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Abstract

Severe COVID‐19 has a poor prognosis, while the genetic mechanism underlying

severe COVID‐19 remains largely unknown. We aimed to identify genes that are

potentially causally associated with severe COVID‐19. We conducted a summary

data‐based Mendelian randomization (SMR) analysis using expression quantitative

trait loci (eQTL) data from 49 different tissues as the exposure and three COVID‐19‐

phenotypes (very severe respiratory confirmed COVID‐19 [severe COVID‐19],

hospitalized COVID‐19, and SARS‐CoV‐2 infection) as the outcomes. SMR using

multiple SNPs was used as a sensitivity analysis to reduce false positive rate.

Multiple testing was corrected using the false discovery rate (FDR) q‐value. We

identified 309 significant gene‐trait associations (FDR q value < 0.05) across 46

tissues for severe COVID‐19, which mapped to 64 genes, of which 38 are novel. The

top five most associated protein‐coding genes were Interferon Alpha and Beta

Receptor Subunit 2 (IFNAR2), 2′‐5′‐Oligoadenylate Synthetase 3 (OAS3), mucin 1

(MUC1), Interleukin 10 Receptor Subunit Beta (IL10RB), and Napsin A Aspartic

Peptidase (NAPSA). The potential causal genes were enriched in biological processes

related to type I interferons, interferon‐gamma inducible protein 10 production, and

chemokine (C‐X‐C motif) ligand 2 production. In addition, we further identified 23

genes and 5 biological processes which are unique to hospitalized COVID‐19, as well

as 13 genes that are unique to SARS‐CoV‐2 infection. We identified several genes

that are potentially causally associated with severe COVID‐19. These findings

improve our limited understanding of the mechanism of COVID‐19 and shed light on

the development of therapeutic agents for treating severe COVID‐19.
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1 | INTRODUCTION

The coronavirus disease 2019 (COVID‐19) is a highly contagious

disease caused by severe acute respiratory syndrome coronavirus 2

(SARS‐CoV‐2), which has resulted in a global pandemic and public

health crisis.1 As of 12 March 2022, there have been over 452 million

confirmed cases of COVID‐19, as well as over 6 million deaths.2

COVID‐19 infections display extensive variability in symptoms,

prognosis, and severity among individuals, with some infections

being asymptomatic and others being lethal.3 Like other infectious

diseases, host genetics affect susceptibility to COVID‐19 infection,

severity, and prognosis.4,5 The COVID‐19 Host Genetic Initiative
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(HGI) is a collaborative effort, which generates and shares data

regarding the genetic determinants of COVID‐19 outcomes, and has

previously identified several risk loci associated with the disease.4

These findings provide important insights into how host genetics may

influence COVID‐19 infection and progression. However, no causal-

ity can be inferred by the genome‐wide association study (GWAS).

Thus, there is an urgent need to better understand the causal factors

of COVID‐19 infection and progression,5 especially to explain the

mechanism underlying severe COVID‐19.

Although GWAS per se does not infer causality, combining

summary statistics from multiple GWAS could infer causality via the

Mendelian randomization (MR) framework. At the same time, MR has

been shown to be a valid approach for drug repurposing, drug

identification, and clinical management. Expression quantitative trait

loci (eQTL) are the genetic variants that affect the expression level of

a gene. Combining summary statistics from both transcriptome‐wide

eQTL and GWAS of COVID‐19 using MR approach is powerful in

identifying genes with their expression levels being causally

associated with COVID‐19 outcomes. Previous studies have identi-

fied 26 and 147 putatively causal genes of COVID‐19. These studies,

which were conducted using earlier releases of HGI data, provide

valuable insights into the pathological mechanism of the disease.

However, in these studies, only one genetic instrument was used

without sensitivity analysis, leading to potentially biased findings and

inflated false positive rates.

To better understand whether host genes, and hence its

expression, could affect the susceptibility to severe COVID‐19, we

performed a summary data‐based Mendelian Randomization (SMR)

analysis using the top single‐nucleotide polymorphism (SNP) in eQTL

study as the instrument and the severe COVID‐19, hospitalized

COVID‐19 and SARS‐CoV‐2 infection in release 6 of the COVID‐19

HGI data as the outcomes.8,9 SMR analysis using the summary

statistics from multiple SNPs (multi‐SNPs SMR) was performed as the

sensitivity analysis to reduce the false positive rate.

2 | MATERIALS AND METHODS

2.1 | Study design and data sources

In the current study, we evaluated the causality of transcriptome‐

wide gene expression (exposure) on COVID‐19 outcomes using the

SMR analysis. Summary statistics from eQTL studies provide

information on the effect of genetic variants on gene expression

levels. As expression levels vary by tissue‐type, eQTL studies are

generally conducted for a specific tissue. In each tissue, probes are

used to measure a gene's expression and the cis‐eQTLs for that gene

are any SNPs located within 1Mb of the gene probe that are

significantly associated with the gene's expression as defined by the

PeQTL < 5E−8. The cis‐eQTLs were obtained from the 48 different

tissues from v7 of the Genotype‐Tissue Expression (GTEx) project

with a sample size ranging from 80 to 49110 as well as the cis‐eQTL

data from blood provided by the eQTLGen Consortium with a sample

size of 31 684.11 Details of the sample size and tissue used are

provided in Table 1. We utilized the expression data set generated

from all the aforementioned 49 tissues because gene expression in

various tissues could have a systematic effect, especially when the

gene codes for a secreted protein. Previously, COVID‐19 has been

found to affect virtually all organs, while the virus binds to ACE2,

which is present in nearly all tissues.12 Moreover, some genes are

tissue‐specific, with the expression only detected in a few tissues. To

obtain the broadest coverage of genes, we, therefore, studied 49

tissues in total.

Three COVID‐19 outcomes were used in the SMR analysis:

severe COVID‐19 (n = 8779, controls = 1 001 875), hospitalized

COVID‐19 (n= 24 274, controls = 2 061 529) and SARS‐CoV‐2

infection (n = 112 612, controls = 2 474 079). The control groups

were subjects from the general population who did not show the

respective phenotype. Severe COVID‐19 was considered the primary

outcome since it was often associated with a poor prognosis.

Hospitalized COVID‐19 and SARS‐CoV‐2 infection were the second-

ary outcomes. The phenotypes (Supporting Information: Table S1)

were defined by the COVID‐19 HGI13 and have been used previously

in several studies.6,7,14–16 GWAS summary data of these phenotypes

were obtained from the meta‐analyses round 6 data released by HGI

(https://www.covid19hg.org/results/r6/). Each contributing study

conducted its GWAS independently but following the HGI consor-

tium guidelines which suggested accounting for the following

covariates: age, sex, age2, age*sex, and the first 20 principal

components.13

2.2 | SMR and HEIDI analysis

SMR is a method that integrates summary statistics from GWAS and

eQTL studies under the MR framework to prioritize genes whose

expression levels are potentially causally associated with an outcome

trait. MR analysis uses genetic variants as instrumental variables to

infer a causal relationship between an exposure and an outcome.

