
fphar-07-00326 September 23, 2016 Time: 12:51 # 1

MINI REVIEW
published: 27 September 2016
doi: 10.3389/fphar.2016.00326

Edited by:
Colby Shad Thaxton,

Northwestern University, USA

Reviewed by:
Yongmei Song,

Peking Union Medical College, China
Maria Rosa Ciriolo,

University of Rome Tor Vergata, Italy

*Correspondence:
Gang Zheng

gang.zheng@uhnres.utoronto.ca

Specialty section:
This article was submitted to

Cancer Molecular Targets
and Therapeutics,

a section of the journal
Frontiers in Pharmacology

Received: 24 June 2016
Accepted: 06 September 2016
Published: 27 September 2016

Citation:
Rajora MA and Zheng G (2016)

Targeting SR-BI for Cancer
Diagnostics, Imaging and Therapy.

Front. Pharmacol. 7:326.
doi: 10.3389/fphar.2016.00326

Targeting SR-BI for Cancer
Diagnostics, Imaging and Therapy
Maneesha A. Rajora1,2 and Gang Zheng1,2,3*

1 Princess Margaret Cancer Centre and Techna Institute, University Health Network, Toronto, ON, Canada, 2 Institute of
Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada, 3 Department of Medical Biophysics,
University of Toronto, Toronto, ON, Canada

Scavenger receptor class B type I (SR-BI) plays an important role in trafficking cholesteryl
esters between the core of high density lipoprotein and the liver. Interestingly, this
integral membrane protein receptor is also implicated in the metabolism of cholesterol
by cancer cells, whereby overexpression of SR-BI has been observed in a number of
tumors and cancer cell lines, including breast and prostate cancers. Consequently,
SR-BI has recently gained attention as a cancer biomarker and exciting target for
the direct cytosolic delivery of therapeutic agents. This brief review highlights these
key developments in SR-BI-targeted cancer therapies and imaging probes. Special
attention is given to the exploration of high density lipoprotein nanomimetic platforms
that take advantage of upregulated SR-BI expression to facilitate targeted drug-delivery
and cancer diagnostics, and promising future directions in the development of these
agents.
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INTRODUCTION

Upregulation of cell-surface receptors in malignant tissue is both a hindrance and an opportunity
in cancer therapy. On one hand, receptor upregulation enhances cancer cell response to growth
factors, enabling one of their defining characteristics of self-sufficient proliferation (Hanahan and
Weinberg, 2000). However, these overexpressed cell-surface receptors can also be opportunistically
used to target cancer therapies. This is a highly desirable treatment strategy with the potential to
enhance therapeutic indices by confining antineoplastic and cytotoxic effects to tumors. To this
end, scavenger receptor class B type I (SR-BI) has recently been pursued as a target to facilitate
cancer therapy and imaging.

SR-BI is an integral membrane glycoprotein receptor that plays a crucial role in the metabolism
of high-density lipoprotein (HDL; Krieger, 1999). SR-BI binds HDL with high affinity to mediate
selective cellular uptake and efflux of cholesteryl esters from the lipoprotein core (Acton et al., 1996;
Ji et al., 1997). This uptake is made highly efficient via the formation of a non-aqueous channel that
permits the direct cytosolic influx of the lipid core with no corresponding lysosomal degradation
(Rodrigueza et al., 1999). In addition to mediating the transfer of cholesterol between HDL and
healthy cells (predominantly within the liver and steroidogenic tissue), SR-BI also facilitates the
selective uptake of cholesterol by malignant cells. As summarized in Table 1, several patient tumors
and cancer cell lines display upregulated expression of SR-BI relative to healthy tissue, rendering
SR-BI an interesting cell-surface receptor to pursue for targeted cancer therapy and imaging. In this
mini review, we highlight recently explored strategies that take advantage of SR-BI overexpression
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TABLE 1 | SR-BI endogenous ligands, expression in healthy tissue, upregulation in patient derived tumor samples and expression by cancer cell lines
(OxLDL, AcLDL, and LPS represent oxidized LDL, acetylated LDL and lipopolysaccharides, respectively).

