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Abstract: Magnetic Resonance (MR) Imaging is a diagnostic technique that produces noisy images,
which must be filtered before processing to prevent diagnostic errors. However, filtering the noise
while keeping fine details is a difficult task. This paper presents a method, based on sparse
representations and singular value decomposition (SVD), for non-locally denoising MR images.
The proposed method prevents blurring, artifacts, and residual noise. Our method is composed of
three stages. The first stage divides the image into sub-volumes, to obtain its sparse representation,
by using the KSVD algorithm. Then, the global influence of the dictionary atoms is computed to
upgrade the dictionary and obtain a better reconstruction of the sub-volumes. In the second stage,
based on the sparse representation, the noise-free sub-volume is estimated using a non-local approach
and SVD. The noise-free voxel is reconstructed by aggregating the overlapped voxels according to
the rarity of the sub-volumes it belongs, which is computed from the global influence of the atoms.
The third stage repeats the process using a different sub-volume size for producing a new filtered
image, which is averaged with the previously filtered images. The results provided show that our
method outperforms several state-of-the-art methods in both simulated and real data.

Keywords: dictionary learning; image denoising; MR Images; non-local filtering; singular value
decomposition; sparse representations

1. Introduction

MR Imaging is a useful diagnostic technique that produces high-resolution images that are
affected by different sources of quality deterioration due to the inherent limitations in the hardware,
scanning time, movements of patients, and, one of the most important, noise. The presence of noise is
not only a visual problem but also may interfere during the analysis and segmentation tasks [1].

A study of errors in radiology conducted by Donald L. Renfrew [2] found that errors usually
involved limitations in imaging technique and acquisition of inaccurate or incomplete clinical history,
among others. Previous research found that 69.23% were perceptual errors, and 6.4% of errors were
due to poor image quality [3]. This research suggests the importance of guaranteeing the image quality
in order to obtain better results in image segmentation and analysis for preventing errors. Despite the
advance in MR imaging acquisition technology, which allowed the increment in the signal-to-noise
ratio, the acquisition speed, and the resolution, MR images are still affected by noise [4], therefore the
filtering of MR images continues being an active research area [5–10].

The raw captured data of an MR image are complex-valued, i.e., the image can be decomposed in
amplitude and phase or real and imaginary images [11]. Both real and imaginary images are affected
by additive Gaussian noise. However, magnitude MR images, which are obtained by computing the
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magnitude from the real and imaginary images, through a nonlinear mapping, are affected by noise
that does not follow a Gaussian distribution; instead, it follows a Rician distribution.

According to Foi [12], Rician distribution has two parameters, the noise-free magnitude of
the data, which is unknown, and the standard deviation of the noise that affects the real and
imaginary images. Estimating the magnitude is a difficult task, because the standard deviation
of Rician noise in magnitude MR images depends on the magnitude of the data itself, and the
expectation of the noisy magnitude differs from the noise-free magnitude by a nonlinear function of
the noise standard-deviation and of the noise-free magnitude. Foi [12] proposed a method, called
Variance-Stabilization Transformation (VST), which enables methods designed for filtering additive
Gaussian noise, to deal with MR images.

Some works focused on improving the MR imaging results during the scanning process [13,14].
However, when no previous treatment has been performed, we must deal with issues in the captured
image. Hence, many previous works proposed methods for denoising MR images, most of them are
adaptations of approaches for filtering 2D images, such as the widely known Non-Local Means (NLM)
filtering, proposed by Buades et al. [15] in 2005. This method was the first approach in considering the
self-similarity of the image for filtering noise. This method computes the pixel value as a non-local
weighted average of all pixels in the image; the weights depend on the similarity between the patches
around the pixels. This method is the basis of many proposed variants; however, blurring and blocking
artifacts still affect the denoised image [16].

Coupé et al. [17] and Manjón et al. [18] introduced the first adaptations of the NLM for denoising
MR Images in 2008. The proposal of Coupé et al. [17] focused on an efficient implementation that
reduces the dependency on parameters by automatically tuning the smoothing parameter and selecting
the most relevant voxels. Similarly, the proposal of Manjón et al. [18] focused on finding the optimal
parameters for denoising MR magnitude images.

Due to the high computational complexity of NLM-based methods, some works focused on
efficient implementations for processing MR images. Hu et al. [19] proposed a variant called SNLM.
The proposed algorithm drastically reduces the running time to 1/20 of other NLM’s variants by
randomly selecting a small subset of voxels. They introduced an optimal sampling pattern for further
improvement. However, the sampling ratio needs to be high for the denoising results to be comparable
to NLM. Klosowski and Frahm [20] presented an efficient implementation for real-time MR image
processing, which improves details preservation. The improvement was carried out by introducing a
simple weighting function based on a compact support kernel. The reported results are comparable to
the block-matching three-dimensional filter. Manjón proposed to use NLM along with sparseness [21],
and NLM along with sparseness plus principal components analysis (PCA) [10]for denoising MR
images. The last method estimates the noise level of the image, which is assumed as white noise and
filters it using non-local PCA. However, this is not satisfied when using Fourier or compressed sensing;
therefore, the method cannot be applied when this assumption is not met.

The SVD is also a widely recognized technique that has been used for image denoising [22–24].
Rajwade et al. [25] successfully used the higher order singular value decomposition (HOSVD) for
filtering natural images, although this technique require complex criteria, which involve solving
optimization models, to establish the low rank approximation for filtering noise. In addition, the
HOSVD suffers from artifacts when applies on homogeneous regions [26]. The work of Rawade was
adapted for Zhang et al. [27] for filtering MR images. This adaptation improved the HOSVD, by
adding an additional recursive stage which in general terms, repeats the HOSVD for filtering the
noisy image resulting from the partial re-incorporation of the residual noise into the denoised image
produced by the first stage. Zhang et al. [26] also adapted the HOSVD for filtering diffusion-weighted
images. Several other works used the SVD a long with NLM for filtering MR images [28] and natural
images [29,30]

Dabov et al. [31] proposed one of the most important methods in state-of-the-art image
denoising, “Image denoising with block-matching and 3D filtering” (BM3D). This method exploits
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the self-similarity in conjunction with filtering in the transform domain, and has a variant for direct
processing of volumetric data, denominated BM4D [32], which is still considered a state-of-the-art
algorithm [33]. Like the BM3D, the BM4D in the first stage applies thresholding for gathering similar
cubes in a 4D data structure and removes noise through a 4D transform. The second stage restores
the details by using collaborative filtering. The stacked 3D cube voxels in the 4D structure lead
to difficulties in removing noise in the beginning and at the end of the bands of hyperspectral
image [33]. In addition, when the noise level is high, the block-matching distance does not allow the
program to obtain enough similar blocks; therefore, the denoising reduces its performance, and some
artifacts appear.

