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Abstract

Glycosyltransferases are a class of enzymes that catalyse the posttranslational modification

of proteins to produce a large number of glycoconjugate acceptors from a limited number of

nucleotide-sugar donors. The products of one glycosyltransferase can be the substrates of

several other enzymes, causing a combinatorial explosion in the number of possible glycan

products. The kinetic behaviour of systems where multiple acceptor substrates compete for

a single enzyme is presented, and the case in which high concentrations of an acceptor sub-

strate are inhibitory as a result of abortive complex formation, is shown to result in non-

Michaelian kinetics that can lead to bistability in an open system. A kinetic mechanism is

proposed that is consistent with the available experimental evidence and provides a possi-

ble explanation for conflicting observations on the β-1,4-galactosyltransferases. Abrupt

switching between steady states in networks of glycosyltransferase-catalysed reactions

may account for the observed changes in glycosyl-epitopes in cancer cells.

Author summary

While enzymes tend to have a narrow substrate specificity, there are a number of enzymes

that are promiscuous, acting on a wide range of substrates. In this article we derive expres-

sions for general multi-substrate competitive inhibition for the class of transferases, with

particular emphasis on glycosylation. By extending the enzyme reaction mechanism to

include inhibition by high substrate concentrations, we show that switching behaviour

(bistability) is possible within a thermodynamically open systems of glycosylation

enzymes. The biological implication of this finding is that small changes to a predictor

variable may induce abrupt changes in the secreted products.

Introduction

With the ready availability both of computing power and software tools for numerical simula-

tion, the mathematical modelling of metabolic systems has become a core component of cell

biology. Models of classical metabolic pathways, such as glycolysis [1–3], the citric-acid cycle

[4], the urea cycle [5] and biosynthetic pathways such as N-linked and O-linked glycosylation

[6, 7], have been developed as a way to understand how such processes are regulated. Online

repositories of such models, such as the BioModels database [8], allow many of these models

to be examined without the need for programming ability on the part of the user. Software
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such as E-Cell [9] have enabled more complex models to be constructed at the cellular or

organelle level.

This paper examines a particular class of metabolic model, in which one or more enzymes

can act on multiple substrates. To this class belong the cytochrome P450 enzymes that are

involved in detoxifying multiple xenobiotics [10], ribonuclease P [11] and also the enzymes of

N-linked glycosylation [12–15]. Such enzymes recognise multiple substrates, and the products

of the reactions can themselves become substrates, thus introducing a form of competitive

inhibition with catalysis. It is known that, in the case of two substrates acted upon by the same

enzyme the Michaelis constant of the kinetic rate law will be modified to include the effects of

competing substrates upon one another [16, 17]. In the first part of this paper, a general form

of the Michaelis-Menten equation for n competing substrates is derived, and extended to an

ordered-sequential mechanism involving a donor molecule held in common by all reactions.

In the second part, we model galactosyltransferase acting on an initial acceptor glycoprotein to

form two products, each of which are substrates for the same enzyme. Here we propose a pos-

sible mechanism for such behaviour and apply it to the glycosyltransferase model, demonstrat-

ing the switching between stable steady states over a range of parameter values.

Methods

Theoretical development

Consider the case of a general two-substrate enzyme mechanism, in which a donor molecule,

Ax, transfers the x moiety to an acceptor, B,

Axþ B! Aþ Bx;

a reaction type that is common to the transferases. We consider the situation in which there

are n acceptor substrates, B1 . . . Bn. For random-order binding of donor and acceptor

(Fig 1A), an expression for the initial rate of appearance of the jth acceptor product, Bxj, is

vj ¼
Vj½Ax�½Bj�

KAx
s KBj

m ð1þ s0Bj
Þ þ KBj

m ½Ax�ð1þ sBj
Þ þ KAx

mj
½Bj� þ ½Ax�½Bj�

ð1Þ

where Vj = kj[E0] is the maximal velocity obtained at saturating levels of Ax and Bj,

