am Harz, Germany). After counting 
the cells using a Neubauer chamber (MilliporeSigma), they 
were placed into 24-well plates at a density of 300.000 cells/mL.
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tibody cocktail were added to each of the pretreated kit wells, 
and placed on an OrbitTM P4 digital shaker at 250 rpm (Labnet 
International. Inc. NJ, USA) for 1 h at room temperature. Each 
well was washed three times with 350 μL of Wash Buffer PT 1X 
(Abcam) with subsequent aspiration and dried. One hundred 
microliters of tetramethylbenzidine (TMB) were added to each 
well, and the plate was place on shaker at 20 rpm for 10 min. 
Finally, 100 μL of Stop solution were added to each well. Plate 
was shaken at 20 rpm for 1 min to mix and take to spectropho-
tometer (xMarkTM, Bio-Rad, CA, USA) and the absorbance was 
measured at 450 nm.

Statistical analysis
Hemocompatibility and genotoxicity assays were performed 
in duplicates for each of the materials. Statistical analyses were 
performed using PASW Statistics 21 software (SPSS, Chicago, 
IL, USA). Normal distribution of data was evaluated by the Kol-
mogorov–Smirnov test. In the analysis of the hemocompat-
ibility assay, a t-Student test with a 95% confidence interval 
was used to determine the difference between datasets. For 
genotoxicity assays, statistical significance was determined by 
one-way ANOVA followed by a post hoc Tukey test for multiple 
comparisons.

RESULTS

Genotoxicity
Both materials showed head DNA percentage and Olive tail 
moment index that were comparable to that of the negative 
control, indicating a low genotoxic effect because of the direct 
contact of the materials (Figs. 1 and 2).

were used as positive and negative controls. Because cement 
samples were at the bottom of the tubes, 500 μl of the diluted 
blood were used for the hemolysis determination, taking care 
to avoid taking degradation products of the cement samples. 
Total hemoglobin concentration in heparinized blood was 
quantified with a standard curve using a spectrophotometer 
(xMarkTM, Bio-Rad, CA, USA) after measuring absorbance at 
490 nm; measurements were made in triplicate. Finally, hemol-
ysis percentage was obtained by calculating for each sample 
the ratio of cell-free hemoglobin to total hemoglobin concen-
tration. 

Hemolysis (%)=100×(Abs Ab0) (Abs100 Abs0)

Fibrinogen quantification
Two experiments (each containing four samples) were made 
for fibrinogen quantification. The Human Fibrinogen Sim-
pleStep ELISA® kit (Ref. ab208036, Abcam, Cambridge, MA, 
USA) was used following manufacturer’s instructions. Quanti-
tative fibrinogen measurements was performed in duplicate, 
interpolating the fibrinogen standard curve and correlating it 
to the diluted sample.

Two blood samples were collected in EDTA-K2 tubes and 
centrifuged at 2000 rpm (Biomet Biologics) for 10 min. Blood 
components were separated because of their density differ-
ences. Because of the high sensitivity of the quantification 
test, plasma was isolated and highly diluted until a volume of 
1600 μl and a concentration of 1:10000 were obtained. Subse-
quently, 100 μL of diluted plasma was exposed to each of the 
cement samples, and controls were placed on a shaker at 25 
rpm for 30 min. After this, 50 μL of sample and 50 μL of the an-

Figure 1. Genotoxic effects (EB AWMTA). (a) DNA in head variable. (b) Olive tail moment variable. Asterisk and circles represent atypical values. In 
particular, asterisks denote the most remote data
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ods and the potential coagulation of blood that may have an 
influence in the spectrophotometrical analysis. Because both 
materials have setting times of around 10 min (13), it may hap-
pen that during this time some histological reactions may be 
expected because of the interaction of non-set material with 
blood in periapical tissues. Further studies should be per-
formed with kinetic assays, in which samples will be analyzed 
at intervals between 1 min and 1 h.