Another important approach that attracted attention in image processing is sparse representation.
It has been used for image labeling [34], image segmentation and classification [35], image
inpainting [36] and image denoising [37–39], among others. This approach was also used for denoising
MR images. Recently, Yuan [40] proposed an efficient implementation, based on an improved
Split-Bregman algorithm, for filtering MR images using a sparse tensor model. Zhang et al. [41] use
clustering to gather similar patches and filter them using a sparse model, which uses sparse gradient
priors to exploit the image low-rank properties. Kang et al. [7] use a sparse representation-based model
for both filtering Rician noise and deblurring MR images. The model incorporates a regularization
term to preserve small details and repeated patterns while using a non-convex total variation term for
preserving edges. Li et al. [42] presented an improved dictionary learning model for medical image
fusion denoising. By incorporating a low rank and sparse regularization term, into the sparse model,
this proposal can remove noise while preserving textural details.

Further contributions, such as those proposed by Veraart et al. [9], use random matrix theory
for filtering typical fluctuations originated from thermal noise in diffusion-weighted MR images.
Phophalia and Mitra [43] use Kernel principal component analysis (KPCA) and Rough Set Theory
(RST) for denoising volumetric MR data. RST is used to group similar voxels forming basis vectors,
which are projected into a kernel space for performing PCA where the linear separation is possible,
and the filtering is carried out.

Baselice et al. [44] introduced an approach from the complex domain under the argument that, in
this domain, the filtering has the advantage of a simplified statistical model of the signal with Gaussian
nature and zero mean. This method is an advantage over methods that operate in the amplitude
domain where the noise model may not comply with being Gaussian.

Although recently some authors have focused on accurately estimating the noise [45] and
correcting the bias produced by the aggregation of non-stationary distributed MR images samples,
before trying to remove the noise [46,47], new research focused on denoising MR images by applying
machine learning-based techniques. Chang et al. [6] presented an extension of the bilateral filter, which
adapts to voxel intensity variations by including an intensity similarity function and automates the
calculations of denoising parameters values, by extracting descriptors of texture issues, through
an ensemble classifier of support vector machines and artificial neural networks. Other works
use deep networks for exploring the similarity between neighboring slices in order to reduce the
over-smoothing [5] and for denoising Dynamic contrast-enhanced MR images [8]. Zhang et al. [48]
proposed a feed-forward denoising convolutional neural networks (DnCNNs) that took the batch
normalization and residual learning architecture to denoising images, reducing the training process
and improving the denoising performance. Based on the DnCNN, Jiang et al. [49] proposed a denoising
method for brain MR images. They proposed a multichannel version of the DnCNN for dealing with
3D images, improving filtering performance in various noise levels. Kidoh et al. [50] also proposed a
deep learning-based reconstruction method for denoising brain MR images. Their method reduces
image noise while preserving image quality outperforming the DnCNN.

This paper presents a filter for denoising MR magnitude images. Unlike some of the works
presented based on NLM [17–20], or SVD [26,27], or sparse representations [7,40–42], or some
combination of these [21,28–30,41], we present a novel method, which does not propose a new sparse
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model but fully exploits one of the most typical representative examples of sparse representation,
dictionary learning. We use dictionary learning for both orchestrating the non-local and the SVD
approach efficiently, and for outperforming the representation of fine details of the image, by (1)
enhancing the learned dictionary and determining the weighting coefficients of the patches, according
to the global influence of the dictionary atoms, for filtering noise by aggregation, while avoiding
blurring and keeping fine details. (2) Establishing the self-similarity of the image efficiently, in a clean
space by analyzing the dictionary atoms and the sparse coding matrix, which allows us to accurately
recover similar patches throughout the volume, without resorting to the exhaustive comparison of
each patch in the volume, because the self-similarity can be inferred from the sparse coding matrix.
Thus, we minimize the appearance of artifacts. (3) Unlike [25–27], which establishes complex criteria
that use optimization models to determine the best low-rank approximation for filtering noise, our
method, based on the similar patches identified from the sparse representation, determines simply
and efficiently, the best low-rank approximation according to the estimated noise level of the image,
thus reducing the remaining noise in the denoised image.

The rest of this paper is organized as follows: Section 2 presents the fundamentals of sparse
representations. Section 3 presents the proposed method. Section 4 presents the results and discussion.
Finally, Section 5 presents the conclusions of this work.

2. Sparse Representation

Dictionary Learning is a typical example of sparse representation. It aims to find the sparse
representation of a set of signals Y from a dictionary D, learned from the signals themselves [51]. i.e.,
Y ≈ DA where A is the sparse coding matrix or the sparse representation of Y.

Formally, let Y := [y1y2 . . . yP] ∈ Rn×P be a matrix representing a set of P n-dimensional signals,
the dictionary learning aims to find a dictionary D := [d1d2 . . . dK] ∈ Rn×K and a sparse matrix
A := [α1α2 . . . αP] ∈ RK×P such that Y can be approximated by a linear combination of the basis
vectors (column vectors known as atoms) of D according to A. Most of the coefficients αi,j of A are
zeros, or close to zero [52]. Dictionary learning can typically be formulated as an optimization problem,
as Equation (1) indicates:

min
D,A

P

∑
c=1
‖yc −Dαc‖2

2

s.t.