Endogenous ligands Healthy tissue Patient tumor samples Cancer cell lines

HDL

LDL

VLDL

OxLDL

AcLDL

Lipid-free
apolipoproteins (apoA-I,
apoA-II, apoC-II,
apoE2, apoE3, apoE4)

Serum amyloid A

LPS

Vitamin E
(Calvo et al., 1997; Xu
et al., 1997; Liadaki
et al., 2000; Thuahnai
et al., 2003;
Vishnyakova et al.,
2003; Baranova et al.,
2005; Reboul et al.,
2006)

Liver

Steroidogenic tissues (testis,
ovaries, adrenals)

Brain

Small and large intestine

Platelets

(Acton et al., 1996; Husemann
and Silverstein, 2001; Lobo
et al., 2001; Imachi et al., 2003)

Adrenal tumors

Breast cancer

Lymphoma

Nasopharyngeal
carcinoma

Pancreatic cancer

Prostate cancer

Prostate bone metastasis

Testicular cancer

(Imachi et al., 1999; Arenas
et al., 2004; Cao et al., 2004;
Thysell et al., 2010; Yang et al.,
2013; Zheng et al., 2013;
Schorghofer et al., 2015; Julovi
et al., 2016; Yuan et al., 2016)

Adrenocortical: NCI-H295R
Brain: SK-N-MC, MC-IXC, SK-KN-DW, 1321N1, U87
Breast: MDA-231, MDA (MB) 231, MCF7, P-148,
Bone, 361, T4TD, T470, SK-Br-3
Colorectal: RKO, SWA480, SW620, HCT116, IGROV
Epithelial: KB
Ovarian: HIO-160, HeyA8, HeyA8-MDR, SKOV3ip1,
OV 1063
Leukemia: THP-1,MT2, NB4, NB4 0076/6, MT1
Liver: HepG2, HUH-7, HF1
Lung: A549
Lymphoma: LY3, SUDHL-4, SUDHL-6, Farage,
Ramos, Farage, Raji, Namalwa, Daudi, Jeko, HH,
Hut-78
Nasopharyngeal: 6-10B, SUNE1, CNE2, CNE1,
SUNE2, 5-8F,
Pancreatic: Aspc1, L3-6PL, Panc48, Panc1,
MIAPaCa-2, CFPAC-1 and BxPC3
Prostate: 22RVI, PC3, LnCap, DU145
Testicular: R2C
(Lacko et al., 2002; Rao, 2002; Pilon et al., 2003;
Wadsack et al., 2003; Cao et al., 2009; Fletcher et al.,
2010; Shahzad et al., 2011; Shin et al., 2012; Yang
et al., 2013; Zheng et al., 2013; Julovi et al., 2016)

and its capacity for direct cytosolic delivery of HDL cargo for the
development of targeted cancer drug-delivery systems, imaging
probes, and biomarkers.

SR-BI TARGETING STRATEGIES FOR
CANCER THERAPY

The ability of SR-BI to mediate direct cytosolic transport of
HDL cholesteryl esters is a particularly lucrative characteristic
to exploit for drug-delivery, as it overcomes reliance on
endo-lysosomal uptake routes that lead to drug degradation.
HDL-nanomimetics, composed of phospholipids and the most
abundant HDL apolipoprotein, A-I (apoA-I), have thus been
designed to exploit this cytosolic drug-delivery pathway. As
reviewed elsewhere (Ng et al., 2011; Thaxton et al., 2016),
HDL-nanomimetics possess many traits suited for drug-delivery,
including lengthy circulation half-lives, stable core-loading with
hydrophobic drugs, surface-functionalization by cholesterol-
conjugated agents, and a sub-30 nm size favorable for enhanced
nanoparticle permeation through tumor extracellular matrices.
Furthermore, reviews of clinical HDL-infusion therapies
demonstrate that elevations in plasma HDL levels (up to 30-fold)
are well-tolerated following HDL-nanomimetic administration at
doses of 0.25–135 mg/kg, whereby the nanoparticles subsequently
participate in endogenous HDL receptor binding and metabolic
pathways of interest for drug-delivery and atherosclerosis

therapy, including reverse cholesterol transport leading to
remodeling and equilibration of the administered HDL
into spherical nanoparticles (Kingwell and Chapman, 2013;
Simonsen, 2016). To this end, HDL-nanomimetics have been
explored for SR-BI-mediated delivery of chemotherapeutics,
small interfering ribonucleic acid (siRNA), and photosensitizers,
as summarized in Table 2. Although lipoprotein-mimetic
platforms have been widely explored more generally for cancer
theranostics, this review focuses on agents that were studied to
specifically target SR-BI.