While conventional two‐sample MR utilizes summary statistics from

two independent GWAS to estimate the effect of one phenotype on

another, SMR utilizes summary statistics from independent eQTL

study and GWAS to estimate the effect of a gene's expression level

on a phenotype. We adopted the SMR method (version 1.03) for our

primary analysis (Figure 1A). For each gene, the cis‐eQTL having the

strongest association signal was used as the single genetic instrument

in the primary analysis. This method has been adopted in previous

SMR studies.6,7 However, as more than one cis‐eQTL could be

implicated in the expression of one gene, using a single eQTL as the

instrument could lead to biased results and potentially inflated false

positive rate. In addition, SMR uses a single variant as the genetic

instrument disallowing the distinguishment between associations

that arise due to causality or due to horizontal pleiotropy (i.e., the

association between the genetic variant and the exposure being

independent of that between the genetic variant and the outcome).

Therefore, we used the multi‐SNPs SMR (Figure 1B) as the sensitivity
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analysis to reduce such bias. By including multiple instruments,

especially within the cis region of a probe, the likelihood of horizontal

pleiotropy is diminished, and the statistical power of the analysis

increases.17,18 Detailed information of the SMR and multi‐SNPs SMR

has been described previously.8,9

For SMR, we followed the standard approach.8,9 The analysis

was conducted for each tissue independently. The cis‐eQTL within

the cis‐region of a probe having the strongest association with the

gene's expression was selected as the instrumental variable for the

SMR analysis to evaluate the association between a gene's expres-

sion level in the specific tissue and the outcome, and only genes with

at least one cis‐eQTL with PeQTL < 5E−8 were included.8 SNPs with

an allele frequency <0.01 were removed, along with any SNPs having

an allele frequency difference >0.2 between any of the three data

sets (GWAS summary statistics, eQTL summary statistics, and linkage

disequilibrium [LD] reference panel data).8 The analysis was repeated

in all the 49 tissues with available eQTL data for all 3 COVID‐19

outcomes

The heterogeneity in dependent instruments (HEIDI) test was

used to distinguish pleiotropy from linkage.8 HEIDI tests against the

null hypothesis that the association detected by the SMR test is due

to pleiotropy (i.e., due to a single causal variant as opposed to two

variants in high LD with each other). For the HEIDI test, cis‐eQTLs

that were in strong LD (r2 > 0.9) or in weak LD (r2 < 0.05) were

excluded. The HEIDI test was only conducted if the number of cis‐

eQTLs for the test was ≥3.8 Associations with a PHEIDI < 0.01 were

considered to show significant heterogeneity and hence excluded.9

To correct for multiple testing, false discovery rate (FDR) q value

was used. FDR q value < 0.05 was considered statistically

significant.

In the sensitivity analysis using multi‐SNPs SMR, we used all

independent cis‐eQTLs (SNPs with r2 < 0.1 with the top cis‐eQTL)

TABLE 1 List of tissues used as exposures and their respective sample size

Tissue
Number of
samples Tissue

Number of
samples

Brain – Substantia nigra 80 Colon – Sigmoid 203

Brain – Spinal cord (cervical c‐1) 83 Esophagus – Gastroesophageal Junction 213

Minor Salivary Gland 85 Pancreas 220

Brain – Amygdala 88 Testis 225

Uterus 101 Stomach 237

Vagina 106 Colon – Transverse 246

Brain – Hypothalamus 108 Breast – Mammary Tissue 251

Brain – Anterior cingulate cortex (BA24) 109 Heart – Atrial Appendage 264

Brain – Hippocampus 111 Artery – Aorta 267

Brain – Putamen (basal ganglia) 111 Heart – Left Ventricle 272

Cells ‐ EBV‐transformed lymphocytes 117 Cells – Transformed fibroblasts 300

Brain – Frontal Cortex (BA9) 118 Adipose – Visceral (Omentum) 313

Ovary 122 Esophagus – Muscularis 335

Small Intestine – Terminal Ileum 122 Skin – Not Sun Exposed (Suprapubic) 335

Brain – Cerebellar Hemisphere 125 Esophagus – Mucosa 358

Brain – Nucleus accumbens (basal ganglia) 130 Nerve – Tibial 361

Prostate 132 Whole Blood 369

Brain – Cortex 136 Lung 383

Brain – Caudate (basal ganglia) 144 Adipose – Subcutaneous 385

Spleen 146 Artery – Tibial 388

Artery – Coronary 152 Thyroid 399

Liver 153 Skin – Sun Exposed (Lower leg) 414

Brain – Cerebellum 154 Muscle – Skeletal 491

Pituitary 157 Blood (eQTLgen) 31 684

Adrenal Gland 175
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with p < 5E−8 within the cis‐region as instrumental variables.9 The

originally proposed threshold for defining independent cis‐eQTL was

r2 < 0.9. However, this threshold may include SNPs with high LD (as

defined as r2 ≥ 0.1). We, therefore, adopted the r2 < 0.1 as the

threshold for defining independent SNPs.19 The reference panel of

503 European individuals from the 1000 genomes project (phase 3)

was used to compute LD estimates for the analysis.20 Only gene‐trait

associations that show significant associations in both primary and

sensitivity analyses were considered potential causal genes. FDR q

value < 0.05 was considered statistically significant. Data analyses

were done using SMR v1.03 (https://cnsgenomics.com/software/

smr/) and R version 4.1.0 (https://www.r-project.org/). LD reference

panel was generated using BCFtools 1.11,21 VCFtools 0.1.15,22 and

PLINK 1.90 (https://www.cog-genomics.org/plink/1.9/).23

F IGURE 1 Illustration of SMR and multi‐SNPs SMR. (A) Illustration of the primary analysis, SMR. For each tissue T, the most associated cis‐
eQTL for each gene (SNPtop) was used as the genetic instrument to estimate the effect of the expression level of the gene on the outcome.
(B) Illustration of the sensitivity analysis, multi‐SNPs SMR. For each tissueT, all independent cis‐eQTLs for a gene (r2 < 0.1 with the top cis‐eQTL)
which were significant (PeQTL < 5E−8) were used as the genetic instruments to estimate the effect of the expression level of the gene on the
outcome. Both analyses were repeated for each of the 49 tissues and all 3 COVID‐19 outcomes.
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To gain insight into the biological function of the potential causal

genes, gene ontology (GO) enrichment analysis was conducted using

g:Profiler (https://biit.cs.ut.ee/gprofiler)24 to annotate the results.