‖αc‖0 ≤ L

(1)

In this formulation, yc is the c-th column vector (signal) of Y, D is learned from the signals
themselves, L is a regularization parameter, and αc is the c-th column vector of A. The term ‖αc‖0
measures the sparsity of the decomposition. It can be understood as the number of coefficients different
from zero in αc, or sparse coefficients, to approximate the signals in Y as sparse as possible.

The KSVD algorithm proposed by Aharon et al. in [53,54] allows us to obtain the optimal values of
D and A in Equation (1). By analyzing the sparse representation given by D and A, some characteristics
of the signals in Y can be detected. Aspects such as the similarity between the signals and their rarity,
are easily manageable from their sparse representation and can be useful for improving the filtering
process. This will be addressed below.

3. Proposed Method for MRI Denoising

The typical procedure for denoising images, via sparse representations, consist of decompose the
noisy image I into full overlapped n× n patches to convert them into signals and filter them using
a model, such as that in Equation (1). This procedure can be extended in the case of MR images for
processing the whole volume; however, as mentioned before, noise in MR images follows a Rician
distribution, which is non-additive but dependent on the data. To handle this type of noise, and to
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get an accurate estimation of its stabilized standard deviation γ, we apply the variance stabilization
transformation (VST) proposed by Foi [12] before processing the noisy volume V, which give us VVST.
Then, we divide the volume VVST into full overlapped sub-volumes of n× n× n. Each sub-volume is
converted into a signal yc ∈ Rn3×1 to conform the matrix Y := [y1y2 . . . yP] ∈ Rn3×P, where P is the
number of signals. Now Y can be reconstructed solving Equation (1) by using the KSVD algorithm.

However, the reconstruction given by DA leads to the recovery of an MR image suffering from
blurring effect, artifacts, and that keeps some residual noise, as shown in Figure 1. To overcome
this, we focus on three important issues of the sparse representations: the weighting of its atoms,
the self-similarity that emerges from these, and the scales that these representations can handle.
The three steps that make up our method address each of the issues above. Figure 2 illustrates the
steps of our method.

Figure 1. Issues of the KSVD filtering. Columns from left to right correspond to a phantom noise-free
image added with 5% Rician noise, original phantom noise-free image, and image denoised by the
KSVD. The third column from top to down corresponds to artifacts, residual noise, and blurring issues
that the KSVD produces.
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Figure 2. Block diagram illustrating the three steps of the proposed method.

3.1. Weighting the Dictionary Atoms

In digital image processing, there exist several approaches for denoising images corrupted by
noise; one of them is filtering in the spatial domain using masks. The coefficients of the spatial masks
are set depending on both the noise level and the type of noise. For Gaussian noise, the coefficients are
weighting factors set according to the distance to the center of the mask [55]. The central coefficient
gives the weight of the pixel under analysis during the denoising process. The greater this coefficient
is, the more similar the filtered pixel will be to the original. This similarity implies that this coefficient
can control the blurring produced by the smoothing process. We apply this reasoning to the dictionary
learning, but instead of weighting the pixels of the image, we weight the atoms.

For denoising the image while keeping fine details, which is essential in MR images, this new
approach proposes weighting the atoms according to its global influence. We define the global
influence of a dictionary atom as the probability that such an atom appears as a linear combination in
the reconstruction of a signal. i.e., For example, after finding the optimal A in Equation (1), the global
influence of an atoms is calculated as the number of non-zero coefficients corresponding to that atom
in A. Formally, the global influence gi of an atom dc of D is equal to the probability that dc affects a
signal, as Equation (2) indicates.

gi(dc) =
f (dc)

∑K
k=1 f (dk)

(2)

f (dc) =
P

∑
p=1

g(αc,p) (3)

g(αc,p) =

{
1, if αc,p 6= 0

0, otherwise
(4)

where αc,p is the element entry of the c-th row and the p-th column of the matrix A. The global influence
is used to reinforce the effect of the more frequent atoms in the signals, to reduce the blurring caused
by the average of sub-volumes during the aggregation. In the case of brain MR images, this global
influence will be used for reinforcing atoms that represent common patterns found in these images,
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like the edges between brain structures, and therefore, for preventing the blurring in such patterns.
Equation (5) updates the dictionary for reinforcing the atoms according to their global influence.

D′ = D×Diag(1 + δGI) (5)

where GI := [gi(d1), gi(d2), . . . , gi(dK)] is a vector containing the global influence of all atoms, δ is
a constant for controlling the influence (δ = 8, which was experimentally obtained by numerical
tests). 1 is a vector of ones, and Diag(·) is a K× K diagonal matrix with diagonal element entries
equal to 1 + δGI. Now Ŷ, a noise-free reconstruction of Y that keeps fine details, is computed using
Equation (6).

Ŷ = D′A (6)

Although Ŷ, improves the representation of fine details, there is still some residual noise that can
be eliminated, taking advantage of the self-similarity of the image, which can be easily examined from
the sparse representation given by D′ and A. This will be addressed below.

3.2. Non-Local SVD Filtering

3.2.1. Signal Grouping

Non-local filtering overcomes local filtering [56,57]; however, it is dependent on parameters such
as search windows and thresholds [18]. Also, it is affected by searching for similar patches in a noisy
space, which may affect the patch grouping and therefore lead to a bad estimation of the pixel. Instead,
we search for similar signals in the clean space given by D′A without searching windows, because the
sparse representation allows examining the self-similarity of the image through the dictionary atoms.

For performing non-local filtering based on sparse representations, we rely on the fact that similar
signals admit similar sparse representations [58,59]; hence, to find similar signals to a given signal ŷc,
we starting determining which atoms make up ŷc by using Equation (7).

I(ŷc) := {r : αr,c 6= 0, r = 1, 2, . . . , K} (7)

where K is the number of atoms in D′ (number of rows of A). I denotes the set of influencer atoms of
ŷc i.e., the set of atoms belonging to D′ that are linearly combined according to αc for generating ŷc

(Figure 2 encloses an influencer atom of ŷc in a red rectangle in the SIGNAL GROUPING box). Then,
we search for the most influencer atoms of Ŷ as Equation (8) indicates.