Delivery of Chemotherapeutics
The first reports of SR-BI-targeted drug-delivery vehicles for
cancer therapy aimed to enhance therapeutic effects and reduce
off-target toxicity of chemotherapeutics. In 2002, Lacko et al.
generated a paclitaxel-loaded apoA-I-reconstituted HDL (rHDL)
vehicle that underwent uptake by various SR-BI-expressing
cancer cell lines, including human prostate DU145 and PC3 cells
(Lacko et al., 2002). Encapsulation of cargo within apoA-I-rHDL
delayed its degradation in serum and facilitated SR-BI-selective
cargo delivery (McConathy et al., 2011). In follow-up studies, this
uptake resulted in a five-fold enhancement in paclitaxel delivery
to OVAR-3 cells and 5- to 20-fold enhancement in cytotoxicity
against ovarian, prostate and breast cancer cells versus free
paclitaxel (McConathy et al., 2008; Mooberry et al., 2010).
This enhanced in vitro therapeutic efficacy was coupled with
increased in vivo tolerance of the paclitaxel-rHDL formulation
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TABLE 2 | Examples of SR-BI-targeted drug and imaging probe delivery vehicles applied to in vitro and in vivo cancer models.

Platform Drug or probe delivered In vitro models In vivo models Reference

Chemotherapy delivery

ApoA-I rHDL Paclitaxel Breast - (Lacko et al., 2002;

Colon McConathy et al., 2008;

Ovarian Mooberry et al., 2010;

Prostate Lee et al., 2015)

Doxorubicin Liver Metastatic liver model∗ (Yuan et al., 2013)

Epothilone B Breast - (Lee et al., 2015)

Ovarian

Colon

Plasma HDL RRR-α-tocopheiyl-succinate Lung - (Hrzenjak et al., 2004)

HPPS Paclitaxel oleate Epithelial Epithelial (Yang et al., 2011a)

siRNA delivery

ApoA-I rHDL STAT3 siRNA Ovarian∗ Ovarian∗ (Shahzad et al., 2011)

Drug resistant ovarian∗ Drug resistant ovarian∗

Colon Colon

VEGF siRNA Breast Breast (Ding et al., 2014)

HPPS blc-2 siRNA Epithelial Epithelial (Yang et al., 2011b; Lin et al.,
2012)

Gold-templated
rHDL

VEGFR2 siRNA - Lung (Tripathy et al., 2014)

Dual targeting

ApoA-I rHDL Gambogic acid (STM:
pH-responsive cell penetrating
peptide)
Dichloroacetate (STM: sigma
receptor-targeted anisamide)

Liver

Lung

Liver

Lung

(Ding et al., 2015)

(Zhang et al., 2016)

HPPS Ovalbumin antigen - Lymphoma (Qian et al., 2016)

Melanoma

DiR-BOA dye (STM: EGF to target
EGFR)

Epithelial Epithelial (Zhang et al., 2010)

Lung Lung

Imaging

HPPS Bacteriochlorin-BOA - Epithelial (Cao et al., 2009)

DiR-BOA and bcl-2 siRNA Prostate Prostate∗ (Lin et al., 2014b)
64Cu-Porphyrin-lipid - Prostate∗ (Cui et al., 2015)

Calcium carbonate
templated rHDL

Methylene blue Lung Lung (Lu et al., 2015)

Unless stated, all in vivo models are heterotopic xenografts (STM: second targeting moiety, (∗): orthotopic model).