Correction for multiple testing was done using g:SCS (Set Counts and

Sizes),25 a method developed to estimate thresholds in complex

functional profiling data such as GO.

3 | RESULTS

3.1 | Severe COVID‐19

In the transcriptome‐wide analysis of 49 tissues with severe COVID‐

19, 826 gene‐trait associations were identified by univariable SMR

analysis across 46 tissues (including blood) with FDR q value < 0.05.

Thirty‐nine of these associations were excluded as they were

insignificant in the multi‐SNPs SMR analysis. Of the remaining 787

associations, 478 did not pass the HEIDI test, resulting in 309

significant associations. The 309 associations were spread across 46

tissues (Supporting Information: Table S2), while the associations

were mapped to 64 genes (Table 2), of which 38 were protein coding.

Thirty‐nine of the genes were identified in two or more tissues

(Supporting Information: Table S3). The top five most associated

protein‐coding genes were Interferon Alpha and Beta Receptor

Subunit 2 (IFNAR2), 2′‐5′‐Oligoadenylate Synthetase 3 (OAS3), mucin

1 (MUC1), Interleukin 10 Receptor Subunit Beta (IL10RB), and Napsin

A Aspartic Peptidase (NAPSA). The tissue with the highest number of

significant genes was esophagus mucosa (n = 17) (Supporting

Information: Table S4).

GO enrichment analysis (Table 3) for biological processes

showed the genes were significantly enriched in seven GO terms

relating to immune system regulation. The associated biological

processes (padjusted < 0.05) were driven by four genes (2′‐5′‐

Oligoadenylate Synthetase 1 [OAS1], Tyrosine Kinase 2 [TYK2],

IFNAR2, and OAS3) and related to type I interferon, interferon‐

gamma inducible protein 10 (IP‐10) production, and chemokine

(C‐X‐C motif) ligand 2 production.

3.2 | Hospitalized COVID‐19

A total of 816 gene‐trait associations were identified by univariable SMR

analysis across eQTL in 49 tissues on hospitalized COVID‐19 (FDR q

value < 0.05). Fifty‐nine of these associations were excluded as they were

insignificant in the multi‐SNPs SMR analysis. Of the remaining 757

associations, 462 did not pass the HEIDI test, resulting in 295 significant

associations. The 295 associations were spread across 49 tissues

(Supporting Information: Table S5), while the associations were mapped

to 63 genes (Table 4), of which 36 were protein coding. Thirty‐eight

genes were identified in two or more tissues (Supporting Information:

Table S6). The top five most associated protein‐coding genes were

IFNAR2,NAPSA, IL10RB, alpha 1‐3‐N‐acetylgalactosaminyltransferase and

alpha 1‐3‐galactosyltransferase (ABO), and OAS3. Twenty‐three genes

(14 protein coding and 9 non‐protein coding) were unique to hospitalized

COVID‐19 (Supporting Information: Table S7). The tissue with the highest

number of significant genes was blood (n=11; Supporting Information:

Table S4).

GO enrichment analysis (Table 5) for biological processes

showed the genes were significantly enriched in 12 GO terms

relating to immune system regulation and homeostasis. The

associated biological processes were driven by seven genes (OAS1,

2′‐5′‐Oligoadenylate Synthetase 2 [OAS2], OAS3, TYK2, IFNAR2,

NAPSA, and Surfactant Protein D [SFTPD]). The associated biological

processes (padjusted < 0.05) were similar to those identified in the GO

enrichment analysis of severe COVID‐19, with additional broad

biological processes related to nuclease regulation, surfactant and

chemical homeostasis, and interferon‐beta production.

3.3 | SARS‐CoV‐2 infection

We identified a total of 86 gene‐trait associations which were

significant in both SMR and multi‐SNPs SMR while not being rejected

by the HEIDI test. These were mapped to 20 genes across 38 tissues

(Supporting Information: Table S8). Among the 20 genes, 14 had a

significant association in more than one tissue, 16 were protein‐

coding and 13 genes were unique to SARS‐CoV‐2 infection

(Supporting Information: Table S7). The top 5 protein‐coding genes

were Neurexophilin And PC‐Esterase Domain Family Member 3

(NXPE3), SUMO Specific Peptidase 7 (SENP7), Centrosomal Protein

97 (CEP97), TUB Like Protein 2 (TULP2), and Netrin 5 (NTN5). No GO

terms were found to be significantly enriched in the GO analysis of

the significant causal genes for SARS‐CoV‐2 infection.

4 | DISCUSSION

In this study, we conducted the SMR analysis between 49

transcriptome‐wide eQTL datasets as exposures and severe

COVID‐19 as the primary outcome. We identified a total of 309

gene‐tissue associations and 64 potentially causal genes for severe

COVID‐19. Using hospitalized COVID‐19 as the secondary outcome,

similar genes and GO enrichment were observed, suggesting the

findings observed in the severe COVID‐19 analysis were robust. In

addition, we identified 23 genes and 5 pathways that may be specific

to hospitalized COVID‐19, as well as 13 genes that may be specific to

SARS‐CoV‐2 infection. These findings potentially explain the under-

lying mechanisms of severe COVID‐19 and serve as potential

therapeutic targets for the treatment of COVID‐19.

A previous SMR study6 found no genes to be significantly associated

with severe COVID‐19 but found one gene, IFNAR2, to be associated

with hospitalized COVID‐19 in the eQTL data set from the blood tissue.

In the current study, INFAR2 was identified as a causal gene in the

analysis of both severe and hospitalized COVID‐19. The lack of

associations in the previous study could be due to the use of the GWAS

summary statistics from an earlier release of HGI data (release 3), and the
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TABLE 2 Genes that were associated with severe COVID‐19.

