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Ischemic stroke is one of the leading causes of human death and disability worldwide. So far, ultra-early thrombolytic therapy is the
most effective treatment. However, most patients still live with varying degrees of neurological dysfunction due to its narrow
therapeutic time window. It has been confirmed in many studies that endothelial progenitor cells (EPCs), as a kind of adult
stem cells, can protect the neurovascular unit by repairing the vascular endothelium and its secretory function, which contribute
to the recovery of neurological function after an ischemic stroke. This paper reviews the basic researches and clinical trials of
EPCs especially in the field of ischemic stroke and addresses the combination of EPC application with new technologies,
including neurovascular intervention, synthetic particles, cytokines, and EPC modification, with the aim of shedding some light
on the application of EPCs in treating ischemic stroke in the future.

1. Introduction

In the world, stroke is the second cause of death and the lead-
ing cause of adult disability [1]. It is also the fifth cause of
death and the leading cause of disabilities among American
adults [2], of which 87% is ischemic stroke [3]. Hospitalized
patients with ischemic stroke in China have a 3.3–5.2% mor-
tality rate and a 34.5–37.1% death/disability rate 3months
after onset [4–6]. In the pathological process of ischemic
stroke, the blood supply is interrupted after cerebral vascular
occlusion, together with energy failure, acidosis, excitatory
amino acid release, intracellular calcium overload, and gener-
ation of free radicals, which eventually lead to brain paren-
chymal damages composed of necrosis, apoptosis, and
autophagy [7–11]. However, the treatment of ischemic stroke
is still very limited. Clinical trials on neuroprotective drugs
have not been successful [12], and the only FDA-approved
treatment of acute stroke is to apply t-PA within 4.5 hours
after onset. The emerging intravenous rt-PA thrombolysis
prior to intravascular therapy in recent years requires that

the femoral artery puncture be performed 120–212.5minutes
after the onset of symptoms [13]. As such, there are only
about 2%–5% of stroke patients who meet the criteria for
intravenous t-PA with or without bridging therapy due to
its narrow therapeutic time window [14, 15]. Most patients
still live with varying degrees of neurological dysfunctions.
Therefore, a new effective treatment is badly needed to
change this situation.

EPCs are regarded as immature endothelial cells which
circulate in the peripheral blood. In 1997, Asahara et al.
[16] isolated CD34 and Flk1-positive mononuclear cells from
the peripheral blood, and these cells were named EPCs
because of endothelial cell characteristics in culture medium.
It is now believed that EPCs are precursor cells of mature vas-
cular endothelial cells, which belong to stem cell populations
with self-renewal capacity that can differentiate into mature
endothelial cells (ECs). EPCs are confirmed to insert into
the endothelium of newly formed vessels in the ischemic
area, which play an important role in the process of endothe-
lial repair and angiogenesis after injury. Studies also verify
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that EPCs have the potency of secreting a variety of cyto-
kines and growth factors, which provide nutritional and
antiapoptotic support for the circulating and resident EPCs
and other cells (ECs, cardiomyocytes, neurons, neural stem
cells, and so forth). Circulating human EPCs injected into
nude mice after transient middle cerebral artery occlusion
(tMCAO) can protect the neurovascular unit and contribute
considerably to the recovery of neurological function [17],
which has made itself an important candidate for stem cell
therapy. In this review, we discuss the current development
of EPC research in ischemic cerebrovascular diseases. In the
first section of this review, we describe the basic research in
the field of EPCs, including the effect on blood vessels and
secreting function of EPCs. In the second part, the clinical
application of EPCs is introduced, specially emphasizing the
combination of EPC application with new technologies. This
review is ended with the consideration of the safety of EPC
application, which needs to be carefully concerned in future
clinical trials.