KAx
mj
¼ KAx

s KBj
m =KBj

s , sBj
¼
P

i6¼j½Bi�=KBi
m and s0Bj

¼
P

i6¼j½Bi�=KBi
s . The derivation of this equation

under rapid-equilibrium conditions is given in the S1 Appendix. In this model the KAx
s and KBi

s

are, respectively, the individual dissociation constants of Ax and Bi from the E�Ax and E�Bi

enzyme-substrate complexes, while the Michaelis constants of these species, KAx
mj

and KBi
m are

the corresponding dissociation constants of the E�Ax�Bi complex. The sBj
and s0Bj

terms are

sums of dimensionless acceptor substrate concentrations representing the degree to which the

enzyme is competitively inhibited by substrates other than Bj itself. In the absence of substrate

competition, sBj
¼ 0, and Eq (1) reduces to the standard form of a bisubstrate enzyme mecha-

nism. In the limit, as [Ax]!1, (1) becomes

vj ¼
Vj½Bj�

KBj
m ð1þ sBj

Þ þ ½Bj�
; ð2Þ

an equation that is similar in form to that obtained in other studies [14, 18, 19].

Although the sBj
symbolism is a convenience in order to show which terms of the rate law

are affected by competitor concentrations, a representation that is more useful in computer
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simulations is the sum of concentrations of all its substrates, each weighted by its KBj
m or KBj

s :

AE ¼
Xn

i¼1

½Bi�

KBi
m
;A0E ¼

Xn

i¼1

½Bi�

KBi
s
: ð3Þ

Substituting into Eq (1),

vj ¼
Vj½Ax�½Bj�

KAx
s KBj

m ð1þ A0EÞ þ KBj
m ½Ax�ð1þ AEÞ

: ð4Þ

Whereas a rapid-equilibrium random-order mechanism is a feature of polypeptide N-

acetylgalactosaminyltransferase [20], sulfotransferases [21], fucosyltransferases [22] and sialyl-

transferases [23], with other glycosyltransferases, such as those of the N-acetylglucosaminyl-

transferase and galactosyltransferase families, the enzyme must bind the donor first, before

catalysis can occur [24]. Under quasi-steady-state conditions (Fig 1B), the rate law for the com-

pulsory order binding is (Eq S3 in S1 Appendix):

vj ¼
Vj½Ax�½Bj�

KAx
s KBj

m ð1þ sBj
Þ þ KBj

m ½Ax� þ KAx
mj
½Bj� þ ½Ax�½Bj�

ð5Þ

In such a case, the inhibitory effect of multi-substrate competition will lessen as the concentra-

tion of the donor is increased towards saturating levels.

Fig 1. Enzyme mechanisms. A. Random-order addition of substrates, under reversible, rapid-equilibrium conditions.

B. Compulsory-order addition of substrates, with quasi-steady-state assumptions.

https://doi.org/10.1371/journal.pcbi.1006348.g001
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Results

Inhibition at high substrate concentrations

Thus far, the possibility of abortive (dead-end) ternary enzyme complexes has not been con-

sidered, which in random-order mechanisms are likely to occur [25]. Experimental evidence

for the existence such complexes can be the appearance of inhibition at high substrate concen-

trations; in the case of glycosyltransferases, the inhibition is usually that of the acceptor

[26–29], but can also be that of the donor [30]. If we consider only the acceptor, an examina-

tion of the mechanism (Fig 1A) reveals that four additional binding events can occur, with

the E�Ax, E�Bj, E�A and E�Bxj complexes. We consider binding of Bj to the second of these

complexes, E�Bj, to provide a possible explanation for substrate inhibition with increasing

acceptor concentration. Not only will Bj bind, but so will any competitive acceptor-substrate

Bi, i = 1, . . ., n.

The oligosaccharides attached to glycoproteins (glycans) can be multivalent, meaning that

the same acceptor has more than one recognition domain. By way of illustration, the enzyme

β-N-acetylglucosaminylglycopeptide β-1,4-galactosyltransferase (GalT; EC 2.4.1.38), catalyses

the transfer of D-galactose (Gal) residue to a terminal N-acetylglucosaminyl (GlcNAc) residue

on a glycoprotein, glycopeptide or polysaccharide, with the general reaction:

UDP‐a‐D‐Galþ b‐D‐GlcNAc‐R! UDPþ Gal‐b1; 4‐D‐b‐D‐GlcNAc‐R

A theoretical system, similar to that studied experimentally by Paquêt and co-workers [31], is

shown in Fig 2, in which galactose is incorporated into glycopeptide in four steps, starting with

the initial acceptor B1, to form the final product with two terminal galactoses (B4). Hence, the

products B2 and B3 are also substrates of the enzyme, since both contain a terminal GlcNAc on

which it can act. All three substrates are therefore competitive inhibitors in the earlier sense,

and can form a ternary complex with E�Bj, the free terminal β-D-galactose in the acceptor com-

peting with the donor, UDP-Gal [33].

