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ABSTRACT

Aims/Introduction: Studies have suggested that pancreatic b-cells undergo dedifferentiation during proliferation in vitro. However,
due to limitations of the methodologies used, the question remains whether such dedifferentiated cells can redifferentiate into
b-cells.
Materials and Methods: We have established a method for cell tracing in combination with fluorescence-activated cell sorter
(FACS). Using this method, mouse pancreatic b-cells labeled with green fluorescent protein (GFP) under the control of the insulin
promoter are collected by FACS. These b-cells can be traced and characterized throughout the culture process, even when insulin
becomes undetectable, because the cells are also marked with monomeric red fluorescent protein (mRFP) driven by the CAG
promoter.
Results: When cultured with fetal mouse pancreatic cells, FACS sorted b-cells lost GFP expression, but retained mRFP expression.
The cells also lost expressions of genes characteristic of the b-cell phenotype, such as Pdx1 and glucokinase, indicating dedifferentia-
tion. More than 30% of such dedifferentiated pancreatic b-cells were detected in S or G2/M phase. Furthermore, these dedifferentiat-
ed cells redifferentiated into insulin-expressing cells on cultivation with a MEK1/2 inhibitor.
Conclusions: Our data provide direct evidence that pre-existing b-cells can undergo dedifferentiation and redifferentiation in vitro,
their phenotype is reversible and that dedifferentiation in b-cells is associated with progression of the cell cycle. (J Diabetes Invest,
doi: 10.1111/j.2040-1124.2010.00051.x, 2010)
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INTRODUCTION
Pancreatic b-cells possess a well-regulated insulin secretory
property that maintains systemic glucose homeostasis1.
Although it has long been thought that differentiated b-cells are
nearly static, recent studies have shown that b-cell mass changes
dynamically throughout a lifetime2. In addition, it has been
shown that the replication of pre-existing b-cells is a major
source for the maintenance of b-cell mass in adult mouse pan-
creas3, although cells other than pre-existing b-cells might also
contribute to the generation of new b-cells4,5. Because expansion
of pancreatic b-cells in vitro represents an attractive strategy for
cell therapy in diabetes, many attempts to establish a method
for increasing b-cell mass have been reported6–8. In fact, isolated
pancreatic b-cells from rodents and humans have been shown

to proliferate under certain conditions in vitro9,10. However, the
phenotypic changes shown by b-cells during in vitro prolifera-
tion have not been examined in detail.

Epithelial-mesenchymal transition (EMT) of pancreatic b-cells
was originally reported by Gershengorn et al.11 and a similar
phenomenon was observed by others12. They suggested that
pancreatic b-cells were expandable in vitro by EMT and that the
transitional b-cells have progenitor-like properties11,12. In con-
trast, other recent studies using cell lineage tracing maintained
that b-cells do not undergo EMT13–15. They found that most
proliferative mesenchymal cells migrating out of pancreatic islets
in vitro were not derived from b-cells, and suggest that these
cells do not represent a useful source for the generation of phys-
iologically competent b-cells for the treatment of diabetes13,15.
These studies did not exclude the possibility that differentiated
pancreatic b-cells can undergo phenotypic change, however.
While most mesenchymal cells in the culture were found not to
originate from pre-existing b-cells, some pre-existing b-cells
clearly changed their phenotype to one having a fibroblast-like
morphology13. Indeed, it has been shown by cell lineage tracing
that pre-existing pancreatic b-cells can undergo dedifferentiation
in vitro, although these dedifferentiated b-cells were eventually
lost during long-term culture16. Thus, although pancreatic
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b-cells might possess phenotypic plasticity in vitro, the pro-
perties and fate of such dedifferentiated pancreatic b-cells are
not known.

In the present study, we established a culture system using
fetal pancreatic cells as feeder cells that induce dedifferentiation

of adult pancreatic b-cells. We also developed a method
whereby pre-existing pancreatic b-cells can be traced throughout
the culture process, even when the cells lose insulin expression.
Using this method, we provide direct evidence that pre-existing
b-cells undergo dedifferentiation and redifferentiation in vitro