relative to free paclitaxel or the clinically approved Abraxane R©

albumin-paclitaxel nanoformulation (McConathy et al., 2008).
ApoA-I-rHDL nanoconstructs were similarly used by other
researchers to facilitate SR-BI-targeted delivery of paclitaxel and
other hydrophobic agents such as RR-α-tocopheryl-succinate and
epothilone B to adeno, breast and lung cancer cells (Table 2).
In each case, drug-rHDL treatment increased SR-BI+ cancer cell
cytotoxicity versus free drug with the added benefit, as reported
by Ding et al. (2014), of diminishing undesired cytotoxicity
against cells with limited SR-BI expression. Interestingly, this
SR-BI-targeting strategy was also extended to the encapsulation
and delivery of the hydrophilic drug, doxorubicin (Yuan et al.,
2013), wherein the efficient (>70%) loading of drug within rHDL
halved its IC50 in hepatocellular carcinoma (HCC) cells, yielded
sustained drug release, and reduced tumor size in an apoA-I-
dependent manner.

One concern associated with the clinical translation of
SR-BI-targeted apoA-I-rHDL delivery platforms is the necessity
of apoA-I protein for particle functionalization. Apo-AI
is isolated from human plasma or derived from bacterial
recombinant protein expression, and consequently may be
prone to low collection yields, batch-to-batch variability, and
contamination. To this end, our group introduced HDL-
mimicking-peptide-phospholipid nanoscaffolds (HPPS). These
HDL-nanomimetics are built with an 18 residue apoA-I-
mimetic α-helical amphipathic peptide, which similarly to
apoA-I, constrains the particle size below 30 nm and directs
the selective cytosolic delivery of core-loaded cargo to SR-BI+
cells both in vitro and in vivo (Zhang et al., 2009; Lin et al.,
2014a). When core-loaded with paclitaxel oleate (PTXOL),
HPPS suppressed tumor growth selectively in SR-BI+ lesions
to the same extent as PTXOL, but unlike the free drug,
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exerted no significant tumoricidal effects in non-target SR-
BI− tumors (Yang et al., 2011a). Combined with an absence
of incurred acute liver toxicity, these results demonstrate
that HDL-nanomimetics such as HPPS are a suitable and
therapeutically effective strategy to attenuate off-target toxicity
via SR-BI-homing.

Direct Cytosolic Delivery of siRNA
Perhaps one of the most promising therapeutic utilities of
SR-BI-mediated cytosolic drug-delivery is stable transfection
of cancer cells with siRNA. As widely reviewed (Devi,
2006; Oh and Park, 2009; Petrocca and Lieberman, 2011;
Zuckerman and Davis, 2015), RNA interference (RNAi) is
an intriguing cancer therapy whereby short double-stranded
RNA interacts with complimentary messenger RNA within
the cell cytoplasm for sequence-specific post-transcriptional
silencing of target oncogenes. Barriers to successful RNAi
therapy include rapid siRNA degradation in circulation, off-
target accumulation, toxicity, inefficient intracellular delivery of
siRNA complexes, and endosomal escape (Whitehead et al., 2009;
Pecot et al., 2011). Conversely, SR-BI-facilitated siRNA delivery
to cancer cells has several advantages. Cholesterol-conjugated
siRNA readily binds to HDL, which mediates its cellular
uptake in vivo via SR-BI (Wolfrum et al., 2007). This allows
for endosome-independent, direct cytosolic siRNA delivery,
significantly enhancing siRNA transfection and reducing in vitro
and in vivo target protein expression in SR-BI+ cancer cells
relative to free siRNA and on par with liposomal-siRNA
complexes, which are the current clinical gold standards
for mediating siRNA delivery in vivo (Yang et al., 2011b;
Lin et al., 2012; Ding et al., 2014; Tripathy et al., 2014;
Zuckerman and Davis, 2015). This SR-BI-mediated siRNA
delivery has been conducted via apoA-I-rHDL, HPPS, and gold-
templated HDL-nanomimetics to silence oncogenes involved
in cell proliferation, differentiation, anti-apoptotic pathways,
and angiogenesis in vitro and in vivo models of breast,
epidermal, lung, ovarian, and colorectal cancer (Table 2).
Encapsulation of siRNA within SR-BI-targeted nanoparticles
delayed its degradation and extended its circulation half-life
(Lin et al., 2012; Ding et al., 2014; Tripathy et al., 2014).
Furthermore, SR-BI-targeting of siRNA yielded potent in vivo
effects. In metastatic and taxane-resistant models of ovarian
cancer, rHDL-mediated siRNA delivery reduced tumor burden
by 60%, and when combined with chemotherapy decreased
metastatic lesions by 86% and tumor growth by over 90%
relative to controls (Shahzad et al., 2011). Tripathy et al. (2014)
demonstrated potent inhibition of neovascularization and tumor
growth in a Lewis lung carcinoma model using gold-templated
HDL-nanomimetics, while Ding et al. (2014) observed similar
effects in a breast cancer model with the use of apoA-I-rHDL.
Importantly, in vivo therapeutic effects of bcl-2-siRNA-HPPS
demonstrated by Lin et al. (2012) in KB tumor models coincided
with an absence of acute off-target toxicity. Though further
in vivo investigation of SR-BI-targeting, longitudinal safety, and
therapeutic efficacy must be conducted, these preliminary studies
showcase the exciting potential of SR-BI-mediated siRNA cancer
therapy.