General observations on glycosyltransferase networks

Before continuing, we make the parenthetic observation that reaction networks such as those

in Fig 2 follow a binomial distribution pattern in the number of acceptors at each step. If the

initial substrate has m sites on which an enzyme can act, then the m immediate acceptor-

products of that substrate will each have m − 1 available sites. There will be a reaction hierarchy

based on the combinatorial filling of available sites until the final product is reached at m = 0,

with the number of substrates at the kth step following the familiar mCk pattern,

mCk ¼
m!

k!ðm � kÞ!
:

After k steps, a glycan substrate originally with m sites will have m − k sites remaining. The

resulting network of all possible reactions, for a single acceptor possessing m sites at which an

enzyme can act, will have N(m) nodes and E(m) edges, given by NðmÞ ¼
Pm

k¼0
mCk and

EðmÞ ¼
Pm

k¼0
mCkðm � kÞ. Every node, whether substrate or product, will have degree m, with

the in-degree of a node at the kth step being k and its out-degree being m − k. The number of

possible pathways from initial substrate to final product will be

PðmÞ ¼
Xm

k¼0

mCkkðm � kÞ:
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Every glycan will have up to m of each type of dissociation constant, for the enzyme of which it

is a substrate, product or inhibitor.

Inhibition at high concentrations of acceptor

Extending the derivation of the rapid-equilibrium random equation in the S1 Appendix, an

additional term will be required in the denominator to represent the abortive complex(es).

Since there are n substrates, there will be n2 ways in which to form E�Bk�Bi. A double summa-

tion over the indices i and k will be required, giving the additional term

Xn

i¼1

Xn

k¼1

½E�Bk �Bi� ¼ ½E�Ax�
KAx

s

½Ax�

Xn

i¼1

Xn

k¼1

½Bk�

KBk
I

½Bi�

KBi
s

where KBk
I is the dissociation constant of the kth acceptor from complex E�Bk�Bi.

The rate of appearance of the jth product will then be

vj ¼
Vj½Ax�½Bj�

KAx
s KBj

m ð1þ s0Bj
þ sIÞ þ KBj

m ½Ax�ð1þ sBj
Þ þ KAx

mj
½Bj� þ ½Ax�½Bj�

ð6Þ

with

sI ¼
Xn

i¼1

Xn

k¼1

½Bk�

KBk
I

½Bi�

KBi
s
¼
Xn

k¼1

½Bk�

KBk
I

Xn

i¼1

½Bi�

KBi
s
:

When n = 1, this reduces to

v ¼
Vmax½Ax�½B�

KAx
s KB

m þ KB
m½Ax� þ KAx

m ½B� þ
KAx

m
KB

I
½B�2 þ ½Ax�½B�

ð7Þ

The equation for the compulsory order mechanism will be identical, and the more

Fig 2. Model scheme of GalT acting on a diantennary N-glycan, in which species B1, B2 and B3 are competing

substrates. Sugar symbols used, in SNFG notation [32]: blue square, GlcNAc; green circle, Man; yellow circle, Gal.

https://doi.org/10.1371/journal.pcbi.1006348.g002
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computationally efficient representation, equivalent to Eq (4), is

vj ¼
Vj½Ax�½Bj�

KAx
s KBj

m ð1þ A0E þ sIÞ þ KBj
m ½Ax�ð1þ AEÞ

ð8Þ

with two summation terms, AE ¼
Pn

i¼1
½Bi�=KBi

m and A0E ¼
Pn

i¼1
½Bi�=KBi

s .