Table 1 | Sequences of PCR primers

Name Forward primer Reverse primer Size

b-actin TTCTTTGCAGCTCCTTCGTTG ATGCCGGAGCCGTTGTC 95 bp
GAPDH AACTTTGGCATTGTGGAAGG GGATGCAGGGATGATGTTCT 132 bp
Insulin I GCAAGCAGGTCATTGTTTCA CACTTGTGGGTCCTCCACTT 211 bp
Insulin II GCCCTAAGTGATCCGCTACAATCAA GCGCATCCACAGGGCCAT 90 bp
Glucokinase GCCACAATGATCTCCTGCTA CACATTCTGCATCTCCTCCA 102 bp
GLUT2 AATGGTCGCCTCATTCTTTG ATCAAGAGGGCTCCAGTCAA 102 bp
Kir6.2 AGACACGGCGGGATAAGTC GGAACGACGACAAAATGAGG 187 bp
SUR1 ACTTTGCTGAAACCGTGGAA AGGGAGTTGGAGATGGAGGT 208 bp
Cav1.2 TCCTACCAGGAAGATGAACA GGATGGGAAGCTGCTGTTGA 390 bp
Cav1.3 CTTCGTCATCGTCACCTTCCA TGAACATCTTGGACTGCTCA 254 bp
Munc18a AGATGCGCTGTGCTTACGAA CACAGGAGAAGAACTCAGCA 281 bp
Rab27b CCAGACCAAAGGGAAGTCAA AAGTCCAGAAGCGTTTCCAC 128 bp
Syntaxin1a AAGAAGGCCGTCAAGTACCA GTGGGGTGGTTTCTATCCAA 126 bp
VAMP2 TTGAAACAAGTGCAGCCAAG GGCAGACTCCTCAGGGATTT 140 bp
PC1/3 ATGGAGCAAAGAGGTTGGAC GCTGCAGTCATTCTGGTATC 419 bp
PC2 TGGTGTGGCTACCACAGACT TGCATGTCTCTCCAGGTCAG 135 bp
Chromogranin A CCTCTCTATCCTGCGACACC GGGCTCTGGTTCTCAAACAC 201 bp
Chromogranin B ACAGGAAGAAGGCAGACGAA TCCTTCAGTGAAAGGCTCGT 228 bp
Pdx1 CCACCCCAGTTTACAAGCTC TGTAGGCAGTACGGGTCCTC 325 bp
NeuroD GCTCCAGGGTTATGAGATCG CGCTCTCGCTGTATGATTTG 83 bp
Nkx2.2 TCTACGACAGCAGCGACAAC ATTTGGAGCTCGAGTCTTGG 114 bp
Nkx6.1 CTTGGCAGGACCAGAGAGAG CCGAGTCCTGCTTCTTCTTG 146 bp
Isl1 CACTATTTGCCACCTAGCCAC AAATACTGATTACACTCCGCAC 256 bp
Hes1 CTACCCCAGCCAGTGTCAAC ATGCCGGGAGCTATCTTTCT 171 bp
E-cadherin ACTGTGAAGGGACGGTCAAC GGAGCCACATCATTTCGAGT 307 bp
Nestin CTCTGCTGGAGGCTGAGAAC ATTAGGCAAGGGGGAAGAGA 176 bp
Vimentin CCTGTACGAGGAGGAGATGC GTGCCAGAGAAGCATTGTCA 206 bp
Cyclin A1 CAAGGTCCTGATGCTTGTCA CCCATGGTCAGAGAGCACTT 198 bp
Cyclin A2 CTGTCTCTTTACCCGGAGCA AGTGATGTCTGGCTGCCTCT 227 bp
Cyclin D1 TGGTGAACAAGCTCAAGTGG GCAGGAGAGGAAGTTGTTGG 248 bp
Cyclin D2 TTACCTGGACCGTTTCTTGG TGCTCAATGAAGTCGTGAGG 240 bp
Cyclin D3 AGGCCCTAGGACTCGCTAAC TTTGCACGCACTGGAAGTAG 203 bp
Cyclin E1 CCTCCAAAGTTGCACCAGTT GGACGCACAGGTCTAGAAGC 241 bp
Cyclin E2 TCTGTGCATTCTAGCCATCG ACAAAAGGCACCATCCAGTC 156 bp
Cdk2 CATTCCTCTTCCCCTCATCA GCAGCCCAGAAGAATTTCAG 238 bp
Cdk4 CAATGTTGTACGGCTGATGG CAGGCCGCTTAGAAACTGAC 178 bp
p15INK4b AAGGACCATTTCTGCCACAG CGCAGTTGGGTTCTGCTC 234 bp
p16INK4a CTTTGTGTACCGCTGGGAAC CGCTAGCATCGCTAGAAGTG 158 bp
p18INK4c CGTCAACGCTCAAAATGGAT GGGCAGGTTCCCTTCATTAT 229 bp
p19INK4d CCACCGGTATCCACTATGCT TCAGGAGCTCCAAAGCAACT 199 bp
p21Cip1 GTACTTCCTCTGCCCTGCTG TCTGCGCTTGGAGTGATAGA 173 bp
p27Kip1 TTGGGTCTCAGGCAAACTCT TCTGTTCTGTTGGCCCTTTT 157 bp
p57Kip2 CTGAAGGACCAGCCTCTCTC TCTGGCCGTTAGCCTCTAAA 229 bp
Foxo1 AAGAGCGTGCCCTACTTCAA CTCCCTCTGGATTGAGCATC 157 bp
Ki67 CCAGCTGCCTGTAGTGTCAA CCTTGATGGTTCCTTTCCAA 250 bp
PCNA GAAGGCTTCGACACATACCG TCTGGGATTCCAAGTTGCTC 227 bp