Combining SR-BI-Homing with
Alternative Drug-Delivery Strategies
Despite the successes described thus far in targeting SR-BI to
enhance and confine cancer therapy to target tumor tissue,
associated biodistribution data demonstrated significant off-
target accumulation of drugs, particularly in the liver and
spleen (Zhang et al., 2009; Yang et al., 2011a; Tripathy
et al., 2014); an unsurprising observation given the abundant
expression of SR-BI in normal hepatic and steroidogenic tissue
(Table 1). Thus, to limit potential drug-induced systemic
toxicity and to further amplify and target therapeutic activity
to tumor tissue, the following strategies combining SR-BI-
homing with additional targeting functionality were recently
explored:

(1) Photosensitive porphyrin nanoparticles: Porphyrins are
non-toxic, naturally occurring heterocyclic molecules that
require activation by near infrared (NIR) light to generate
cytotoxic reactive oxygen species for cancer photodynamic
therapy. When formulated with porphyrin-lipid, HDL-
nanomimetics can thus exhibit multidimensional tumor
targeting via apoA-I/SR-BI interactions, site-specific laser
irradiation, and the inherent cancer cell affinity displayed
by porphyrins (Zheng et al., 2007). This was demonstrated
by Ng et al. (2013), who showed that porphyrin-HDL
nanodisc-induced cytotoxicity required both cellular SR-BI
expression and laser light.

(2) pH-sensitive nanoparticles: The acidic microenvironment
of tumors has been employed to enhance drug
accumulation at target lesions in combination with
SR-BI targeting. By functionalizing the surface of apoA-I-
rHDL with pH-sensitive cell-penetrating peptides, Ding
et al. (2015) demonstrated enhanced SR-BI-mediated
uptake of the hydrophobic apoptosis inducer gambogic
acid within the cytosol of HCC cells at a pH of 6.4 versus a
normal physiological pH of 7.4.

(3) Dual receptor-targeted agents: The incorporation of a
second targeting vector directed toward upregulated cell-
surface receptors in malignant cells, such as the sigma
receptor or epidermal growth factor receptor, was also
explored to enhance the targeting specificity of SR-BI-
directed therapies. Compared with singularly targeting
SR-BI, this multi-receptor-targeted approach increased
drug accumulation in cancer cells in vitro and tumor
xenografts in vivo, and was shown to enhance the
dichlororacetate/p53-induced suppression of tumor growth
in a model of lung adenocarcinoma (Zhang et al., 2010,
2016).

(4) Antigen-mediated immunotherapy: HPPS was formulated
with a fusion peptide consisting of α-helical apoA-I-
mimetic peptide and an antigen peptide against ovalbumin
(expressed by E.G7 lymphoma cells) to generate a
lymphoma nanovaccine, which demonstrated the most
potent in vivo therapeutic effects of the four multi-homing
strategies described herein. The particles targeted SR-BI+
mature dendritic cells, augmenting antigen uptake in vivo
by up to 100-fold relative to free antigen delivery. This
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increased the ability of dendritic cells to augment CD8+
T-cell populations in vivo, allowing for immunization
against lymphoma tumor growth, which was completely
inhibited in a synergistic fashion when particles were
further functionalized with cholesterol-conjugated toll-like
receptor agonist CpG2395. This ultimately led to a survival
rate of 83 %, whereas free fusion peptide was associated with
complete mortality.