A general scheme for the formation of ternary enzyme-acceptor complexes is given in

Fig 3A. This scheme does dual service, in illustrating both the formation of n2 inhibitory com-

plexes in an n-substrate environment, but also the two catalytic mechanisms involving com-

pulsory-order and random-order binding of substrates, which in the latter case only occurs

when j = k, and for substrate inhibition at high concentrations, when j = k = i. The scheme

illustrates two aspects of multi-substrate competition: productive, in which catalysis occurs,

and non-productive, where there is inhibition as a result of abortive complex formation at

higher acceptor concentrations. In the productive case, the n acceptors compete with each

Fig 3. Substrate inhibition by one or more substrates. A. Reaction scheme for the formation of ternary enzyme-acceptor complex; the binding of Ax to the

E�Bj complex (shown in grey) only occurs within the random order model. B. Substrate inhibition of an enzyme with a single acceptor, for three different

donor concentrations (0.5, 5, 50) with KAx
m ¼ 0:5. C. Total enzyme initial rate as a function of two substrates, B1 and B2, exhibiting substrate inhibition through

formation of an abortive (dead-end) ternary complex. D. Bistability exhibited by a substrate-inhibited enzyme (Eq (7)) in a system open to substrate, for three

different values of the concentration of acceptor available externally: [B]0 = 0.666 (red), [B]0 = 2.000 (orange), [B]0 = 3.333 (green). At [B]0 = 2.0, the line

intercepts the velocity–substrate curve at three points, the two outer points being stable, and the inner an unstable steady-state solution.

https://doi.org/10.1371/journal.pcbi.1006348.g003
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other for the E�Ax complex, in either random-order or compulsory-order binding mecha-

nisms. In the non-productive case, higher acceptor concentrations compete with the donor for

binding to the free enzyme, as well as with each other, for an enzyme-acceptor complex, result-

ing in non-productive multi-substrate inhibition in compulsory-order mechanisms. In the

case of a random-order mechanism, the acceptor may bind to either the free enzyme or to the

E�Ax complex in pathways leading to the productive ternary (E�Ax�Bj) complex. Therefore

high substrate inhibition may result from the mis-oriented binding of acceptor to the free

enzyme or binding of a second B to the E�B resulting in an abortive ternary complex. The

binding site at which competition occurs may differ, depending on the enzyme mechanism

involved. Fig 3B displays three curves of v vs [acceptor], showing the relief of substrate inhibi-

tion that occurs as the donor concentration is increased, and in Fig 3C, the velocity-substrate

surface defined by two KB
I values, for n = 2.

The situation is more complicated when multiple binding sites exist on each molecule of

acceptor. According to Fig 2, B1 is a substrate, but B4 is not, while B2 and B3 can bind as sub-

strate inhibitors, though B1 cannot because it does not have a terminal GlcNAc. B4 acts as a

competitive (product) inhibitor of UDP-Gal, with two possible inhibition constants, KB4
I;1 and

KB4
I;2 . The effective value of n is the number of edges, E(m), in the network of a substrate with m

recognition sites, as defined in the previous section, which gives 16 summands in sI. For the

network in Fig 2, therefore,

sI ¼
½B4�

KB4
I;1

½B1�

KB1
s;1

þ
½B4�

KB4
I;2

½B1�

KB1
s;1

þ
½B3�

KB3
I;1

½B1�

KB1
s;1

þ
½B2�

KB2
I;1

½B1�

KB1
s;1

þ
½B4�

KB4
I;1

½B1�

KB1
s;2

þ
½B4�

KB4
I;2

½B1�

KB1
s;2

þ
½B3�

KB3
I;1

½B1�

KB1
s;2

þ
½B2�

KB2
I;1

½B1�

KB1
s;2

þ
½B4�

KB4
I;1

½B2�

KB2
s;1

þ
½B4�

KB4
I;2

½B2�

KB2
s;1

þ
½B3�

KB3
I;1

½B2�

KB2
s;1

þ
½B2�

KB2
I;1

½B2�

KB2
s;1

þ
½B4�

KB4
I;1

½B3�

KB3

s;1

þ
½B4�

KB4
I;2

½B3�

KB3

s;1

þ
½B3�

KB3
I;1

½B3�

KB3

s;1

þ
½B2�

KB2
I;1

½B3�

KB3

s;1

;

ð9Þ

in which KBk
X;i denotes the ith dissociation constant of the kth acceptor, where X is either s (dis-

sociation from E�Bi) or I (dissociation from an abortive ternary complex).