2. Basic Research

2.1. Dynamic Changes of EPCs under Pathophysiological
Conditions. Under physiological conditions, a small poll of
hematopoietic stem cells (HSCs) in the bone marrow niche
were differentiated and released into circulation, which are
bone marrow-derived EPCs marked with KDR+, CD34+,
and CD133+, and the level of EPCs in the peripheral circula-
tion is low [18–20]. The supplementation of some food, such
as onion peel, black raspberry, fish oil, and red wine, may be
helpful in increasing the number of circulating EPCs [21–24].
Multiple factors (cytokines released by target tissue, growth
factors, sex hormones, etc.) mobilize EPCs to migrate from
the bone marrow stroma into the blood circulation. This pro-
cess relies on the activation by endothelial nitric oxide syn-
thase (eNOS). Upregulation of vascular endothelial growth
factor (VEGF) may mobilize EPCs to migrate into the blood
circulation [25], and the release of EPCs from the bone mar-
row may also be promoted by upregulating granulocyte
colony-stimulating factor (G-CSF) [26, 27]. EPC level and
G-CSF level are elevated after acute myocardial infarction
[28]. Parathyroid hormone (PTH) can also facilitate bone
marrow stem cell (BMSCs) and/or progenitor cell release into
circulation [29, 30]. Under hypoxic or inflammatory condi-
tions, endothelial cells (ECs) can upregulate the expression
of stromal cell-derived factor-1α (SDF-1α) [31] and interact
with EPCs that highly express C-X-C chemokine receptor
type 4 (CXCR4) [32, 33], which not only promotes EPC
mobilization from the bone marrow but also stimulates
EPC recruitment and adherence to the ischemic regional
vascular endothelium [20, 34, 35]. Nitric oxide (NO) and
erythropoietin (EPO) are currently considered to be key
factors for EPC mobilization. EPCs themselves can also pro-
mote the aggregation of more circulating EPCs by releasing
VEGF and SDF-1α [36].

In the process of EPCs migrating to ischemic or damaged
areas, CXCR4/SDF-1 plays an important role in directing
EPCs to migrate to the damaged vascular endothelium
[31, 37]. The binding of interleukin-6 (IL-6) and glycoprotein

(gp80 or gp130) expressed by EPCs promotes the prolifera-
tion and migration of EPCs [38]. Some drugs, such as statins,
can promote EPC migration and proliferation and reduce
EPC apoptosis by activating the Akt/NOS pathway and
upregulating matrix metalloproteinase-2 (MMP-2) and
MMP-9 expression [39], which enhance EPC function.

In the ischemic area, EPC homing to the damaged ves-
sels is considered as an essential step in the interaction
with ECs of many cytokines and their receptors. The interac-
tion of P-selectin expressed by platelet and P-selectin glyco-
protein ligand-1 (PSGL-1) expressed by EPCs plays a key
role in the process of EPC adherence to neovascularization
[40, 41]. In addition, the interaction of β1/β2 integrins with
the ligands, intercellular adhesion molecule-1 (ICAM-1)
and vascular cell adhesion molecule-1 (VCAM-1), expressed
in ischemic vessel endothelium, high-mobility group box 1
(HMGB1) and gpIIb-dependent platelet aggregates, and α4
integrins also participate in and promote EPC adhesion and
homing [41–46].

The interaction of VEGF and EPCs is complicated and
lies in many steps. In the process of dynamic change, VEGF
is one of the critical factors and plays an essential role for
EPCs. VEGF has effects on mobilization and migration of
EPCs through the receptor KDR [47]. In hypoxia circum-
stance, HIF-1α is activated in the damaged tissue, which leads
to increased levels of VEGF. Then, the VEGF prompts a
migration of EPCs and hematopoietic cells [48], and the
migratory effects have been documented by several studies
[49, 50]. The protection of neurovascular unit of VEGF
secreted by EPCs is illustrated in the “Secreting Function of
EPCs” section.

For the dynamic changes in the function and number
of EPCs under ischemic or inflammatory conditions [51],
the use of microbeads and Q-dot-based nanoparticle is
superior to conventional flow cytometry in analyzing the
microvesicles released from EPCs. Other studies used
Dex-DOTA-Gd3+ as a magnetic resonance imaging (MRI)
contrast agent to observe the survival period of trans-
planted EPCs in the rat hind limb ischemic model [52]
or used DiI-Ac-LDL staining or 111In-oxine radioactive
markers to track transplanted EPCs [17, 53, 54]. These
methods can be used to monitor or track EPCs transplanted
in the body, providing evidence for EPC-based clinical or
preclinical trials.