M(Ŷ) := {(r, c) : |αr,c| = max(|αc|), c = 1, 2, . . . , P} (8)

where |αc| := [|α1,c|, |α2,c|,· · · , |αK,c|] is the vector αc with its components in absolut value, max(|αc|)
denotes the largest component of |αc|, and P is the number of signals in Ŷ. M denotes the set of ordered
pairs (r, c) meaning that dr of D′ is the greatest influencer atom of the signal ŷc of Ŷ. From the two
previous sets, the set CSS(ŷc) of candidates to similar signals of ŷc is defined according to Equation (9).

CSS(ŷc) =
{

ŷj : (r, j) ∈M(Ŷ) ∧ r ∈ I(ŷc)
}

(9)

where CSS(ŷc) contains all the signals ŷj of Ŷ whose greatest influencer atom belongs to I(ŷc). Figure 3a
shows an example of a given reference signal ŷc in a MR image. Figure 3b shows the set of candidates
to similar signals CSS(ŷc) from the given reference signal of Figure 3a, obtained using Equation (9).
For obtaining the set of similar signals of ŷc denoted by SS(ŷc) (signals pointed out by green arrows in
Figure 2), and additionally, to get a better filtering performance in visual terms, we rely on the fact
that the human eye is relatively less sensitive to dark signals than to bright ones [60]. Therefore, we
do not define a fixed threshold for selecting similar signals, but a variable one, dependent on both
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the magnitude of the reference signal and the noise level of the image. This variable threshold will
allow reference signals with a large magnitude admit less difference to similar signals than the dark
ones; in addition, will allow increasing the number of similar signals for MR images with high noise
levels to get a better estimation of the noise-free reference signal. Hence, we define SS(ŷc) according to
Equation (10).

SS(ŷc) :=

{
ŷj ∈ CSS(ŷc) :

∥∥ŷj − ŷc
∥∥

‖ŷc‖
≤
(

b− a
‖ŷc‖
‖1n3‖

)
(1 + γ)

}
(10)

where b is the upper limit and b − a is the lower limit, respectively, of the interval containing the
variable threshold that establishes the relative similarity between the signals (a = 0.06 and b = 0.18,
which were experimentally obtained by numerical tests). 1n3 is an n3-dimensional vector of ones (with
n being the edge of the sub-volume). γ is the estimated noise level. The left side of the inequality in
Equation (10) is undefined when ‖ŷc‖ = 0. Hence, we convert it into

∥∥ŷj
∥∥ when ‖ŷc‖ ≤ 10−6. Please

note that a bright signal (large magnitude signal) admits less difference in their similar signals than a
dark one because of the magnitude of the threshold b− a ‖ŷc‖

‖1n3‖ decreases as long as ‖ŷc‖ increases.

Also note that, although the threshold is inversely proportional to the magnitude of the reference
signal in the interval [b− a, b], this threshold will be greater for signals of high noise level images
than for signals of low noise level images, because of the term (1 + γ). We can increase the threshold
for collecting similar signals on high noise level images with out significantly affect the subsequent
estimation of the noise-free reference signal, because we search for similar signals in the clean space
given by the sparse representation.

Figure 3c shows the set of similar signals SS(ŷc) of the reference signal given in Figure 3a obtained
after applying Equation (10) to CSS(ŷc). The red arrows in Figure 3c point out similar signals away
from the reference signal, demonstrating that the sparse representation allows us to locate similar
signals throughout the MR image, without examining the entire volume. It also shows that our method
can locate signals in a space not restricted to search windows. Therefore we can collect a larger number
of similar signals (with respect to methods that use such windows), which improves the denoising.

Now, the set SS(ŷc) can be used for estimating ŷc in a non-local way; however, as was mentioned
before, all the signals in Ŷ keep some residual noise, and a better estimation could be carried out by a
cleaner version of SS(ŷc).

(a) (b) (c)

Figure 3. Cont.
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(d) (e)

Figure 3. Example of a reference signal and its corresponding sets of Candidates to similar signals
CSS, and Similar signals SS. (a) Example of a reference signal. (b) Candidates to similar signals of the
reference signal in (a). (c) Similar signals of the reference signal in (B). (d) Zoom-in of the reference
signal in (a). (e) Zoom-in of the similar signals 1 and 2, demonstrating that our method can locate
similar signals away from the reference signal.

3.2.2. Efficient SVD Filtering

A known way for reducing the noise of an image is by analyzing its singular value decomposition
(SVD). SVD is a matrix factorization that allows for the decomposition of a given matrix into three
new matrices U, Σ and V so that X = UΣVᵀ, where U and V are orthogonal matrices, and Σ is a
diagonal matrix whose diagonal entries are the singular values of X. Alternatively, in summation
form, X = ∑n

i=1 siuivi, which can be understood as a weighted sum of component images, where the
Eigen-images corresponding to the smallest singular values are commonly associated with noise [61].
Therefore, a vital issue for denoising based on SVD is determining what singular values correspond to
the component noisy images. According to the Eckart–Young–Mirsky theorem [62], given a matrix
X = UΣVᵀ then for any rank-k matrix X̂, it is fulfilled that:

∥∥∥X− X̂
∥∥∥

F
= ‖X−UΣkVᵀ‖F ≥

√√√√ n

∑
i=k+1

σ2
i (11)

where ‖·‖F is the Frobenius norm, Σk is the Σ matrix of the SVD decomposition of X with the singular
values σk+1 = σk+2 = . . . = σn = 0. By squaring Equations (11) and (12) is obtained.∥∥∥X− X̂

∥∥∥2

F
= ‖X−UΣkVᵀ‖2

F ≥
n

∑
i=k+1

σ2
i (12)

Taking the right side of the inequality and matching γ2, where γ is the stabilized standard
deviation of noise (estimated according to [12]), we have:

n

∑
i=k+1

σ2
i ≥ γ2 (13)

Equation (13) tells us that, when the sum of squares of the n− k less significant singular values of
X is equal or greater than γ2, we have the best k for filtering the noise of X. These n− k less significant
singular values correspond to the noisy component images (noisy component volumes in our case),
and therefore, using only the first k more significant singular values we discard such component noisy
images of X.