Sequences of PCR primers are designed such that the amplified regions spanned introns in the gene, except for the Kir6.2 gene, which has no
intron in the protein coding region.
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and that such dedifferentiation in b-cells is associated with the
progression of the cell cycle.

MATERIALS AND METHODS
Animals
C57BL/6 Cr mice were purchased from Japan SLC (Shizuoka,
Japan). Transgenic mice expressing green fluorescent protein
(GFP) under the control of mouse insulin I promoter (MIP)
(MIP-GFP mice)17 and transgenic mice expressing monomeric
red fluorescent protein (mRFP) under the control of CAG
promoter (CAG-mRFP mice) were crossed to produce double
heterozygous (MIP-GFP/CAG-mRFP) mice. All animal experi-
ments were approved by the Animal Research Committees of
Kyoto University Graduate School of Medicine and Kobe Uni-
versity Graduate School of Medicine.

Isolation and Culture of Mouse Pancreatic Cells
On day 1, for preparation of feeder cells, pancreata were dis-
sected from 24 fetal mice at embryonic day 17 and digested with
3 mL of Hank’s balanced salt solution containing 3 mg of colla-
genase D and 200 units of DNase I (Roche Molecular Biochemi-
cals, Indianapolis, IN, USA) for 17 min at 37�C. Dissociated
fetal pancreatic cells were cultured with RPMI-1640 medium
containing 5.6 mmol/L glucose (Invitrogen, Gaithersburg, MD,
USA), 10% FCS (Sigma, St. Louis, MO, USA), and 2 ng/mL
FGF2 (R&D Systems, Minneapolis, MN, USA) at 37�C with
95% air and 5% CO2. When using fetal MIP-GFP mouse pan-
creatic cells as a feeder, GFP-positive b-cells were removed by
fluorescence-activated cell sorter (FACS) as described later
before culture. On day 6, the cells grown to confluence were
harvested and replated to 100-mm dishes at 2 · 106 cells/dish.
On day 9, monolayer cells were harvested and replated to a
12-well plate at 1 · 105 cells/well. By day 15, small plaques were
formed in monolayer cells (day 1–14: Stage 1). At this point, the
medium was replaced with RPMI-1640 containing 5.6 mmol/L
glucose, 10% FCS, 2 ng/mL FGF2, and 10 ng/mL betacellulin
(R&D Systems). Islet-like spherical clusters (ISC) were formed
in this stage (day 15–19: Stage 2). On day 19, ISC were picked
up and plated to 6-well dishes with RPMI-1640 containing 5.6
or 16.7 mmol/L glucose, 10% FCS, and 10 mmol/L nicotin-
amide or 50 lmol/L PD98059 (Calbiochem, San Diego, CA,
USA) (day 20–30: Stage 3).

Tracing of Pre-existing Pancreatic b-cells
Islets isolated from mice at 12–20 weeks-of-age were hand-
picked under a dissecting microscope18. GFP/mRFP-double

positive b-cells were sorted from double transgenic mice
expressing GFP in b-cells and mRFP in all of the cells by FACS
Aria (Becton Dickinson, San Jose, CA, USA) with fluorescein
isothiocyanate (FITC) band-pass filter (530/30 nm). The sorted
GFP/mRFP-double positive b-cells were cultured with fetal
pancreas-derived feeder cells of wild-type mice, which do not
express any fluorescent proteins. By the end of Stage 1, pre-
existing b-cells became GFP-negative/mRFP-positive as a result
of inactivity of the insulin promoter. Subsequently, the mRFP-
positive b-cell progenies were collected by FACS for further
characterization. For this purpose, a phycoerythrin (PE)-Texas
Red-band pass filter (610/20 nm) was used.