Gene
No. of
tissues

Results in the most associated tissue Protein
codingβ SE p Value Tissue

IFNAR2 6 −0.375 0.068 2.9E−08 Blood Yes

OAS3 1 0.129 0.024 4.7E−08 Cells Transformed fibroblasts Yes

MUC1 1 0.786 0.146 7.8E−08 Blood Yes

IL10RB 3 −0.48 0.091 1.2E−07 Cells Transformed fibroblasts Yes

NAPSA 2 −0.479 0.092 2.0E−07 Blood Yes

KCNC3 4 1.151 0.222 2.2E−07 Blood Yes

PLEKHM1 2 0.155 0.032 1.9E−06 Brain Cerebellar Hemisphere Yes

OAS1 4 −0.384 0.081 2.1E−06 Skin Sun Exposed Lower leg Yes

ARL17A 10 −0.102 0.022 2.3E−06 Brain Cortex Yes

TYK2 4 0.362 0.077 2.5E−06 Adrenal Gland Yes

NUTM2B 28 −0.133 0.03 8.0E−06 Skin Not Sun Exposed Suprapubic Yes

WNT3 11 −0.178 0.04 9.5E−06 Pancreas Yes

KANSL1 1 −0.383 0.087 1.1E−05 Cells Transformed fibroblasts Yes

MUC5B 1 −0.324 0.075 1.6E−05 Lung Yes

TRIM23 3 0.286 0.068 2.8E−05 Skin Sun Exposed Lower leg Yes

CENPK 6 −0.343 0.084 4.4E−05 Cells Transformed fibroblasts Yes

ARHGAP27 1 −0.234 0.057 4.4E−05 Brain Nucleus accumbens basal ganglia Yes

RMI2 2 −0.189 0.047 6.1E−05 Esophagus Mucosa Yes

ICAM5 2 −0.23 0.057 6.4E−05 Cells Transformed fibroblasts Yes

ZNF528 30 −0.14 0.035 6.7E−05 Colon Sigmoid Yes

HLA‐DQA1 1 0.098 0.025 7.6E−05 Blood Yes

ADAMTS6 1 0.132 0.033 8.1E−05 Testis Yes

LRRC37A 7 −0.165 0.042 8.5E−05 Artery Coronary Yes

ELF5 1 0.427 0.11 1.0E−04 Lung Yes

CRHR1 1 −0.274 0.071 1.1E−04 Esophagus Muscularis Yes

TOMM7 8 0.182 0.047 1.3E−04 Adipose Subcutaneous Yes

SLC22A31 1 0.13 0.034 1.4E−04 Spleen Yes

CCHCR1 1 0.253 0.066 1.4E−04 Stomach Yes

ZGLP1 1 −0.353 0.094 1.7E−04 Brain Cerebellum Yes

ICAM3 2 0.1 0.027 1.8E−04 Brain Amygdala Yes

RASIP1 1 −0.096 0.026 1.9E−04 Cells Transformed fibroblasts Yes

NSF 1 0.619 0.168 2.2E−04 Esophagus Mucosa Yes

PPWD1 2 0.153 0.042 2.6E−04 Colon Transverse Yes

HLA‐DQB2 3 −0.077 0.021 2.8E−04 Brain Cortex Yes

NOTCH4 1 −0.087 0.025 3.9E−04 Cells EBV‐transformed lymphocytes Yes

SNX31 3 0.084 0.024 4.8E−04 Brain Hypothalamus Yes

SELE 1 −0.14 0.04 4.9E−04 Liver Yes

HLA‐DQB1 3 0.081 0.023 5.3E−04 Brain Hypothalamus Yes
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TABLE 2 (Continued)

Gene
No. of
tissues

Results in the most associated tissue Protein
codingβ SE p Value Tissue

RP11‐119F19.2 22 −0.22 0.041 7.4E−08 Blood No

RP11‐259G18.3 10 −0.216 0.042 3.0E−07 Blood No

NAPSB 31 −0.12 0.024 5.3E−07 Whole Blood No

FAM22B 1 −0.175 0.036 1.2E−06 Blood No

FAM215B 6 −0.177 0.037 1.3E−06 Thyroid No

RP11‐798G7.5 2 0.208 0.043 1.6E−06 Blood No

DND1P1 5 −0.103 0.022 2.9E−06 Blood No

RP11‐259G18.2 10 −0.345 0.075 4.0E−06 Blood No

KANSL1‐AS1 5 −0.106 0.023 5.2E−06 Brain Cortex No

BEND3P3 3 −0.307 0.068 5.7E−06 Blood No

RP11‐259G18.1 8 −0.17 0.038 7.1E−06 Esophagus Mucosa No

RP11‐506M13.3 23 −0.155 0.036 1.6E−05 Nerve Tibial No

RP11‐182L21.5 4 −0.208 0.05 2.9E−05 Nerve Tibial No

LRRC37A17P 1 0.26 0.062 3.1E−05 Esophagus Mucosa No

AC091132.1 2 0.437 0.106 3.7E−05 Esophagus Mucosa No

RP11‐707O23.5 2 −0.088 0.021 4.2E−05 Brain Substantia nigra No

CTD‐2020K17.1 1 0.234 0.059 7.0E−05 Brain Cerebellum No

RPS26P8 2 −0.191 0.049 8.2E−05 Adipose Subcutaneous No

CTD‐2116N20.1 1 0.152 0.039 9.1E−05 Testis No

CTC‐534A2.2 1 −0.548 0.141 1.0E−04 Blood No

MAPT‐AS1 2 0.169 0.044 1.0E−04 Brain Nucleus accumbens basal ganglia No

RP11‐798G7.8 1 −0.135 0.035 1.3E−04 Brain Cerebellar Hemisphere No

XXbac‐BPG299F13.17 2 0.197 0.052 1.4E−04 Esophagus Gastroesophageal Junction No

AC005682.5 1 −0.201 0.053 1.6E−04 Thyroid No

RP11‐46C24.3 1 −0.117 0.032 2.5E−04 Brain Cerebellum No

RP11‐707M1.1 1 −0.143 0.039 2.8E−04 Brain Caudate basal ganglia No

TABLE 3 GO biological process enrichment analysis of the significant genes for severe COVID‐19

Term name Term id Adjusted p value Intersections

Type I interferon signaling pathway GO:0060337 0.004 OAS1, TYK2, IFNAR2, OAS3

Cellular response to type I interferon GO:0071357 0.005 OAS1, TYK2, IFNAR2, OAS3

Response to type I interferon GO:0034340 0.008 OAS1, TYK2, IFNAR2, OAS3

Negative regulation of IP‐10 production GO:0071659 0.015 OAS1, OAS3

IP‐10 production GO:0071612 0.030 OAS1, OAS3

Regulation of IP‐10 production GO:0071658 0.030 OAS1, OAS3

Negative regulation of chemokine (C‐X‐C motif) ligand 2 production GO:2000342 0.030 OAS1, OAS3
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TABLE 4 Genes that were associated with hospitalized COVID‐19