2.2. The Effect of EPCs on Blood Vessels. EPCs display three
fundamental activities within the vascular systems, which
include secretion, repairing endothelial damage, and format-
ting new blood vessels in ischemic tissues [18]. The secreting
function of EPCs is mainly described in the next paragraph.
In the process of atherosclerosis, focal arterial lesions contain
cholesterol, fibrosis, and inflammatory cell infiltrates [55, 56],
which substantially indicate the destruction of a balance
between endothelial damage and repair. EPCs homing into
the artery wall may assist to repair the endothelial injury
[57], although the mechanisms involved are still unclear. In
the ischemic or inflammation condition, the damaged tissue
may release a variety of factors and induce the mobilization
of EPCs from the bone marrow to the peripheral blood
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[58]. Bone marrow-derived EPCs can home to the neovascu-
larization site, proliferating and differentiating into ECs
[59, 60] and participating in angiogenesis. The trans-
planted EPCs may also appear in the newly formed vascu-
lar endothelium of the ischemic site, participating in
postischemic angiogenesis [16, 61]. It has been demon-
strated that MMP9 plays a key role in poststroke EPC-
induced angiogenesis [62]. Some factors including VEGF,
SDF-1, platelet-derived growth factor (PDGF), and micro-
particles secreted by EPCs can stimulate tip and stalk
cells [63], to promote angiogenesis and local EC prolifer-
ation and migration [64]. EPCs can also differentiate into
ECs, replacing or directly integrating with the damaged
endothelial layer [65–68] to repair the vascular endothe-
lium. However, it is also argued that circulating EPCs
may not directly replenish ECs, but activate resident
ECs [69] by secreting VEGF, hepatocyte growth factor
(HGF), and other factors, or releasing microvesicles from
the cell membrane to transmit mRNA to ECs that pro-
mote EC proliferation, form microtubules, and reduce
apoptosis [70]. EPCs also contribute to the recovery of
vascular ECs by secreting exosomes, a nanoscale vesicle
encapsulated by lipid membrane structures [71]. This
new approach may play a dominant role in the working
mechanism of EPCs.

2.3. Secreting Function of EPCs. The neurovascular unit is a
complex network of interactions, including neurons, astro-
cytes, microglias, microvascular ECs, and pericytes [72].
EPCs interact with the neurovascular unit by secreting
multiple factors [36, 73–75]. Moreover, EPCs secrete SDF-
1α and VEGF, creating a microenvironment for neuronal
survival and regeneration [76, 77].

Further studies have shown that EPCs secrete multiple
growth factors such as VEGF, SDF-1α, and insulin-like
growth factor-1 (IGF-1), which can not only recruit more
circulating EPCs and maintain their survival but also
protect the existing collateral circulation and neurovascular
unit [78]. VEGF may also promote angiogenesis and stimu-
late the proliferation and migration of new neurons [79].

Wang et al. [80] confirmed that cocultured EPCs and
neural progenitor cells (NPCs) may secrete VEGF and
brain-derived neurotrophic factor (BDNF) and provide syn-
ergistic protection through activating the PI3K/Akt pathway
and minimizing cerebral vascular EC ischemia/reperfusion
injury. It has also been found that intravenous combined
transplantation of bone marrow stromal cells (BMSCs) and
EPCs contributes to the recovery of neurological function
in the rat cerebral ischemia model, which may be achieved
by high expression of basic fibroblast growth factor (bFGF),
BDNF, and VEGF [81] and may be associated with the
eNOS/BDNF pathway [82].

In short, complex interactions between EPCs and the
neurovascular unit take place in the ischemic area. In the
progress, EPCs and the factors they secrete jointly contribute
to poststroke angiogenesis and neurogenesis, reconstructing
the functions and structures of vascular and neural networks,
which promote the recovery of neurological function after
ischemic stroke [78] (Figure 1).

3. Application

3.1. Clinical Trial. Clinical trials for EPCs used as a marker of
prognosis or transplanting therapies have been or are being
carried out, primarily targeting the limbs and the cardiovas-
cular and cerebrovascular ischemia. The number of EPCs
can be used as a marker of endothelial dysfunction in cardio-
vascular diseases [83–85]. In the case of acute coronary
events or myocardial infarction, the growing number of
EPCs indicates that EPC-mediated repair is a physiological
response to severe cardiovascular events [86–88]. In the
observation of 122 patients with coronary heart disease and
normal control group, the number of circulating EPCs was
significantly decreased in patients with coronary heart dis-
ease [89–91]. Adams et al. verify that mobilization of lin-2/
Sca-1+/c/kit + cells into the peripheral blood could be moti-
vated in a long-term treatment of PTH followed by G-CSF
administration in mice [92]. PTH treatment mobilizes endo-
thelial stem cells (ESCs)/EPCs from the bone marrow into
the peripheral blood in mice of MCAO, which enhances
tissue repair and function recovery and reduces adverse
immune response [93]. Some trials applied patients’ own
EPCs mobilized and recruited by G-CSF [94] to the site of
myocardial infarction; some used EPCs from the bone
marrow in the coronary artery of patients with myocardial
infarction [95–97] and successfully recovered the function
of the left ventricle; some have started the second phase
trials [98–100]; and some trials conducted direct endocardial
injection of unfractionated bone marrow cells [101] or injec-
tion of mononuclear cells from patients’ own bonemarrow in
critical limb ischemia [102], both of which have improved
ischemic symptoms.