The positive findings from these preliminary studies
support further evaluation of SR-BI-facilitated multi-targeted
nanomedicines for cancer therapy, including complete
characterization of particle biodistribution and therapeutic
efficacy in orthotopic animal cancer models.

Antagonizing SR-BI Activity
Dysregulation of cholesterol metabolism has been associated with
tumor growth since the early 1900’s, whereby the proliferation
and migration of cancer cells is thought to require increased
cholesterol influx, yielding higher cellular cholesterol levels in
malignant tissue (Swyer, 1942; Dessì et al., 1994; Thysell et al.,
2010; Cruz et al., 2013; de Gonzalo-Calvo et al., 2015). SR-BI
was shown to play a role in this process, such that its inhibition
reduced cancer cell proliferation (Pussinen et al., 2000; Cao et al.,
2004; Leon et al., 2010; Julovi et al., 2016). Thus, a few recent
reports sought to therapeutically mitigate the pro-tumorigenic
activity of SR-BI. Twiddy et al. (2012) demonstrated that siRNA
knockdown of SR-BI in castration-resistant prostate cancer cells
significantly decreased cell viability and secretion of prostate-
specific antigen, a biomarker of prostate cancer. Subsequently,
Yang et al. (2013) designed 13 nm gold-templated, apoA-I-
functionalized HDL-nanomimetics that selectively inhibited SR-
BI+ B-cell lymphoma growth by attenuating cholesterol influx
into SUDHL-4 lymphoma cells, while displaying no apoptosis
induction in human primary hepatocytes and macrophages.
HPPS was similarly shown to attenuate tumor growth in a
nasopharyngeal carcinoma animal model, which the authors
proposed via in vitro studies to be a result of inhibiting SR-
BI-regulated cell motility (Zheng et al., 2013). The findings
from these studies stand in line with the known protective
effects of ApoA-I and HDL on tumor growth (Su et al.,
2010; Zamanian-Daryoush and DiDonato, 2015), presenting an
alternative and less explored strategy of enforcing SR-BI-directed
cancer therapy.

SR-BI-MEDIATED CANCER IMAGING
AND DIAGNOSTICS

The overexpression of SR-BI in patient tumor samples relative
to healthy tissue also potentiates its use for cancer imaging and
diagnostics. Although many of the SR-BI-targeted nanoparticle
drug-delivery systems discussed above were formulated with NIR
dyes for biodistribution analyses, limited studies have actively
pursued SR-BI-targeting for the generation of cancer imaging
probes. For example, in 2009, Cao et al. developed apoA-I-
rHDL core-loaded with bis-oleate-functionalized bacteriochlorin

(BChl), a fluorescent dye excitable by 750–850 nm NIR
light; a range that falls within the optical window optimal
for fluorescence imaging in vivo with minimal absorbance
interference from hemoglobin and water (Cao et al., 2009).
The authors demonstrated SR-BI-selective cellular uptake of
the BChl core in vitro, which translated into strong contrast
visualized with a small animal fluorescence imaging system in
KB tumor tissue in vivo. ApoA-I HDL-mimetics were also core-
loaded with methylene blue for apoA-I-mediated in vivo NIR
fluorescence imaging of SR-BI+ lung carcinoma xenografts (Lu
et al., 2015). Core-loading of HPPS with NIR fluorophores
was also conducted to image the biodistribution of co-loaded
siRNA for treatment planning purposes (Lin et al., 2014b). By
monitoring fluorescence contrast at tumor sites, the authors were
able to select a dose regimen that confined particle accumulation
and potent apoptotic effects of the siRNA therapy to the target
lesion. This selective fluorescence contrast was further proposed
by the authors to have utility in image-guided tumor resection.
In addition to fluorescence imaging, SR-BI-targeted HPPS was
also amenable to generating contrast for positron emission
tomography imaging of deep-seated orthotopic prostate tumors
when formulated with a 64Cu-porphyrin-lipid shell (Cui et al.,
2015). It should be noted that the tumor-homing displayed
by these particles is likely contributed to by the enhanced
permeability and retention (EPR) effect, hallmarked by the
increasing contrast observed at the tumor site over a 24–
48 h time period following agent administration. Consequently,
further in vivo characterization of selective particle uptake
must be conducted to ensure SR-BI-specificity is maintained
by the contrast agents for accurate diagnostic and imaging
purposes.