Gene
No. of
tissues

Results in the most associated tissue Protein
codingβ SE p Value Tissue

IFNAR2 5 −0.272 0.044 5.3E−10 Skin Sun Exposed Lower leg Yes

NAPSA 3 −0.317 0.053 2.5E−09 Blood Yes

IL10RB 3 0.329 0.058 1.9E−08 Muscle Skeletal Yes

ABO 1 0.298 0.053 1.9E−08 Artery Tibial Yes

OAS3 3 0.078 0.014 2.8E−08 Cells Transformed fibroblasts Yes

ARL17A 10 −0.072 0.013 4.6E−08 Brain Cortex Yes

MUC1 1 0.41 0.076 5.8E−08 Blood Yes

PLEKHM1 4 0.095 0.019 5.2E−07 Brain Cerebellar Hemisphere Yes

ELF5 1 0.333 0.067 5.8E−07 Lung Yes

KANSL1 6 −0.268 0.054 7.0E−07 Cells Transformed fibroblasts Yes

KCNC3 2 0.069 0.014 1.4E−06 Spleen Yes

WNT3 2 −0.108 0.022 1.4E−06 Pancreas Yes

OAS1 4 −0.302 0.063 1.5E−06 Adipose Subcutaneous Yes

LRRC37A2 5 −0.091 0.019 1.9E−06 Vagina Yes

ARHGAP27 1 −0.167 0.037 6.1E−06 Brain Nucleus accumbens basal ganglia Yes

MUC5B 1 −0.191 0.042 6.2E−06 Lung Yes

SPPL2C 1 −0.141 0.032 8.5E−06 Brain Cerebellar Hemisphere Yes

LRRC37A 24 −0.052 0.012 1.4E−05 Brain Cerebellar Hemisphere Yes

CCHCR1 5 0.111 0.026 1.5E−05 Blood Yes

NXPE3 2 0.08 0.019 2.0E−05 Esophagus Muscularis Yes

CRHR1 1 −0.199 0.047 2.3E−05 Esophagus Muscularis Yes

ICAM3 11 0.187 0.044 2.6E−05 Adipose Visceral Omentum Yes

MAPT 1 −0.181 0.044 3.2E−05 Skin Not Sun Exposed Suprapubic Yes

ARL17B 2 0.091 0.022 3.5E−05 Whole Blood Yes

TCF19 1 0.085 0.021 3.8E−05 Blood Yes

RAB2A 1 0.252 0.062 4.5E−05 Artery Tibial Yes

CYP4B1 5 0.22 0.054 4.6E−05 Nerve Tibial Yes

TYK2 2 0.492 0.121 4.8E−05 Skin Sun Exposed Lower leg Yes

OAS2 1 0.385 0.096 5.5E−05 Blood Yes

ZNF778 2 0.054 0.013 5.6E−05 Pancreas Yes

NSF 2 0.392 0.098 5.9E−05 Esophagus Mucosa Yes

SLC22A31 10 0.066 0.017 9.0E−05 Esophagus Mucosa Yes

BMP1 1 0.23 0.06 1.1E−04 Artery Tibial Yes

AVEN 1 0.104 0.027 1.3E−04 Heart Atrial Appendage Yes

SCAMP5 2 0.098 0.026 1.5E−04 Skin Sun Exposed Lower leg Yes

SFTPD 1 0.076 0.021 3.3E−04 Pituitary Yes

RP11‐259G18.3 18 −0.072 0.012 4.0E−10 Whole Blood No

KANSL1‐AS1 12 −0.076 0.013 1.5E−09 Colon Transverse No

RP11‐259G18.2 4 −0.243 0.042 8.5E−09 Blood No
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TABLE 4 (Continued)

Gene
No. of
tissues

Results in the most associated tissue Protein
codingβ SE p Value Tissue

LRRC37A4P 4 0.082 0.015 4.1E−08 Liver No

CRHR1‐IT1 1 −0.115 0.021 6.6E−08 Brain Putamen basal ganglia No

DND1P1 5 −0.061 0.011 1.0E−07 Artery Coronary No

NAPSB 28 −0.074 0.014 1.5E−07 Whole Blood No

RP11‐259G18.1 19 −0.123 0.024 2.7E−07 Esophagus Mucosa No

FAM215B 7 −0.108 0.021 4.5E−07 Thyroid No

ATP5O 1 0.154 0.032 1.4E−06 Lung No

MAPT‐AS1 2 0.195 0.042 3.9E−06 Muscle Skeletal No

RP11‐707O23.5 1 −0.059 0.013 3.9E−06 Brain Substantia nigra No

AC091132.1 3 0.318 0.069 4.4E−06 Esophagus Mucosa No

RP11‐798G7.5 14 0.106 0.024 1.0E−05 Brain Cerebellar Hemisphere No

RP11‐798G7.6 20 0.07 0.016 1.2E−05 Thyroid No

CTD‐2020K17.1 1 0.161 0.037 1.8E−05 Brain Cerebellum No

RPS26P8 2 −0.131 0.031 2.1E−05 Breast Mammary Tissue No

BEND3P3 1 −0.153 0.036 2.2E−05 Blood No

RP11‐798G7.8 1 −0.09 0.021 2.9E−05 Brain Cerebellar Hemisphere No

RP11‐119F19.2 1 −0.087 0.022 6.2E−05 Blood No

PDCL3P4 13 −0.109 0.027 6.3E−05 Heart Left Ventricle No

HLA‐J 3 −0.094 0.024 8.7E−05 Colon Transverse No

ZBTB11‐AS1 1 −0.166 0.043 9.9E−05 Muscle Skeletal No

CTD‐3092A11.2 1 −0.094 0.024 1.1E−04 Lung No

RP11‐322D14.1 1 0.082 0.021 1.5E−04 Whole Blood No

AL133481.1 2 0.041 0.011 1.8E−04 Brain Cerebellum No

IL10RB‐AS1 1 0.06 0.016 2.6E−04 Brain Cerebellum No

TABLE 5 GO biological process enrichment analysis of the significant genes for hospitalized COVID‐19

Term name Term id Adjusted p value Intersections

Type I interferon signaling pathway GO:0060337 3.2E−05 OAS1, OAS2, OAS3, IFNAR2, TYK2

Cellular response to type I interferon GO:0071357 3.8E−05 OAS1, OAS2, OAS3, IFNAR2, TYK2

Response to type I interferon GO:0034340 6.7E−05 OAS1, OAS2, OAS3, IFNAR2, TYK2

Regulation of ribonuclease activity GO:0060700 2.6E−04 OAS1, OAS2, OAS3

Surfactant homeostasis GO:0043129 0.003 OAS1, NAPSA, SFTPD

Chemical homeostasis within a tissue GO:0048875 0.004 OAS1, NAPSA, SFTPD

Regulation of nuclease activity GO:0032069 0.006 OAS1, OAS2, OAS3

Negative regulation of IP‐10 production GO:0071659 0.010 OAS1, OAS3

IP‐10 production GO:0071612 0.020 OAS1, OAS3

Regulation of IP‐10 production GO:0071658 0.020 OAS1, OAS3

Negative regulation of chemokine (C‐X‐C motif) ligand 2 production GO:2000342 0.020 OAS1, OAS3