Cell Cycle Analysis
GFP-negative/mRFP-positive dedifferentiated b-cells were puri-
fied by the above procedure. The cells were suspended in 0.2%
Triton X-100 solution containing 50 lg/mL propidium iodide
(PI; Sigma) and analyzed by using FACS Calibur (Becton Dick-
inson). The proportion of cells in each phase of the cell cycle
was calculated by ModFit LT, a flow cytometry modeling soft-
ware (Verity Software House, Topsham, ME, USA).

Immunocytochemistry
Cultured cells were fixed with 4% paraformaldehyde and per-
meabilized with 10% normal goat serum and 0.2% Tween-20.
Primary antibodies used were guinea pig anti-insulin (Zymed,
San Francisco, CA, USA), rat anti-nestin (American Research
Product, Belmont, MA, USA), goat anti-vimentin (Sigma),
mouse anti-BrdU (Sigma), and rabbit anti-DsRed (Becton Dick-
inson), which was crossed with mRFP19. Secondary antibodies
labeled with Alexa Fluor 488 or 546 (Molecular Probe, Eugene,
OR, USA) were used for detection. Nuclear staining was carried
out by 4¢,6-diamino-2-phenylindole (DAPI) (Dojindo, Kumam-
oto, Japan).

RT–PCR Analysis
Total RNA was isolated with RNeasy Mini kit (Qiagen, Valen-
cia, CA, USA) according to the manufacturer’s instruction. After
treatment with DNase I (Qiagen), 1 lg of the RNA was reverse-
transcribed by ReverTra Ace (Toyobo, Osaka, Japan) and 1/200
volume of resultant cDNA was subjected to PCR using Ampli-
Taq Gold DNA polymerase (Applied Biosystems, Foster City,
CA, USA). PCR primers were designed such that the amplified
regions spanned introns in the gene, except for the Kir6.2 gene,
which has no intron in the protein-coding region (Table 1). The
cDNA products were amplified by 30 cycles for b-actin and

Figure 1 | Phenotypic change of adult pancreatic b-cells. (a) Immunostaining of MIP-GFP mouse pancreas with anti-green fluorescent protein (GFP)
and anti-insulin antibodies. Sections were analyzed by confocal microscopy. Bar, 100 lm. (b) Flow cytometric analysis of islet cells from adult MIP-GFP
mice (upper panel). Verification of sorted GFP (+) cells (lower panel). (c) Outline of the protocol. GFP-positive b-cells were purified from adult islets
of MIP-GFP mice and cultured with feeder cells derived from fetal pancreas of MIP-GFP mice after removal of GFP-positive b-cells. (d) Quantitative
RT–PCR analysis for the insulin II gene. Data are means ± SEM of three to six independent experiments. HG, 16.7 mmol glucose; Nic, nicotinamide;
NS, not significant; PD, PD98059. ***P < 0.001.

b
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GAPDH, and by 35 cycles for all other genes. Real-time PCR
was carried out using SYBR green PCR master mix (Applied
Biosystems) with a model 7700 real-time thermal cycler
(Applied Biosystems). Expression of b-actin or GAPDH was
used as an internal control.