It has been proven that the level of circulating EPCs is an
independent predictor of the prognosis of patients with acute
ischemic stroke [103]. High levels of EPCs in these patients
indicate that the infarct volume is smaller and less likely to
develop, which may be a marker for the severity of acute
stroke [104]. Clinical observational trials have shown that
the number of circulating EPCs significantly decreased in
patients with cerebrovascular disease than control subjects
[105], and the absence of circulating EPCs is associated with
increased risk of future vascular events, but not indicating
recurrence of stroke [106]. In the ten cases of acute middle
cerebral artery infarction, it has been proven to be viable
and safe to conduct intravenous injection of patients’ own
mononuclear cells within 72 hours after onset [107]. Several
studies have been conducted or are still undergoing, but with
no available results reported, with the purpose of assessing
the safety and efficacy of autologous stem cell administration
to treat ischemic stroke. Most clinical trials are focusing on
bone marrow- or adipose tissue-derived mesenchymal cell
transplantation (NCT02378974; NCT01091701; NCT0146
1720; NCT01678534; NCT01716481; NCT01922908; NCT
01297413; NCT00875654; NCT02580019;NCT01714167;
NCT02580019; NCT01714167; NCT02580019; and NCT
02564328). The remaining studies use peripheral blood- or
umbilical cord blood-derived hematopoietic stem cells intra-
cerebrally or infused into the middle cerebral artery of
patients (NCT01518231; NCT01249287; NCT00761982;
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NCT01438593; and NCT00950521) [108]. In this review, we
have also queried clinical trials of EPC application in ische-
mic stroke in ClinicalTrials.gov (Table 1), which have no
available results reported.

3.2. Time and Methods in Clinical Application. Due to
continuous changes in the microenvironment of the stroke

site, the timing of stem cell transplantation is a factor that
must be considered. However, current animal and clinical
trials have not identified a perfect timing for transplantation.
Transplantation within 24 hours of stroke has been partially
demonstrated to have neuroprotective effects [109, 110]. In
some trials, neural stem cell (NSCs) transplantation was
used to treat stroke, and it was found that when the

Table 1: Clinical trials for ischemic stroke with endothelial progenitor cells.

References Study type Estimated enrollment Recruitment status Start date Investigator

NCT01289795 Observational 30 Unknown status 2010.7 Matthias Endres

NCT01468064 Interventional 20 Recruiting 2011.11 Zhenzhou Chen

NCT02157896 Observational 30 Completed 2013.5 Hao Chen

NCT02605707 Interventional 30 Recruiting 2014.11 ZhenZhou Chen

NCT02980354 Observational 200 Recruiting 2017.2 Ulvi Bayraktutan
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Figure 1: EPCs interact with the neurovascular unit. In the early stage (within 24 to 48 hours), EPCs provide nutritional support for glial cells
and reduce neuronal apoptosis through secreting cytokines; during the acute phase (within 1week), EPCs repair the blood-brain barrier
(BBB) and reduce cerebral edema by replacing and repairing the vascular endothelium or promoting the proliferation and migration of
resident ECs, thereby reducing nerve cell injury in the ischemic penumbra; in the late acute phase (after 1 week), EPCs recover and
reconstruct the neurological functions of nerve cells in the necrotic region by promoting angiogenesis, blood supply, and proliferation and
migration of neuroblasts. The figure partly refer to Li et al. [63].
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transplantation was conducted on the second day after
onset, the number of surviving cells was greater compared
with the transplantation done in the sixth week [111]. Taking
into account the excitotoxicity, brain edema, inflammatory
response, and the expression of nutritional factors and other
factors, most researchers believe that 7 days after the onset of
stroke is a better time for transplantation, because at this
time the brain microenvironment has entered the stage
of promoting regeneration [112].