Bistability in an open system

It has been observed that bistability can arise when an enzyme is inhibited by one of its sub-

strates in an open system [34], in which substrate enters at a zero-order rate, and exits at a rate

that is first-order in the concentration of that substrate. If the substrate can diffuse into the

reaction medium according to

vdiff ¼ Kð½B�
0
� ½B�Þ; ð10Þ

where [B]0 is the concentration of exogenous substrate, then multiple steady-state solutions for

the concentration of substrate can coexist for venz = vdiff. This is illustrated in Fig 3D, where

the number of points of intersection of the line (10) with the curve described by Eq (7) will

depend on the values of [B]0 and the diffusion constant, K.
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Bistability can be demonstrated through numerical simulation of the one-dimensional

ODE system:

db
dt
¼ Kðb0 � bÞ �

Vmaxab

KaKb þ Kbaþ Kabþ
Ka

Ks
b2 þ ab

;
ð11Þ

where a and b are the concentrations of the donor and acceptor, respectively. It is assumed

that the donor concentration is constant, while the external concentration of b is chosen as the

parameter to vary. The numerical continuation software AUTO, part of the ODE solver

XPPAUT [35], was used to calculate the steady-state level of b for increasing b0. For the param-

eters a = 0.6, K = 0.075, Kb = 0.1, Ks = 0.05, Vmax = 1 and Ka = 0.6, bistability is obtained for

1.518665 < b0 < 2.325853 (Fig 4).

Within this range two stable steady states of acceptor concentration can coexist, as shown

by upper and lower branches in b–b0 space. This can be confirmed by solving dvdiff/db = −K
for b, using the parameters of Fig 3D, and computing the ordinate-axis intercept for vdiff at

these two concentrations, which will be points of tangency of the two lines described by

Eq (10) with the velocity–substrate curve. The values of b, computed in Mathematica (version

11.0.1; Wolfram Research, Inc.), are b� = {0.10755, 0.693546}. Substituting into (10), we evalu-

ate b� + vdiff(b�)/K = b0, obtaining the corresponding solutions b0 = {1.51866, 2.32585}.

Fig 4. Bistability in an open system for a bisubstrate enzyme reaction exhibiting inhibition at high substrate

concentrations. Shown is a bifurcation diagram of the one-dimensional ODE system given by Eq (11), with the

external concentration of acceptor substrate, b0, as the bifurcation parameter. The donor is assumed to be buffered to a

constant concentration. The stable steady state levels of the acceptor, b, are indicated by the red curves, the black curve

denoting the unstable steady state. An exchange of stability between the stable and unstable branches occurs at the

limit points (LP), b0 = 1.518665 and b0 = 2.325853, as indicated by the dashed lines. Other parameters of the model are

given in the text.

https://doi.org/10.1371/journal.pcbi.1006348.g004
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A model of multiple competing substrates with inhibition at high

concentrations

The reaction scheme shown in Fig 2 is modelled with five differential equations,

db1

dt
¼ Kðb0 � b1Þ � ðv1 þ v2Þ ð12Þ

db2

dt
¼ Kðb0 � b2Þ þ v1 � v3

ð13Þ

db3

dt
¼ Kðb0 � b3Þ þ v2 � v4

ð14Þ

db4

dt
¼ Kðb0 � b4Þ þ v3 þ v4

ð15Þ

da
dt
¼ Kða0 � aÞ � ðv1 þ v2 þ v3 þ v4Þ ð16Þ

where the bi represent the acceptor concentrations [Bi], i = 1 . . . 3, a is the concentration of

UDP-Gal, and the enzyme velocities v1 . . . v4 are described by Eq (8). As before, the model

assumes free diffusion of substrates into the medium in which enzyme is active [36]. There will

be additional terms in sBj
and sI, since there will be two sets of constants for the initial oligosac-

charide substrate B1, one set for each recognition site. The total enzymic rate of removal of B1,

for saturating levels of Ax, will be

v1 þ v2 ¼
V1b1

Km1
þ b1

þ
V2b1

Km2
þ b1

: ð17Þ

Assuming that the maximal velocities of each of v1 and v2 are the same, we can solve for sub-

strate concentration at half-maximal velocity, to obtain apparent Km as the geometric mean of

the individual Michaelis constants, Kapp
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Km1