RESULTS
Establishment of a Culture System to Assess Phenotypic
Reversibility of Pancreatic b-cells
We first established a culture system for the assessment of
phenotypic reversibility of pancreatic b-cells. To this end, we
utilized MIP-GFP mice17, in which pancreatic b-cells were
labeled with GFP under the control of mouse insulin 1
promoter. There was no leaky expression of GFP in pancreatic
cells other than b-cells (Figure 1a), confirming specificity of the
labeling. GFP-positive b-cells were purified from isolated
pancreatic islets of MIP-GFP mice by FACS. Analysis of pancre-
atic islet cell preparations of MIP-GFP mice showed a clear pat-
tern of GFP-positive cells and GFP-negative cells (Figure 1b,
upper panel). The purity of post-sorted GFP-positive cells was
more than 99% (Figure 1b, lower panel). We confirmed that all
of the FACS-purified GFP-positive cells were positive for insulin
and negative for glucagon, somatostatin and pancreatic polypep-
tide by immunostaining (data not shown). The purified b-cells
labeled with GFP were cultured with GFP-positive cell-free
feeder cells prepared from the pancreas of fetal MIP-GFP mice
(Figure 1c). When cultured in RPMI-1640 medium containing
10% FCS, 5.6 mmol/L glucose, and 2 ng/mL FGF2, the cells
expanded and formed a monolayer (referred to as Stage 1;
Figure 1c). Insulin expression was detected in the starting mate-
rial, but became barely detectable after several passages by the
end of Stage 1. At late Stage 1, monolayer cells began to form
plaques as they became confluent. By the addition of 10 ng/mL
betacellulin, these plaques grew to form 3-D ISC (Stage 2).
When ISC were hand-picked and cultured further with a high
concentration (16.7 mmol/L) of glucose in combination with
10 mmol/L nicotinamide or 50 mmol/L PD98059, a MEK1/2
inhibitor, insulin expression was induced (Stage 3; Figure 1d).
This culture system enabled us to investigate phenotypic plastic-
ity of pancreatic b-cells.

Tracing and Characterization of Dedifferentiated Pre-existing
Pancreatic b-cells
Because the b-cells of MIP-GFP mice no longer express GFP
and are indistinguishable from feeder cells at the end of Stage 1
(day 14), the b-cell progenies cannot be traced and character-
ized. To trace and characterize both pre-existing b-cells and
their progenies, we generated double transgenic mice expressing
GFP in the b-cells and mRFP in all of the cells (MIP-GFP/
CAG-mRFP mice; Figure 2a, left panels). GFP-expressing pan-
creatic b-cells were collected from the double transgenic mice
by using FACS. The sorted cells were labeled with both GFP
and mRFP (Figure 2a, right panels). Because mRFP expression
is driven by the CAG promoter, the sorted b-cells and their

progenies can be traced by red fluorescence even though the
cells lose GFP expression. In addition, unlike conventional cell
tracing methods, this system can monitor insulin promoter
activity in living cells by evaluating GFP expression (Figure 2b).

Sorted pancreatic b-cells from MIP-GFP/CAG-mRFP mice
were cultured with fetal pancreas-derived feeder cells of wild-
type mice. We did not use MIP-GFP mice as a feeder source in
this case, because MIP-GFP/CAG-mRFP mice-derived b-cells
were distinguishable from the fetal pancreas-derived b-cells by
red fluorescence. As expected, GFP fluorescence was very weak
or undetectable at the end of Stage 1, whereas mRFP fluores-
cence could be detected throughout the culture (Figure 2c). This
clearly shows that the pre-existing b-cells no longer express
insulin at the end of Stage 1. A subset of GFP-negative/mRFP-
positive cells was also positive for Ki67 (Figure 2d), showing
that the cells at this stage have proliferating capacity. BrdU
incorporation analysis confirmed this (Figure 2d). Interestingly,
most, but not all GFP-negative/mRFP-positive cells, which origi-
nated from pre-existing b-cells, showed fibroblast-like morphol-
ogy expressing nestin and vimentin (Figure 2e).

We then investigated the gene expression profile of pre-exist-
ing b-cell-derived cells at the end of Stage 1. For this purpose,
we collected the b-cell-derived cells (GFP-negative/mRFP-posi-
tive cells at the end of Stage 1) by FACS (Figure 3a). Fluores-
cence microscopy showed that all of the post-sorted cells were
mRFP-positive and GFP-negative (Figure 3b). The gene expres-
sion profile of the cells was compared to that of fresh b-cells
sorted from the islets of the same mice (Figure 3c). The cultured
b-cell-derived cells did not express, or showed markedly
decreased expressions, of insulins, glucokinse, GLUT2, Kir6.2,
SUR1, PC1/3 and chromogranin A, all of which are markers of
differentiated pancreatic b-cells. The transcription factors Pdx1,
Nkx2.2, and Nkx6.1, which are required for the development of
the b-cells, were also downregulated. In contrast, the expressions
of Hes1, nestin, and vimentin were induced or markedly
increased in the cultured b-cell progenies. E-cadherin was very
poorly expressed at this stage. These data show the occurrence
of dedifferentiation in pancreatic b-cells.