Stem cells can be transplanted in the following ways:
intracerebral or intracerebroventricular injection, intravas-
cular infusion, and intranasal delivery [113]. Transplanted
stem cells may appear in the damaged core and surrounding
areas [114]. Different transplantation methods will affect the
cell migration, distribution, and number of cells in the target
area [115]. In addition, it is also necessary to take into
account the type of disease, the dose of transplanted cells,
and the timing of transplantation [113]. In the clinical trial
in ischemic stroke, intravascular infusion of EPCs, especially
super selective injecting into the ischemic area, maybe a
feasible and effective approach.

3.3. Combination of EPCs and New Technologies

3.3.1. Combination of EPCs and Neurovascular Intervention.
The experiment of using EPCs to be implanted on several
different scaffolds to form microvascular networks [116] or
using stents of collagen-coupled CD34 antibody seeded with
EPCs transfected with the A20 gene [117] has become a very
promising approach. Blindt et al. has designed an EPC-
capturing stent, instead of an EPC-covering stent [118], and
a short-term result using such a stent is feasible and effective
in a clinical trial [119–121], which is helpful to lead to further
development of tissue-engineered stent. Another approach is
to design clinical trials, in which intra-arterial EPC perfusion
is conducted before or after the intravenous t-PA with
mechanical thrombectomy bridging therapy or stent implan-
tation in the intracranial and extracranial artery, so that a
high concentration of EPCs is formed; then observe the
indicators of postoperative brain edema, vascular reendo-
thelialization, postoperative restenosis rate, and neurologi-
cal function recovery, so as to find out whether the
combination of EPCs transplantation and neurovascular
intervention technology is better in protecting the neuro-
vascular unit. In the process, patients of the selective oper-
ation implant stent in the intracranial and extracranial
artery, and EPCs from the periphery blood or bone marrow
are perfused through a hyperselective catheter during the
operation. The cell number for implantation is referred to
the paper [122, 123]: 20× 106 or 3× 106. The clinical trial
is not perfect and the detail is not completed now. With
the rapid development of neurovascular intervention, the
combined application may be a direct and effective way to
utilize EPCs and also overcome side effects of the stent
treatment and provide expansive prospect in clinical therapy
in ischemic stroke.

3.3.2. Combined Transplantation of EPCs and Cytokines. The
combined transplantation of FGF-2/PDGF-BB and EPCs has

been proven to promote EPC migration [124]. SDF-1α and
VEGF alone decreased apoptosis, and they may play syner-
gistic role in promoting cell survival and the angiogenesis
of EPCs [125]. There is also a study in combined therapy of
FGF-2 and G-CSF with EPCs to improve the angiogenic
effect in mouse hind limb ischemia models [126]. In the
poststroke local acidic environment (pH 6.5), the biological
activity of EPCs is impaired, and TPO, stem cell factor
(SCF), and IL-3 each could reduce the exposure of EPCs to
acid-induced apoptosis. The combined transplantation of
the three factors and EPCs can stimulate EPC proliferation
and reduce apoptosis, which may be a better choice for
vascular endothelial repair and angiogenesis [125]. In the
future, growth factor analogues that are more stable in low
pH condition may provide better therapeutic strategies with
combined transplantation of EPCs.

3.3.3. Combination of EPCs and Synthetic Particles. A nano-
particle is an ideal carrier whose shape, size, surface charge,
composition, and coating can be highly customized. It can
also protect its carriers and may be released in a controlled
manner [127–130]. Nanoparticles can be implanted in mole-
cules, such as VEGF, FGF-2, transforming growth factor-β
(TGF-β), G-CSF, and PDGF [108], that promote EPC func-
tion and coated the surface with the amino acid sequence
LQNAPRS, which has recently been shown to recognize
CD133 [131] and anti-CD34 antibodies that are used to
recognize EPC [132], which is a type of nanoparticle that
contributes to EPC survival and promote angiogenesis.
Experiments were carried out using a synthetic pH-
sensitive polymer (urethane spherical sulfamethazine) to
load SDF-1α and release it in the local acidic environment
of the cerebral infarction [133]; other experiments used
computer to redesign SDF peptide analogues, which would
more effectively induce EPC migration [134] and enhance
neurogenesis and angiogenesis. This process may be related
to SDF-1α/CXCR4 interaction and recruitment of more
EPCs, MSCs, and NSCs.