Sensors 2020, 20, 1536 10 of 26

Now, for filtering the residual noise of both ŷc and SS(ŷc) let us define X as the matrix made up
of ŷc and its similar signals SS(ŷc), i.e., X = [ŷc SS(ŷc)], and following Equation (13) the noise-free
version X̂ is obtained with the low rank approximation given by UΣkVᵀ considering the estimated
level of noise γ.

3.2.3. Signal Estimation

ŷc is updated from X̂, according to Equation (14).

ŷc =
1
l

l

∑
i=1

x̂i (14)

where x̂i is the i− th signal of X̂ and l is the number of signals in X̂.

3.2.4. Aggregation

The restoration of the MR sub-volumes from Ŷ involves the aggregation of overlapped voxels,
which can lead to the blurry recovery of the voxel. However, as mentioned before, weighting the
voxels can control blurring. Now, the voxels to be aggregated belong to sub-volumes (signals), which
may be frequent (has many similar signals) or rare (has a few similar signals). Since the frequent
sub-volumes are better estimated than the rare sub-volumes because of the number of signals averaged
in Equation (14), these voxels should have more weight than the voxels from the rare sub-volumes.
Therefore, we propose weighting the voxel according to the rarity of the signal they belong to.

Similar to the procedure outlined in Leal et al. [63], the global influence of atoms can be used to
establish the rarity of a signal. For example, a signal will be rare if it accumulates little global influence;
it will be frequent if it accumulates a lot of global influence. Equation (15) allows computing the rarity
of a signal based on the global influence of the atoms that make it up.

R(ŷc) = 〈GI, αc〉 (15)

where R(ŷc) denotes the rarity score of the signal ŷc, 〈, 〉 denotes the dot product, and αc is the c-th
column vector of A, which represents the sparse representation of ŷc on D′.

High scores of Equation (15) are related to frequent signals, while low scores are related to rare
signals. The denoised version of the voxel v is obtained according to Equation (16), after converting
back the signals into sub-volumes.

v =
∑i∈C(vi)

R(Vi)vi

∑i∈C(vi)
R(Vi)

(16)

where vi is a version of the voxel v contained in the sub-volume Vi, R(Vi) is the rarity score of the signal
ŷi corresponding to the sub-volume Vi, and C(vi) denotes the set of sub-volumes Vi that contains a
version of v.

3.3. Scaling

An important parameter for denoising based on sparse representations is the patch size. Large
patches lead to denoised images suffering from blurring effect, while small patches lead to denoised
images that can keep a high level of noise. However, small patches keep also fine details of the
original image.

Averaging images denoised using different patch sizes can carry out a good trade-off between
blurring and fine details. The noisy image can be denoised several times; but, each time with a
different patch size, then the denoised versions of the image are averaged. The different patch sizes
for processing the image are known as scales. Let us define V̂n as the denoised version of a noisy MR
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image V using the proposed method with a sub-volume of size n× n× n. The averaged denoised
version V̂ of V, is obtained using Equation (17).

V̂ =
1
|VS| ∑

i∈VS
V̂i (17)

where |VS| denotes the number of elements in VS, and VS is the set of different sub-volume sizes for
processing V. In our tests, we achieved the best results by averaging the denoised versions V̂3 and
V̂4. To obtain the final output V̂∗, we apply the inverse VST (VST−1) to the denoised volume V̂. The
denoising of Rician data using the proposed method, Non-local SVD Denoising—NLSD, is synthesized
by Equation (18)

V̂∗ = VST−1(NLSD(VST(V, σ), γ), σ) (18)

where γ is the stabilized standard deviation induced by the VST, V is the volume corrupted by Rician
noise with standard deviation σ.

4. Results and Discussion

We conducted several experiments to obtain the values of the parameters for the optimal setting
of our method and to compare some state-of-the-art methods. These experiments were conducted in
MATLAB R2016a running under the Windows 10 Professional OS on an Intel Core i7 First Generation
CPU with 8GB of memory.

A dataset of MR phantom images (1 T1w, 1 T2w, and 1 PDw) from the BrainWeb data base [64],
with a size of 181× 217× 181 voxels (resolution = 1 mm3), was used for numerical comparisons, as
well as for setting the optimal parameter values of our method.

4.1. Parameter Estimation

The first stage of our method, which is preceded by the VST, aims to compute the global influence
to reinforce the atoms for avoiding blurring in the denoised image. This reinforcing is controlled by
the parameter δ, which does not intervene in the remaining stages. For determining a suitable value
for this parameter, it was performed an experiment which consisted of corrupting the dataset of MR
phantom images with different levels of Rician noise (1–10% of the maximum intensity), i.e., from
each volume of the dataset were obtained 10 different noisy versions, one per each level of noise,
for a total of 30 corrupted images. Then, we ran the first stage of our method over each corrupted
image, followed by the inverse VST. Finally, we calculate the widely recognized quality measures Peak
Signal to Noise Ratio (PSNR), and the Structural Similarity Index (SSIM) [65] of each denoised image
to establish the best value for this parameter numerically.

Figure 4 shows the results of applying the first stage of our method over the dataset of MR
phantom images corrupted with the different Rician noise levels. Each point on the green curve is the
average PSNR of the denoised images for a given value of δ, and each point on the blue curve is the
average SSIM.