With regard to genotoxicity, we used the comet assay. This 
assay is a fast and sensitive test to determine DNA damage 
by fluorescent microscopy, and its advantages and applica-
tions in the field of toxicology have been reported previously 
(12). For cell culture, CHO-K1 cells were used for genotoxicity 
assessment. These epithelial-like cells are a well-established 
model available in ATCC. This cell line is recommended for 
several in vitro assays, particularly for a comet assay. The lat-
ter evaluates DNA damage within the cells exposed to the 
culture medium with the material diluent. For this assay, 
some aspects, such as cell membrane composition, nuclear 
envelope composition, and the presence of nuclear DNA, 
must be considered. Cell membrane and nuclear envelope 
of CHO-K1 cells are composed of a phospholipid bilayer sim-
ilar to that in fibroblasts or other cell types from connective 
tissue such as osteoblastic or periodontal ligament cells. On 
the other hand, for in vitro assays, according to international 
standards, it is more advisable to use established cell lines 
rather than stem cells or human cells derived directly from 
primary cultures, because their proliferation rate might be 
compromised and may also add false positives due to senes-
cence (14).

For the image analysis, only well-defined comet structures 
were considered. Variables were chosen according to their 
complementary information, because DNA head percent-
age measurements take indirectly in account the presence 
of DNA in the tail, but do not include tail length. Olive tail 
moment represents the percentage of DNA present in the tail 
as a product of the distance between the centers of the mass 
of the head and the tail regions. Results for both variables 
were accurate due to their complementarity (15). Our results 
showed that both materials (EB and AWMTA) demonstrated 
an effect comparable to that of negative controls. This was in 
agreement with previous studies in which AMTA and ProRoot 
MTA were used, and no DNA damage was reported in lym-
phocytes or other analyzed cell types upon 1, 4, and 24 h of 
exposure (16-18). As for EB, an important finding was that the 
Olive tail moment did not show a statistical difference com-
pared to the negative control, suggesting that this may be 
a successful treatment in retrograde fillings done with this 
cement. However, due to lack of previous scientific evidence 
regarding EB genotoxicity, we were unable to establish addi-
tional comparisons.

Evaluating biomaterial hemocompatibility is relevant be-
cause once the retrograde filling material is placed in the api-
cal cavity, an initial direct contact with blood and periapical 
tissues is established, activating the coagulation cascade and 
a host inflammatory response as defense mechanisms (19). 
Thus, hemocompatibility can be assessed by determining 

Hemolysis
Both materials presented high percentages of hemolysis when 
in contact with blood in situ, according to the international 
standard. Comparing results of both cements, a greater quan-
tity was detected for EB compared to AWMTA; however, these 
differences were not statistically significant (P>0.05) (Table 1).

Fibrinogen quantification
Compared to AWMTA, samples exposed to EB showed an in-
creased quantity of fibrinogen; however, these results were 
not statistically significant (P>0.05) (Table 2).

DISCUSSION
Cements used for retrograde filling in endodontic microsurgery 
come into direct contact with periapical tissues. Therefore, seal-
ing and biocompatibility properties must be optimal to obtain 
successful results (1). In this in vitro study, we evaluated genotox-
icity, hemolysis, and fibrinogen quantification of EB and AWMTA 
cements. On the basis of results presented in this study, the null 
hypotheses regarding these three aspects were not rejected.

The specific time of 1 h of exposure was decided to limit the 
possible hemolysis because of prolonged in vitro culture peri-

Figure 2. Shows micrographic images of nuclei from Chinese hamster 
ovary (CHO) cells after running the comet assay, where halos or DNA 
degradation can be seen in the inset B. (a) Negative control. (b) Positive 
control (H2O2). (c) EB. (d) AWMTA

a b

c d

TABLE 1. Percent of hemolysis (EB AWMTA)

Material n Mean (%) Standard deviation P value

EB 12 13.22 13.58 0.35
AWMTA 12 8.64 9.99

TABLE 2. Fibrinogen quantification

 Material n Mean Standard deviation P value

Fibrinogen EB 6 0.30 0.34 0.10
(ng/ml) AWMTA 6 0.04 0.09
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