3.3.4. EPC Modification and Pretreatment. To enhance the
therapeutic effect, EPCs can also be used for its modification,
mainly gene transduction. Experiments have been conducted
to use transduced EPCs to overexpress CXCR4, VEGF, IGF-
1, hypoxia-inducible factor-1 (HIF-1), eNOS, and other
genes, and the transplantation has achieved positive results
[135–138]. Other studies used virus-transduced EPCs to
overexpress VEGF, which enhanced EPC proliferation and
promoted angiogenesis [139]. Compared with conventional
EPCs, using EPCs to overexpress anticoagulant and vascular
protection genes more effectively reduce pathological vascu-
lar remodeling [140, 141]. Due to the fact that stem cells
can secret a variety of factors, it is also possible to overexpress
antiapoptotic or angiogenic factors through gene manipula-
tion before transplantation, such as kit ligands, VEGF, and
FGF2 [142–144]. These gene modification strategies are
likely to enhance the therapeutic effect of EPCs [145].
Another method of enhancing the function of EPCs is ische-
mic preconditioning, which can increase the expression of
VEGFR2 on EPCs, thereby promoting the angiogenic effect
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of EPCs after application [146]. Other preconditioning
triggers have been tried out in stem cells or progenitor cells
including hypoxia, hydrogen sulfide, hydrogen dioxide, car-
bon monoxide, and some cytokines and pharmacological
agents. The preconditioned stem/progenitor cells show
enhanced paracrine effects and better cell survival, which pro-
mote functional recovery much better [147]. Alternative test
of EPCs is to coincubate with SDF-1α, which has also pro-
moted angiogenesis in the limb ischemia models [148]
(Table 2). These studies suggest that enhancing the EPC func-
tion through modification techniques and pretreatment may
have a greater advantage in the treatment of ischemic stroke.

3.4. Safety. The safety and potential risks of EPC transplanta-
tion are also validated in some studies. The impact of EPC
effect on formation and progression of atherosclerotic pla-
ques still remains controversial [149], which may be involved
with a more accurate phenotypic characterization of EPCs
[145]. It has been found that bone marrow-derived EPCs
are associated with early angiogenesis in tumors, and in later
tumors, these neovessels are diluted by vessels from the
periphery [150], which indicate that EPCs are involved in
the earliest phases of tumor angiogenesis and therefore EPCs
transplantation should not be applied to tumor patients [78].
EPCs may also increase ischemia-induced inflammatory
factors, including IL8, monocyte chemotactic protein-1
(MCP-1), and recruit mononuclear-macrophages, thereby
aggravating ischemic injury [53, 151, 152]. After EPC trans-
plantation, the connection between nascent capillary endo-
thelial cells is not tight enough and the permeability is high,
which may aggravate brain edema [153] and increase the risk
of bleeding. EPCs and paracrine VEGF promote angiogene-
sis, which may lead to uncontrolled growth of local capil-
laries, developing into hemangioma or capillary groups.
Other possible side effects include epilepsy, direct injection-
induced injury, and transplantation failure caused by
allotransplantation-induced immune responses [154, 155].
In the current clinical trials, there are some limitations which
include lack of appropriate controls, randomization, blind-
ing, and a small number of patients followed up for short
periods [145]. However, transplantation of EPCs in patients
with acute myocardial infarction did not affect plasma
C-reactive protein and leukocyte levels [96] and did not
lead to tumor angiogenesis in the 5-year follow-up [99].
More experimental animal studies of EPC-based therapy,

especially in ischemic cerebrovascular disease, and systemic
designed clinical trials should be carried out to interpret the
safety issues of EPC application in the future.

4. Conclusion

As a kind of adult stem cells, EPCs’ biological characteristics
have been determined to repair BBB, improve microcircu-
lation, reduce neuronal apoptosis, and promote the prolif-
eration and migration of neural stem cells through replacing
and repairing vascular endothelial cells, promoting angio-
genesis, and secreting cytokines and growth factors, which
have enabled it to protect the neurological vascular unit.
The combination of EPC transplantation with neurovascular
intervention, synthetic particles, gene modification, and
other technologies will further enhance the therapeutic effect
of EPCs and play a more significant role in the treatment
of ischemic stroke. There may be a promising approach
of EPC application although some safety issues need to
be solved.
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