We observed that the PSNR is maximum (31.991) at δ = 8 and the SSIM is maximum (0.8934)
at δ = −3. It is preferable to choose the value of δ that generates the maximum PSNR instead of the
value that generates the maximum SSIM. Since this metric (PSNR) is more sensitive to noise than the
SSIM (which is more correlated with a human visual system) [66], and by choosing the value of δ that
give us the maximum PSNR we are choosing the cleaner search space for the next stage. Additionally,
the best PSNR and SSIM pair is reached at δ = 8.
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Figure 4. Summary of the tests performed to numerically establish the best value of the parameter δ

for controlling the global influence of the atoms. The red arrow points out the maximum SSIM (blue
curve) and its corresponding PSNR (green curve). The yellow arrow points out the maximum PSNR
and its corresponding SSIM.

The second stage of our method is to perform the Non-Local-SVD filtering. At this stage, we
search for similar signals to a reference signal in the clean space given by the first stage. We defined a
variable threshold in the interval [b− a, b] for establishing the level of similarity between the signals
(right side of the inequality in Equation (10)). This threshold depends on the magnitude of ŷc and the
noise level γ estimated in the first stage. The interval where the threshold moves is determined by the
constants a and b. To establish a suitable value for these constants, it was performed an experiment
which consisted of running the second stage of our method over the sparse representation Ŷ = D′A of
each denoised image produced by the tests of the first stage (previous to the application of the inverse
VST), trying different values for a and b. In this experiment, the application of the second stage of
our method was followed by the inverse VST. Figure 5 shows the results. Each point on the PSNR
surface (Figure 5a) represents the average of the PSNRs computed after applying the second stage or
our method over the images denoised by the first stage, for a given pair of values a and b. Similarly,
Each point on the SSIM surface (Figure 5b) is the average SSIM.

As shown in Figure 5a, the maximum PSNR is equal to 36.247, which is reached at a = 0.06 and
b = 0.18. At this point, the SSIM is 0.9407. As shown in Figure 5b, the maximum SSIM is 0.9439, which
is reached at a = 0.02 and b = 0.17. At this point, the PSNR is 36.104. We chose the pair a = 0.06 and
b = 0.18 because the increment of the PSNR at this point with respect to the PSNR at the point where
the maximum SSIM is reached, is more significant than the increment of the SSIM at a = 0.02 and
b = 0.17, with respect to the SSIM at the point where the maximum PSNR is reached.
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(a)

(b)

Figure 5. Summary of the tests performed to numerically establish the best values for the parameters a
and b for controlling the similarity between the signals according to the magnitude of the reference
signal and the estimated level of noise. (a) PSNR surface where each point corresponds to the average
PSNR of the MR phantom images corruped with different Rician noise levels and denoised using the
two first stages of our method. (b) SSIM surface obtained similarly to the PSNR surface.

4.2. Methods Comparison

We compared the proposed method for MRI denoising, NLSD, to the following widely adopted
filters: KSVD [53], PRINLM [21] (implementation downloaded from [67]), BM4D [32] (implementation
downloaded from [68]), and DnCNN [48] (implementation dowloaded from [69]). The implementation
of the methods PRINLM and BM4D used for comparison are developed in MATLAB with its core
developed in C++. The DnCNN, the KSVD, and the NLSD, are implemented purely in MATLAB and do
not use any graphic acceleration. The application of the KSVD was preceded by the VST, and followed
by its inverse. We performed both quantitative and qualitative comparisons for demonstrating the
effectivity or our method.
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4.2.1. Synthetic Data

For numerical comparisons, we used the MR phantom images dataset, corrupted with Rician noise
(1–10% of the maximum intensity). The PSNR, and the SSIM were used to evaluate the performance.
Figures 6–17 and Tables 1–4 show the results of these comparisons.

Figure 6 shows the results of the comparisons on the T1w synthetic noise-free MR image corrupted
with 5% Rician noise. It shows that the methods PRINLM, BM4D, DnCNN, and NLSD perform very
well removing noise; however, the PRINLM produces some artifacts as the zoom-in in Figure 7d,k
show. The KSVD and the BM4D also produce artifacts but to a lesser extent, as shown in Figure 7c,e,
respectively, and Figure 7j,l respectively. The DnCNN over-smooth the image and therefore fine details
as shown in Figure 8m. Instead, the NLSD removes noise while keeping fine details, in addition, does
not produce artifacts. The KSVD maintains a lot of residual noise, as well as the BM4D, although to a
much lesser extent, as shown in Figure 8c,e, respectively. Figure 8d,g show that the PRINLM and the
NLSD, respectively, do not keep residual noise. Figure 8h–n show the zoom-in on the details labeled
as “c” in Figure 6. It shows that the methods KSVD, BM4D, and DnCNN are affected by the blurring
effect (Figure 8j,l,m, respectively). The PRINLM (Figure 8k) and the NLSD (Figure 8n) keep fine details;
however, the PRINLM tends to swell such details. Table 1 summarizes the results of the numerical
tests in the T1w synthetic MR image. Bold highlights indicate the best results.

(a) (b) (c)

(d) (e) (f) (g)

Figure 6. Comparison of the denoising methods on the T1w synthetic noise-free MR image corrupted
with 5% Rician noise. (a) Original synthetic noise-free MR image. (b) Original image corrupted with
5% Rician noise. (c–g) Denoising results of the KSVD, PRINLM, BM4D, DnCNN, and the proposed
method NLSD.
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Figure 7. Zoom-in on the details of the regions labeled as “d” and “b” in Figure 6. Figure (a–g) show
the detail labeled as “d” in Figure 6a–g respectively. Figure (c–g) Correspond to the methods KSVD,
PRINLM, BM4D, DnCNN and NLSD, respectively. Figure (h–n) show the detail labeled as “b” in
Figure 6a–g respectively. Figure (j–n) Correspond to the methods KSVD, PRINLM, BM4D, DnCNN,
and NLSD, respectively.