The upregulated expression of SR-BI in itself has been
proposed to serve as a biomarker for tumor malignancy.
The histological analysis of 106 prostate cancer biopsies by
Schorghofer et al. (2015) revealed a positive correlation between
elevated SR-BI expression and tumor grade, metastasis, and
poorer patient outcomes. Similarly, higher SR-BI expression
in breast cancer tissue was associated with increased disease
aggressiveness and patient mortality (Yuan et al., 2016), while
RNA microarrays of samples from patients with chronic myeloid
leukemia identified a six gene profile including SCARB1 (the
gene encoding for SR-BI) that discriminated early and late-stage
disease (Oehler et al., 2009). These promising initial studies
thus suggest that SR-BI may be a viable biomarker of cancer
prognosis. Nevertheless, due to the ubiquitous expression of SR-
BI in malignant and healthy tissue, key consideration of the
specificity associated with the use of SR-BI as a biomarker will
be imperative in assessing its prognostic value.

SUMMARY AND PERSPECTIVES

The overexpression of SR-BI in malignant tissue has been
exploited for the development of targeted cancer therapies,
imaging probes, and prognostic biomarkers. SR-BI-targeted
vehicles can mediate the selective transfer of drugs from HDL-
mimetics into the cytosol of malignant cells, which is particularly
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valuable for enhancing siRNA delivery efficiency for cancer
gene therapy. Although promising in vivo therapeutic effects
were demonstrated by the SR-BI-directed therapies overviewed
herein, a number of key challenges must be addressed to advance
the utility of what is still a relatively unexplored targeting
strategy. Firstly, the ubiquitous expression of SR-BI in healthy
tissue, and particularly its abundant expression in the liver
and steroidogenic organs, presents a challenge in assuring the
in vivo specificity of SR-BI-targeted agents. As such, careful
consideration is due when exclusively targeting SR-BI for the
delivery of chemotherapeutics with non-specific mechanisms of
action, especially those which may cause liver toxicity. To this
end, it is imperative that researchers expand upon the currently
limited evaluation of acute and chronic systemic toxicity of SR-
BI-targeting agents. Furthermore, quantification of drug-delivery
to tumors and major organs and the unequivocal demonstration
of SR-BI targeting in vivo (for example via competitive inhibition
and comparative studies in SR-BI+ and SR-BI− tumor models)
should become mainstays within the field. In order to obtain
more clinically relevant information, these evaluations should
extend beyond typically used heterotopic tumor models to
include orthotopic models. The reliance on inherently disrupted
tumor vasculature and the EPR effect for tumor accumulation
of the explored HDL-nanomimetics also creates a barrier to
efficient SR-BI-targeted cancer therapy. Though widely used
as a targeting strategy in nanomedicine development, the
clinical relevance of the EPR effect is disputed as it does not
accurately represent the vasculature and microenvironment of
many human tumors (Gillies et al., 1999; Nichols and Bae,
2012). Strategies that target nanoparticle extravasation to tumor

sites without requiring inherently disrupted tumor vasculature
to facilitate delivery may thus enhance the delivery efficiency
and therapeutic relevance of SR-BI-targeted HDL-mimetics. For
example, Mulik et al. (2016) employed microbubble-enhanced
focused ultrasound to selectively disrupt the blood-brain barrier
in rats to enhance the site-specific delivery of lipoprotein-
mimetics to target brain tissue. Additionally, given the multi-
ligand status of SR-BI (Table 1), ample opportunity exists for the
exploration of alternative targeting ligands to apoA-I, which may
access a wider variety of tumors and alter particle distribution
profiles. Ultimately, with further exploration of alternative SR-BI-
targeting vectors and more rigorous in vivo characterization of
existing delivery platforms, a better understanding of the utility
of SR-BI-targeting for cancer therapy and imaging will be gained.
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