Positive regulation of interferon‐beta production GO:0032728 0.048 OAS1, OAS2, OAS3
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analysis was conducted using only eQTL summary statistics from blood

and lung, hence leading to limited statistical power. Another

transcriptome‐wide SMR study7 was conducted using eQTL and mQTL

data from lung and whole blood with the hospitalized COVID‐19 GWAS

from HGI release 5, which identified associations involving seven protein‐

coding genes TYK2, IFNAR2, OAS1, OAS3, XCR1, CCR5, and MAPT. The

current study found all but two (XCR1 and CCR5) of these genes to be

significantly associated with hospitalized COVID‐19. Compared to these

two studies, the current study had the highest power and identified the

largest number of potentially causal genes for severe and hospitalized

COVID‐19 using the most recent release of HGI data and 49 eQTL data

sets. In total, we identified 64 protein‐coding genes (Supporting

Information: Table S7). Of these, several have previously been found to

be associated with severe COVID‐19, hospitalized COVID‐19 and SARS‐

CoV‐2 infection through various experimental techniques and definitions

of the COVID‐19 outcomes: these include ABO, OAS1, OAS2, OAS3,

TYK2, IFNAR2, IL10RB, MAPT, ARL17A, ARL17B, CCHCR1, CEP97,

LRRC37A, LRRC37A2, NXPE3, ICAM5,MUC1, NTN5, ELF5, FUT2, KANSL1,

MUC5B, SFTPD, SLC22A31, SELE, SENP7, NAPSA, NOTCH4, PLEKHA4,

WNT3, NSF, TOMM7, HLA‐DQB2, HLA‐DQA1, HLA‐DQB1, HLA‐DPA1,

TULP2, and TCF19.4,6,7,26–37 On top of these, our analysis has identified

several novel genes which are potentially causally associated with severe

COVID‐19, hospitalized COVID‐19 and SARS‐CoV‐2 infection; 15 genes

were associated with severe COVID‐19 (ADAMTS6, CENPK, NUTM2B,

PPWD1, RMI2, RASIP1, SNX31, TRIM23, ARHGAP27, CRHR1, ICAM3,

KCNC3, PLEKHM1, ZGLP1, and ZNF528), 12 with hospitalized COVID‐19

(AVEN, BMP1, CYP4B1, RAB2A, SCAMP5, SPPL2C, ARHGAP27, CRHR1,

ICAM3, KCNC3, PLEKHM1, and ZNF778), and 5 were associated with

SARS‐CoV‐2 infection (HSD17B14, MED24, CLK2, RAS1P1, and

MAMSTR). We also identified 39 non‐protein‐coding genes (Supporting

Information: Table S7). Of these, only DND1P1, KANSL1‐AS1,

LRRC37A4P, LCN1P1, MAPT‐AS1, IL10RB‐AS1, PDCL3P4, ZBTB11‐AS1,

and CRHR1‐IT1 have been reported previously.31,36,38 The remaining

noncoding genes are novel.

The top 10 most associated protein‐coding genes with severe

COVID‐19 were also found to be associated with hospitalized COVID‐19

(IFNAR2, OAS3, MUC1, IL10RB, NAPSA, KCNC3, PLEKHM1, OAS1,

ARL17A, and TYK2). Four of these, OAS1, IFNAR2, OAS3, and TYK2

were the genes that drove the enrichment of biological processes in the

GO enrichment analysis. The enriched biological processes were related

to type I interferon signaling, IP‐10 production, and CXCL2 production.

IFNAR2 and TYK2 are involved in the signaling pathway of type I

interferons,39 while OAS1 and OAS3 are known to regulate type I

interferons and chemokines.40 Type I and III interferons have previously

been implicated in COVID‐19 and may have a detrimental and beneficial

effect on SARS‐CoV‐2 replication.41 These interferons are a central part

of the innate antiviral response. However, the response of these

interferons was found to be diminished and delayed in patients with

COVID‐19 and observed only in a small number of patients as their

infection reached critical stages.42,43 It has been suggested that type I and

III interferons confer early protection but late amplification of the

disease.43 IL10RB belongs to the cytokine receptor family and has

previously been implicated in COVID‐19.36 Two of the top 10 genes,

KCNC3 and PLEKHM1, are novel genes associated with severe COVID‐19

and may play a causal role in the disease through the immune system.

KCNC3 is a gated potassium voltage channel that may affect the immune

response by inhibiting T cell activation.44 PLEKHM1 regulates

autophagosome‐lysosome fusion, and depletion of PLEKHM1 enhances

the presentation ofMHC class 1 molecules, thereby affecting the immune

response.45 Taken together, these genes highlight the role of immune

system dysregulation in severe COVID‐19 and provide further insight into

the potentially causal role of certain genes in this process.

In the supplementary analysis using SARS‐CoV‐2 infection as an

outcome, we identified four genes in common with severe COVID‐19

(OAS1, IFNAR2, RASIP1, and CCHCR1) and seven in common with

hospitalized COVID‐19 (OAS1, IFNAR2, CCHCR1, PDCL3P4, NXPE3,

and ZBTB11‐AS1). The remaining 13 unique SARS‐CoV‐2 infection

genes may be associated with SARS‐CoV‐2 infection, but not a

severe response as a consequence. In the GO enrichment analysis, no

significant GO enrichment was found. This may be due to a lower

statistical power of the SARS‐CoV‐2 infection GWAS. The asympto-

matic nature of COVID‐19 and self‐reported phenotype may lead to

misclassification of the SARS‐CoV‐2 cases in the GWAS of SARS‐

CoV‐2 infection. As a result, a higher negative predictive value and

lower sensitivity of covid infection diagnosis could be observed,

resulting in a lower statistical power of the GWAS.46

The present study also identified several novel genes

associated with severe COVID‐19 that may underlie the patho-

genesis of severe COVID‐19. ARHGAP27, RASIP1, and CENPK are

involved in signaling by the Rho GTPase pathway and may

increase COVID‐19 infection through dysregulation of the path-

way, affecting cytoskeletal dynamics.47,48 TRIM23 is known to

induce autophagy in response to viral infections.49 ZNF528 and

ZGLP1 are involved in transcription and may function as

regulators in pathways affecting the severity of COVID‐19

infections.50 ICAM3 expression in several brain tissues was

associated with an increased risk of severe and hospitalized

COVID‐19. Previously, ICAM3 was found to increase lactate

dehydrogenase levels, and lower total white blood cell counts in

patients infected with severe acute respiratory syndrome

(SARS)51 which may similarly affect those infected by SARS‐

CoV‐2.

Our study has important clinical implications. The ongoing

COVID‐19 pandemic is unprecedented in modern times, while

severe COVID‐19 is particularly associated with poor prognosis.

Our findings provide further insight into the mechanism of severe

COVID‐19. The current study has identified several novel

genes which have a potentially causal association with severe

COVID‐19. Notably, some of the genes identified in the current

study have been implicated in COVID‐19 infection and progression

in previous studies with different study designs and definitions,

which serve as positive controls and provide evidence of the

robustness of our findings. Thus, the genes identified in this study

provide direction for further functional validation studies and shed

light on the development of therapeutic agents for treating severe

COVID‐19.
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Our study also has several strengths. First, we utilized 49

different tissue types, allowing a comprehensive evaluation of gene

expression with severe COVID‐19 across tissues. Second, we utilized

the multi‐SNPs SMR as the sensitivity analysis, providing further

robust evidence of association and reducing the false positive rates.