Km2

p
. Under the same assumption, for a sub-

strate with m recognition domains, the apparent Km will be the solution to

1 ¼
Xm

i¼1

Kapp
m

Kmj
þ Kapp

m
: ð18Þ

Numerical simulation of the model also displayed bistability (Fig 5). Using a two-parameter

continuation, the region of a0–b0 space under which bistability exists was determined

(Fig 5B). The values of the external concentrations at the point of the cusp were found to be

(b0, a0) = (0.07094, 0.5959). Bistability was also obtained by varying the diffusion constant,

Table 1. Parameters used in the model of multi-substrate competition described by Eqs (12)–(16). Ax and Bi are, respectively, the donor UDP-Gal, and the oligosaccha-

ride acceptors shown in Fig 2. Maximal velocities of all reactions in the model were set to 5.0 and the value of the diffusion constant (K) was 0.075.

Ax B1 B2 B3 B4

External concentration, [X]0 1.5 0.15 0.15 0.15 0.15

Michaelis constants, Km n/a 0.25, 0.45 0.45 0.45 n/a

Substrate-inhibition constants, KI n/a n/a 0.02 20 20,20

Dissociation constants, Ks 0.5 0.05,0.05 0.002 0.1 n/a

https://doi.org/10.1371/journal.pcbi.1006348.t001
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K (Fig 5C); a two-parameter continuation in a0–K space revealed a closed region of bistability

(Fig 5D).

Discussion

In this article a general equation for multi-substrate inhibition is derived, from which are

deduced a number of properties of a system of reactions involving rate laws of this kind.

Enzymes following a quasi-steady-state compulsory mechanism described by Eq (5) will not

show this response with donor concentrations at saturating levels. While the nature of such

competitive inhibition had been examined by Schnell and Mendoza [18], and our initial result

was presented, without proof, by Umaña and Bailey [12], to our knowledge, this work is the

first to present a derivation of a bisubstrate reaction equation with multi-substrate competi-

tion, with an extension to include substrate inhibition.

We have extended the treatment of multi-substrate enzymes obeying rapid-equilibrium

random-order kinetics to systems exhibiting inhibition at high substrate concentrations. Spe-

cial note was made of the additional complication of oligosaccharide acceptors, which will

have multiple dissociation constants when multivalency is present, and it was shown that, in

Fig 5. Bistability in an open reaction system described by the ODE system of Eqs (12)–(16), based on the reactions of Fig 2. Parameters of

the model are given in Table 1. A. Steady-state levels of b2 as the external concentration of donor substrate, a0, is varied, with b0 = 0.3; limit

points (LP) separate the branches of stable (red curve) and unstable (black curve) steady states. B. Cusp in a0–b0 space, with branches of limit

points enclosing a region of bistability. C. Steady-state levels of initial substrate, b1, as the diffusion constant, K, is varied. D. Region of bistability

in a0–K space, with terminal limit points as indicated.

https://doi.org/10.1371/journal.pcbi.1006348.g005
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the bivalent case, an overall Michaelis constant can be predicted from the geometric mean of

the individual Km values. The work of Degn [34] was applied to the transferase enzymes acting

in a system held thermodynamically far from equilibrium, and it was shown that two stable

solutions can exist over a range of external substrate concentrations.

Bistability was also shown to be possible for a system of reactions catalysed by the enzyme

β-N-acetylglucosaminylglycopeptide β-1,4-galactosyltransferase (GalT) evincing both multi-

substrate competition and multivalency. Our model provides a possible explanation for both

the compulsory-order catalytic mechanism of this enzyme, reported by Qasba et al. [24], in

which the donor binds before the acceptor, and the inhibition observed by Freilich et al. at

high acceptor concentrations [26]. A derivation of the random-order two-substrate mecha-

nism, under quasi-steady-state assumptions, will lead to a 2:2 rational function that is second

order with respect to the concentration of acceptor in both the numerator and denominator

[37]. Although this non-Michaelian function would give rise to a velocity-substrate curve simi-

lar to that observed with substrate inhibition, it conflicts with the available evidence for the cat-

alytic mechanism. If, as we propose here, the acceptor binds as a substrate analog of the donor,

at the donor site, followed by a further acceptor-binding step to form a dead-end ternary com-

plex, the apparent paradox is resolved.