Figure 8. Zoom-in on the details of the regions labeled as “a” and “c” in Figure 6. Figure (a–g)
correspond to the regions labeled as “a” and Figure (h–n) correspond to the regions labeled as “c”.
Figure (c–g) and (j–n) correspond to the zoom-in on the results of the methods KSVD, PRINLM, BM4D,
DnCNN and NLSD, respectively.
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Figure 9 qualitatively compares the denoising methods from the residual images (images resulting
from the difference between the denoised and noisy images). It shows that the KSVD retains some
structural information, and the DnCNN to a lesser extent, while the PRINLM, the BM4D, and the
NLSD perform very well. However, the NLSD presents both a higher PSNR and a higher SSIM, as
Table 1 shows.

Table 1. Comparison of the different methods evaluated on the T1w synthetic noise-free MR image
corrupted with different levels of Rician noise. Bold highlights indicate the best results.

1% 3% 5% 7% 9%

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Noisy 39.980 0.9658 30.451 0.8084 25.982 0.6644 23.045 0.5536 20.888 0.4693
KSVD 40.421 0.9773 32.637 0.9225 29.509 0.8605 27.588 0.8014 26.423 0.7368
PRINLM 44.299 0.9930 38.589 0.9655 35.512 0.9281 33.642 0.8654 33.177 0.8332
BM4D 44.688 0.9911 38.129 0.9799 35.618 0.9643 32.799 0.9404 30.412 0.9115
DnCNN 43.109 0.9756 37.843 0.9602 34.790 0.9581 33.744 0.9478 31.501 0.9163
NLSD 44.901 0.9970 38.723 0.9895 35.801 0.9776 33.982 0.9630 33.130 0.9296

Figure 10 shows the results of the comparisons on the T1w synthetic noise-free MR image
corrupted with 9% Rician noise. It shows that the PRINLM do not eliminate the noise in dark regions
but tends to flatten (circled area) and destroy fine details (red arrows). BM4D also keep noise in dark
areas (circled area) and also destroy fine details. The DnCNN remove noise but over-blur the image
destroying fine details. The KSVD keep a lot of noise and destroy fine details. The NLSD instead keep
fine details and perform very well removing noise. You can zooming in the images to appreciate the
details. Figure 11 shows the qualitative comparison of the method evaluated from the residual images.
No structural information is observed on the residuals of the NLSD. The residuals of the KSVD and
the DnCNN present some structural information. The residuals of the PRINLM and the BM4D also
present structural information to a lesser extent.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Residuals of the different results produced by the application of the methods evaluated on
the noise-free T1w synthetic MR image of Figure 6a corrupted with 5% Rician noise. (a–e) are the
denoising results of the methods KSVD, PRINLM, BM4D, DnCNN, and NLSD, respectively. (f–j) are
the corresponding residuals.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 10. Comparison of the denoising methods on the T1w synthetic noise-free MR image corrupted
with 9% Rician noise. (a) Original synthetic noise-free MR image. (b) Original image corrupted with
9% Rician noise. (c–g) Denoising results of the KSVD, PRINLM, BM4D, DnCNN and the proposed
method NLSD.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11. Residuals of the different results produced by the application of the methods evaluated on
the noise-free T1w synthetic MR image of Figure 10a corrupted with 9% Rician noise. (a–e) are the
denoising results of the methods KSVD, PRINLM, BM4D, DnCNN and NLSD, respectively. (f–j) are
the corresponding residuals.
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Figure 12 shows the results of the comparisons on the T2w synthetic noise-free MR image
corrupted with 7% Rician noise. It shows that the image filtered by the KSVD (Figure 12c) keeps high
levels of noise, which is corroborated by the corresponding zoom-in of region “c” in Figure 13c.
The BM4D also keeps noise, although to a lesser extent, as shown in region “c” in Figure 13e.
The DnCNN over-blur the image and destroy fine details, as can be seen in the corresponding zoom-in
of region “b” in Figure 13f. The methods PRINLM and NLSD perform very well at removing noise;
however, as shown in the zoom-in of the regions “a” and “b” in Figure 13d, the PRINLM produces
artifacts. The NLSD does not produce artifacts. Figure 14 qualitatively compares the denoising
methods from the residual images. It shows that the KSVD presents a correlated residual image and
also the BM4D. The DnCNN present a residual image that keep some estructural information, but to a
lesser extent, while the PRINLM, and the NLSD perform very well. However, the NLSD presents both
a higher PSNR and a higher SSIM, as Table 2 shows. Table 2 summarizes the results of the numerical
tests in the T2w synthetic MR image. Bold highlights indicate the best results.

(a) (b) (c)

(d) (e) (f) (g)

Figure 12. Comparison of the denoising methods on the T2w synthetic noise-free MR image corrupted
with 7% Rician noise. (a) Original synthetic noise-free MR image. (b) Original image corrupted with
7% Rician noise. (c–g) Denoising results of the KSVD, the PRINLM, the BM4D, the DnCNN and the
NLSD respectively.
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Figure 13. Zoom-in on the details labeled as “a”, “b”, and “c” in Figure 12. Figures (a–g) correspond to
the zoom-in of the Original image, the Noisy image, the KSVD, the PRINLM, the BM4D, the DnCNN,
and the NLSD, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14. Residuals of the different results produced by the application of the methods evaluated on
the noise-free T2w synthetic MR image of Figure 12a corrupted with 7% Rician noise. (a–e) are the
denoising results of the methods KSVD, PRINLM, BM4D, DnCNN, and NLSD, respectively. (f–j) are
the corresponding residuals.

Table 2. Comparison of the different methods evaluated on the T2w synthetic noise-free MR image
corrupted with different levels of Rician noise. Bold highlights indicate the best results.