Finally, we used GWAS from release 6 of COVID‐19 HGI data in the

analysis providing larger statistical power compared to previous

studies. Nevertheless, there are limitations. First, the GWAS did not

control for all confounders, such as diabetes, obesity, and other risk

factors of severe COVID‐19, which may affect the outcome.

However, the nature of the study using eQTL is less likely to be

affected by confounders. Second, although several associations only

appeared in one tissue, it may not be a true tissue‐specific association

since many eQTLs are underpowered due to the low sample size.

Thus, cautious interpretation is required. Third, although we

conducted additional sensitivity analysis to reduce bias, we cannot

eliminate the possibility of the association being due to horizontal

pleiotropy. For this reason, we consider the identified genes as

“potentially causal.” Further study is required to validate the role of

these genes on covid outcomes.

In conclusion, we identified 64 genes that are potentially causally

associated with severe COVID‐19, of which 38 genes are novel.

These results lead to a better understanding of the mechanism of

severe COVID‐19 and show potential therapeutic targets for the

treatment and/or reduction of symptoms and mortality after SARS‐

CoV‐2 infection. Further research into the relationship between the

genes put forward here, and severe COVID‐19 is warranted.

AUTHOR CONTRIBUTIONS

Ching‐Lung Cheung designed the study. Suhas Krishnamoorthy

gathered data, conducted the analysis, and drafted the manuscript.

Ching‐Lung Cheung and Gloria H.‐Y. Li revised the manuscript for

intellectual content. All authors read and approved the final

manuscript.

ACKNOWLEDGMENT

This study was supported by AIR@InnoHK administered by the

Innovation and Technology Commission.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

All data that support the findings of this paper are available online. GWAS

data are available from release 6 of COVID‐19 HGI data (https://www.

covid19hg.org/results/r6/). eQTL data from version 7 of the GTEx

Project were downloaded in SMR binary (BESD) format (https://yanglab.

westlake.edu.cn/software/smr/#DataResource), eQTL data from eQTL-

Gen were downloaded in BESD format (https://www.eqtlgen.org/cis-

eqtls.html) and LD reference panel data was downloaded from 1000

genomes project phase 3 (https://www.internationalgenome.org/data-

portal/sample). The data generated from this paper are available in the

tables and Supporting Information: tables.

ORCID

Ching‐Lung Cheung http://orcid.org/0000-0002-6233-9144

REFERENCES

1. Thomson B. The COVID‐19 pandemic: A global natural experiment.
Circulation. 2020;142(1):14‐16.

2. World Health Organization. WHO COVID‐19 Dashboard. Geneva:
World Health Organization; 2022.

3. Casanova JL, Su HC. A global effort to define the human genetics of

protective immunity to SARS‐CoV‐2 infection. Cell. 2020;181(6):
1194‐1199.

4. COVID‐19 Host Genetics Initiative. The COVID‐19 Host Genetics
Initiative, a global initiative to elucidate the role of host genetic
factors in susceptibility and severity of the SARS‐CoV‐2 virus

pandemic. Eur J Human Genet. 2020;28(6):715‐718.
5. Chapman SJ, Hill AV. Human genetic susceptibility to infectious

disease. Nat Rev Genet. 2012;13(3):175‐188.
6. Liu D, Yang J, Feng B, Lu W, Zhao C, Li L. Mendelian randomization

analysis identified genes pleiotropically associated with the risk and

prognosis of COVID‐19. J Infect. 2021;82(1):126‐132.
7. Baranova A, Cao H, Zhang F. Unraveling risk genes of COVID‐19 by

multi‐omics integrative analyses. Front Med. 2021;8:738687.
8. Zhu Z, Zhang F, Hu H, et al. Integration of summary data from

GWAS and eQTL studies predicts complex trait gene targets. Nat
Genet. 2016;48(5):481‐487.

9. Wu Y, Zeng J, Zhang F, et al. Integrative analysis of omics summary
data reveals putative mechanisms underlying complex traits. Nat

Commun. 2018;9(1):918.

10. GTEx Consortium; Laboratory, Data Analysis &Coordinating Center
(LDACC)—Analysis Working Group; Statistical Methods groups—
Analysis Working Group, et al. Genetic effects on gene expression
across human tissues. Nature. 2017;550(7675):204‐213.

11. Võsa U, Claringbould A, Westra H‐J, et al. Unraveling the polygenic

architecture of complex traits using blood eQTL metaanalysis.
bioRxiv. 2018:447367.

12. Jain U. Effect of COVID‐19 on the organs. Cureus. 2020;12(8):
e9540.

13. Niemi MEK, Karjalainen J, Liao RG, et al. Mapping the human genetic

architecture of COVID‐19. Nature. 2021;600(7889):472‐477.
14. Sobczyk MK, Gaunt TR. The effect of circulating zinc, selenium,

copper and vitamin K(1) on COVID‐19 outcomes: a Mendelian
randomization study. Nutrients. 2022;14(2):233.

15. Huffman JE, Butler‐Laporte G, Khan A, et al. Multi‐ancestry fine
mapping implicates OAS1 splicing in risk of severe COVID‐19.
Nature Genet. 2022;54(2):125‐127.

16. Downes DJ, Cross AR, Hua P, et al. Identification of LZTFL1 as a
candidate effector gene at a COVID‐19 risk locus. Nature Genet.
2021;53(11):1606‐1615.

17. Swerdlow DI, Kuchenbaecker KB, Shah S, et al. Selecting

instruments for Mendelian randomization in the wake of
genome‐wide association studies. Int J Epidemiol. 2016;45(5):
1600‐1616.

18. Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic
variants as instrumental variables for modifiable risk factors. Stat

Methods Med Res. 2012;21(3):223‐242.

19. Liu Y, Shen H, Greenbaum J, et al. Gene expression and RNA splicing
imputation identifies novel candidate genes associated with osteo-
porosis. J Clin Endocrinol Metab. 2020;105(12):e4742‐e4757.

20. Auton A, Abecasis GR, Altshuler DM, et al. A global reference for
human genetic variation. Nature. 2015;526(7571):68‐74.

21. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map
format and SAMtools. Bioinformatics. 2009;25(16):2078‐2079.

22. Danecek P, Auton A, Abecasis G, et al. The variant call format and

VCFtools. Bioinformatics. 2011;27(15):2156‐2158.