As a biological phenomenon, bistability has previously been identified in apoptosis [38],

cancer [39], disease progression [40], cell cycling [41], cell motility [42] and differentiation

[43]. It has also been reported in an open reconstituted enzyme system containing phospho-

fructokinase [44]. Multistability is well known in the context of ultrasensitivity [45], and simi-

lar phenomena, such as cooperativity and allostery, where enzymes possess switch-like

behaviour [46]. In enzyme-kinetic models, a general condition for multistability is that the rate

law be a non-monotonic function of the reactant concentrations. Hence, the competitive inhi-

bition introduced by multi-substrate competition is not a necessary, or sufficient, condition

for switching behaviour; rather, it is the formation of ternary enzyme-substrate complexes that

can lead to non-monotonicity in the enzyme rate law. The first derivative of such a function,

possessing at least one maximum or minimum, must undergo a change of sign, as the substrate

or effector concentration is varied. Since the property is shown to be possible for a single

enzyme, its origin can be distinguished from that based on network topology [47] or feedback

regulation [48].

Our main result is consistent with the prediction by Neelamegham and Liu [49] that bist-

ability could arise under circumstances where Michaelis-Menten kinetics, with nonlinearities

caused by large numbers of possible substrates and products, were combined with feedback/

feedforward regulation. We have considered only initial rate kinetics in this study, ignoring

the effects of product concentration in the derivations in the S1 Appendix, although product

inhibition effects will also play a role, as can be seen at the early stages of the proof. In neglect-

ing the product concentrations, we have constructed the system in such a way that the primary

cause of the bistability is more readily apparent. The models of Shen and Larter [50], who stud-

ied the membrane-bound enzyme acetylcholinesterase, not only displayed bistability, but also

oscillatory behaviour when either autocatalysis or product inhibition were included. Higher

order dynamic behaviour might therefore arise if our model was expanded to incorporate the

effects of product concentrations.

The conventional approach to modelling metabolism has involved the construction of

systems of ordinary differential equations using kinetic rate laws appropriate to the enzymes

and transporters involved, as has been the case for most models of glycosylation to date

[12, 14, 51], and in the present work. Such models assume an underlying deterministic process

and a detailed knowledge of the parameters, which may not be available. Another approach is

to model the transitions between the reactants in a network by a Markov chain, an application
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of which to glycosylation has recently appeared [52]. It is known that bistability can arise

within noise-driven biochemical systems operating at the level of cellular volume [53], even

where it is not predicted in the deterministic limit. Multistability as a general principle, there-

fore, and outside of the specific application to glycosylation, can exist within either modelling

framework. As the volume size of the system decreases, the rate of switching between biologi-

cally realisable steady states increases exponentially [54], which has implications for several of

the phenomena cited above, such as cellular differentiation and cancer. The transitions

between steady states, perturbed by stochastic fluctuations, may additionally require that the

system be close to the boundaries of the basins of attraction [55].

Conclusion

These results demonstrate that the complex interplay of enzyme and substrate can give rise to

nonlinear behaviour in systems of reactions held far from thermodynamic equilibrium. The

significance of the present study is that small changes in one condition, such as the amount of

available sugar-nucleotide donor [56], might incur large and abrupt changes in the amount of

product formed. Since GalT action influences the number of sites available for sialylation, such

changes should have important implications for cancer progression and metastasis, which

have been shown to be related to these processes [57], and for biotechnology, such as in the

production of therapeutic antibodies [58], which can be influenced through control of meta-

bolic flux [59]. More generally, the occurrence of bistability in metabolism could provide the

basis for cellular long-term memory [60]. The commonly occurring pattern of substrate inhi-

bition in transferases should complement the already known behaviours of models based on

sigmoidal functions. For instance, it is known that different glycosylation enzymes associate,

and co-locate with the Golgi, according to the ‘kin recognition’ model [61], and may therefore

display cooperativity. Whether a combination of cooperativity and substrate inhibition could

lead to higher order dynamic behaviour, such as oscillations in acceptor concentration, is an

open question that deserves further study.
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