1% 3% 5% 7% 9%

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Noisy 39.992 0.9709 30.418 0.8330 26.016 0.7151 23.073 0.6242 20.928 0.5606
KSVD 40.104 0.9706 32.098 0.9166 29.342 0.8669 26.530 0.8134 24.664 0.7633
PRINLM 43.985 0.9943 37.786 0.9703 34.738 0.9262 32.918 0.8852 31.347 0.8286
BM4D 43.655 0.9614 37.166 0.9473 34.140 0.9373 31.887 0.9273 30.030 0.9100
DnCNN 42.897 0.9569 37.003 0.9354 34.362 0.9210 32.544 0.9162 31.045 0.9139
NLSD 44.099 0.9978 37.973 0.9885 34.910 0.9522 33.546 0.9327 31.601 0.9233

Figure 15 shows the results of the comparisons on the PDw synthetic noise-free MR image
corrupted with 5% Rician noise. Figure 16 shows the zoom-in of the regions labeled as “a” and “b”
in Figure 15. It shows that the BM4D and mainly the KSVD retain noise, as shown in Figure 16c,e
in the corresponding zoom-in. The DnCNN perform very well filtering noise but over-blur the



Sensors 2020, 20, 1536 20 of 26

image destroying fine details, as can be seen in Figure 16f. The PRINLM and the NLSD perform
very well, although the NLSD (Figure 16g) tends to preserve some fine structures better than the
PRINLM. Figure 16d shows how the PRINLM tends to thicken or destroy such structures. Figure 17
qualitatively compares the denoising methods from the residual images. It shows that the KSVD
presents a correlated residual image. The BM4D and DnCNN also shows a bit of correlation, while the
PRINLM and the NLSD perform very well. However, the NLSD presents both a higher PSNR and a
higher SSIM, as Table 3 shows.

Table 3. Comparison of the different methods evaluated on the PDw synthetic noise-free MR image
corrupted with different levels of Rician noise. Bold highlights indicate the best results.

1% 3% 5% 7% 9%

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Noisy 39.971 0.9636 30.441 0.7901 25.984 0.6341 23.088 0.5250 20.898 0.4408
KSVD 39.980 0.9639 29.633 0.8956 27.626 0.8128 26.224 0.7357 24.952 0.6589
PRINLM 44.699 0.9940 38.079 0.9752 35.111 0.9228 33.101 0.8638 32.562 0.8211
BM4D 44.603 0.9626 38.621 0.9399 35.683 0.9280 33.653 0.9147 31.887 0.8990
DnCNN 43.245 0.9567 37.991 0.9268 35.700 0.9372 33.419 0.9075 30.643 0.8986
NLSD 44.980 0.9987 38.906 0.9894 35.973 0.9532 33.625 0.9387 32.656 0.9102

(a) (b) (c)

(d) (e) (f) (g)

Figure 15. Comparison of the denoising methods on the PDw synthetic noise-free MR image corrupted
with 5% Rician noise. (a) Original synthetic noise-free MR image. (b) Original image corrupted with
5% Rician noise. (c–g) are the denoising results of the KSVD, the PRINLM, the BM4D, the DnCNN and
the NLSD, respectively.
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Figure 16. Zoom-in on the details labeled as “a” and “b” in Figure 15. Figures (a–g) correspond to the
zoom-in of the Original image, the Noisy image, the KSVD, the PRINLM, the BM4D, the DnCNN and
the NLSD in Figure 15, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 17. Residuals of the different results produced by the application of the methods evaluated on
the noise-free PDw synthetic MR image of Figure 15a corrupted with 5% Rician noise. (a–e) are the
denoising results of the methods KSVD, PRINLM, BM4D, DNCNN and NLSD, respectively. (f–j) are
the corresponding residuals.

Table 3 summarizes the results of the numerical tests in the PDw synthetic MR image. Bold
highlights indicate the best results. Table 4 presents the running time of the methods.

Table 4. Implementation language and computation time of the methods evaluated.

PRINLM BM4D DnCNN KSVD NLSD

Language MATLAB - C++ MATLAB - C++ MATLAB MATLAB MATLAB
Average running time 45.32 s 46.83 s 65.64 min 70.13 min 120.84 min

4.2.2. Real Data

For qualitative comparisons on real clinical data, we used a data set of T1w brain MR images
acquired in a 1.5T Siemens Magnetom equipped with a standard head coil. The parameters of the T1w
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images were: TR = 7.9 ms, TE = 3.8 ms, ACQ matrix 220× 220 pixels, voxel size 0.5 mm × 0.5 mm ×
0.5 mm. We compared the NLSD results to the PRINLM, the BM4D and the DnCNN results. The KSVD
was not considered because its performance was much lower in the tests on synthetic data. Figure 18
shows the results. The four methods perform very well, as can be seen in their corresponding zoom-ins;
however, the BM4D and DnCNN results are slightly blurry and retain some noise. The PRINLM also
keeps some residual noise. It can be noted that, close to the dark areas the BM4D and the PRINLM
maintain residual noise slightly flattened, as can be seen in the zoom-in. The NLSD instead reduces
noise while keeping fine details and yielding better visual results. This can be seen around the skull,
where almost there is no any noisy pixel. This is because of the variable threshold in Equation (10) and
the better estimation of the signals achieved by the search of similar signals in the clean space given
by D′A.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 18. Quality comparisons on a real T1w MR image. (a) Original MR image, (b–e) denoising results
of the PRINLM, the BM4D, DnCNN, and the NLSD. (f–j) the corresponding zoom-in of figures (a–e).

5. Conclusions

In this paper, we presented a new method for MR images denoising based on non-local means,
singular value decomposition, and sparse representation. Both qualitative and quantitative results
validate the effectiveness of the proposed method. We demonstrated how the global influence of the
dictionary atoms could act as weighting factors to improve the noise filtering while keeping the fine
details of the image and reducing the blurring effect caused by the average of overlapping patches.

We also demonstrated how the strategy of non-local means could be applied directly from the
dictionary without resorting to the use of search windows, which limit the search for similar signals
(patches or sub-volumes) to a given region. The dictionary, instead, allows finding similar signals
in any location of the MR image without exploring the whole volume; and therefore, improving the
filtering. Additionally, the strategy of searching for similar signals in the clean space given by the
sparse representation allows the process of collecting such signals to improve; since, the level of noise
in this space is lower than in the original space given by the noise MR image. Finally, we also showed
how the estimated level of noise in the image could be used for computing efficiently the number of
singular values, to obtain a low-rank approximation of the set of similar signals, and to reduce their
noise before proceeding to the estimation of the noise-free signal.
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