KRISHNAMOORTHY ET AL. | 11

https://www.covid19hg.org/results/r6/
https://www.covid19hg.org/results/r6/
https://yanglab.westlake.edu.cn/software/smr/#DataResource
https://yanglab.westlake.edu.cn/software/smr/#DataResource
https://www.eqtlgen.org/cis-eqtls.html
https://www.eqtlgen.org/cis-eqtls.html
https://www.internationalgenome.org/data-portal/sample
https://www.internationalgenome.org/data-portal/sample
http://orcid.org/0000-0002-6233-9144


23. Purcell S, Neale B, Todd‐Brown K, et al. PLINK: a tool set for whole‐
genome association and population‐based linkage analyses. Am

J Hum Genet. 2007;81(3):559‐575.
24. Raudvere U, Kolberg L, Kuzmin I, et al. g:Profiler: a web server for

functional enrichment analysis and conversions of gene lists (2019
update). Nucleic Acids Res. 2019;47(W1):W191‐W198.

25. Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler—a web‐
based toolset for functional profiling of gene lists from large‐scale
experiments. Nucleic Acids Res. 2007;35:W193‐W200.

26. Pairo‐Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of
critical illness in COVID‐19. Nature. 2021;591(7848):92‐98.

27. Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide association
study of severe Covid‐19 with respiratory failure. N Engl J Med. 2020;
383(16):1522‐1534.

28. Wu L, Zhu J, Liu D, Sun Y, Wu C. An integrative multiomics analysis
identifies putative causal genes for COVID‐19 severity.
Genet Med Off J Am Coll Med Genet. 2021;23(11):2076‐2086.

29. van Moorsel CHM, van der Vis JJ, Duckworth A, et al. The MUC5B
promoter polymorphism associates with severe COVID‐19 in the

European population. Front Med. 2021;8:668024.
30. Kousathanas A, Pairo‐Castineira E, Rawlik K, et al. Whole genome

sequencing reveals host factors underlying critical Covid‐19. Nature.
2022;607:97‐103.

31. D'antonio M, Nguyen JP, Arthur TD, et al. SARS‐CoV‐2 susceptibility
and COVID‐19 disease severity are associated with genetic variants
affecting gene expression in a variety of tissues. Cell Rep. 2021;
37(7):110020.

32. Castelli EC, de Castro MV, Naslavsky MS, et al. MHC variants associated

with symptomatic versus asymptomatic SARS‐CoV‐2 infection in highly
exposed individuals. Front Immunol. 2021;12:742881.

33. Hu J, Li C, Wang S, Li T, Zhang H. Genetic variants are identified to
increase risk of COVID‐19 related mortality from UK Biobank data.
Hum Genomics. 2021;15(1):10.

34. de Sousa E, Ligeiro D, Lérias JR, et al. Mortality in COVID‐19 disease
patients: Correlating the association of major histocompatibility complex
(MHC) with severe acute respiratory syndrome 2 (SARS‐CoV‐2) variants.
Int J Infect Dis Off Publ Int Soc Infect Dis. 2020;98:454‐459.

35. Harb H, Benamar M, Lai PS, et al. Notch4 signaling limits regulatory

T‐cell‐mediated tissue repair and promotes severe lung inflamma-
tion in viral infections. Immunity. 2021;54(6):1186‐1199.e7.

36. Schmiedel BJ, Rocha J, Gonzalez‐Colin C, et al. COVID‐19 genetic
risk variants are associated with expression of multiple genes in

diverse immune cell types. Nat Commun. 2021;12(1):6760.
37. Palmos AB, Millischer V, Menon DK, et al. Proteome‐wide

Mendelian randomization identifies causal links between blood
proteins and severe COVID‐19. PLoS Genet. 2022;18(3):e1010042.

38. Fullard JF, Lee HC, Voloudakis G, et al. Single‐nucleus transcriptome

analysis of human brain immune response in patients with severe
COVID‐19. Genome Med. 2021;13(1):118.

39. Duncan CJ, Mohamad SM, Young DF, et al. Human IFNAR2
deficiency: Lessons for antiviral immunity. Sci Transl Med. 2015;
7(307):307ra154.

40. Lee WB, Choi WY, Lee DH, Shim H, Kim‐Ha J, Kim YJ. OAS1 and
OAS3 negatively regulate the expression of chemokines and
interferon‐responsive genes in human macrophages. BMB Rep.
2019;52(2):133‐138.

41. Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between
SARS‐CoV‐2 and the type I interferon response. PLoS Pathog.
2020;16(7):e1008737.

42. Galani IE, Rovina N, Lampropoulou V, et al. Untuned antiviral
immunity in COVID‐19 revealed by temporal type I/III

interferon patterns and flu comparison. Nat Immunol. 2021;
22(1):32‐40.

43. Paludan SR, Mogensen TH. Innate immunological pathways in
COVID‐19 pathogenesis. Sci Immunol. 2022;7(67):eabm5505.

44. Koo GC, Blake JT, Talento A, et al. Blockade of the voltage‐gated
potassium channel Kv1.3 inhibits immune responses in vivo.
J Immunol. 1997;158(11):5120‐5128.

45. McEwan DG, Popovic D, Gubas A, et al. PLEKHM1 regulates
autophagosome‐lysosome fusion through HOPS complex and LC3/
GABARAP proteins. Mol Cell. 2015;57(1):39‐54.

46. Duan R, Cao M, Wu Y, et al. An empirical study for impacts of
measurement errors on EHR based association studies. AMIA Annu

Symp Proc. 2016;2016:1764‐1773.
47. Katoh Y, Katoh M. Identification and characterization of ARHGAP27

gene in silico. Int J Mol Med. 2004;14:943‐947.
48. Post A, Pannekoek WJ, Ross SH, Verlaan I, Brouwer PM, Bos JL.

Rasip1 mediates Rap1 regulation of Rho in endothelial barrier
function through ArhGAP29. Proc Natl Acad Sci. 2013;110(28):
11427‐11432.

49. Sparrer KMJ, Gableske S, Zurenski MA, et al. TRIM23 mediates
virus‐induced autophagy via activation of TBK1. Nat Microbiol.
2017;2(11):1543‐1557.

50. Cassandri M, Smirnov A, Novelli F, et al. Zinc‐finger proteins in
health and disease. Cell Death Discov. 2017;3(1):17071.

51. Chan KY, Ching JC, Xu MS, et al. Association of ICAM3 genetic
variant with severe acute respiratory syndrome. J Infect Dis.
2007;196(2):271‐280.

SUPPORTING INFORMATION

Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Krishnamoorthy S, Li GH‐Y, Cheung

C‐L. Transcriptome‐wide summary data‐based Mendelian

randomization analysis reveals 38 novel genes associated with

severe COVID‐19. J Med Virol. 2022;1‐12.

doi:10.1002/jmv.28162

12 | KRISHNAMOORTHY ET AL.

https://doi.org/10.1002/jmv.28162