Dedifferentiation is Associated with Cell Cycle Progression
The findings described earlier suggest that dedifferentiation of
pancreatic b-cells is associated with progression of the cell cycle.
We then compared the cell cycle of purified b-cells and dediffer-
entiated b-cells. For this purpose, GFP-positive b-cells were
freshly isolated from pancreatic islets of adult MIP-GFP mice.
Cell cycle analysis by flow cytometry showed that the propor-
tions of cells in G0/G1, S and G2/M phase were 98.9, 0.9 and
0.2%, respectively, showing that most adult pancreatic b-cells
are in G0/G1 phase (Figure 4a, left panel). We then obtained
GFP-negative/mRFP-positive cells (dedifferentiated b-cells) at
the end of Stage 1, as described in Figure 3a, and evaluated the
cell cycle. Unlike freshly isolated native b-cells, the proportions
of G0/G1, S and G2/M phase in the dedifferentiated b-cells
were 66.8, 26.8 and 6.4%, respectively (Figure 4a, right panel).
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from adult islets of MIP-GFP/CAG-mRFP-double transgenic mice, and then cultured with fetal pancreas-derived feeder cells of wild-type mice.
(c) Microscopic observation of the dedifferentiated b-cells at the end of Stage 1 (day 14). No GFP fluorescence was detected in mRFP-positive cells.
(d) Proliferation of b-cells cultured with fetal pancreas-derived feeder cells at the end of Stage 1 (day 14). Both mRFP/Ki67-double positive cells
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Indeed, cell cycle-associated genes including cyclin D1, cyclin
D3, Ki67, PCNA, cyclinA2, p21Cip1, p57Kip2, p16INK4a and cdk2
were found to be upregulated in the dedifferentiated b-cells
(Figure 4b). These results clearly show that although most native
pancreatic b-cells are in G0/G1 cell cycle in vivo, they have the
potential to undergo cell cycle progression, which is associated
with dedifferentiation.

Evidence for Redifferentiation of the b-cell Progenies
Re-expression of the insulin gene at Stage 3 is shown by real-
time R–PCR analysis (Figure 1d). However, it cannot be ruled
out that the b-cell progenitors present in fetal pancreas differen-
tiate into insulin-producing b-cells. To investigate this, we cul-
tured GFP-positive cell-free fetal pancreatic cells of MIP-GFP
mice with or without the addition of GFP-positive b-cells of
adult MIP-GFP mice. Although ISC were formed under both
conditions at Stage 2, insulin expression was induced at Stage 3

only when GFP-positive cells were added to the starting material
(Figure 5). These results show that the insulin-positive cells
induced at Stage 3 originated not from immature progenitor
cells but from pre-existing b-cells in adult pancreas. Fur-
thermore, we confirmed that although no GFP-positive cells
were present in ISC before induction (Stage 2), GFP/mRFP-
double positive cells (<10% of all mRFP-positive cells)
reappeared at the end of Stage 3 (Figure 6a). In addition to
insulins, other b-cell specific genes were re-expressed at this
stage (Figure 6b). These results provide direct evidence of redif-
ferentiation of dedifferentiated pancreatic b-cells.

DISCUSSION
We have provided direct evidence that adult mouse pancreatic
b-cells can dedifferentiate into proliferative fibroblast-like cells
when cultured with fetal pancreatic cells, and that these cells can
revert to insulin-expressing cells in vitro. Phenotypical change in
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pancreatic b-cells has been shown in recent studies13,15, but the
properties of the dedifferentiated cells have not been examined
in detail. Although permanent labeling with the Cre/loxP-based
method is useful for tracing pre-existing b-cells13,15, it is difficult
to identify and isolate dedifferentiated pancreatic b-cells by this
method, because loss of insulin expression can be ascertained
only by immunohistochemistry. In contrast, in our system using
MIP-GFP/CAG-mRFP mice, pre-existing pancreatic b-cells can
be purified with FACS, making it possible to monitor insulin
expression throughout the culture in real-time by green fluores-
cence. In addition, dedifferentiated pancreatic b-cells can be
analyzed by collecting the cells with FACS by red fluorescence
after elimination of non-dedifferentiated b-cells by green fluores-
cence. Our results clearly show that pre-existing pancreatic
b-cells lose expressions of b-cell specific genes and begin to
express genes associated with the properties of mesenchymal
cells under the conditions used.

Several studies refuting EMT of pancreatic b-cells have
recently been published13–15. However, in these studies, some of

the pre-existing b-cells were found to attain a fibroblast-like
morphology, although the cells did not completely lose their ori-
ginal phenotype13,15. We have found that pre-existing b-cells
change their phenotype to one having proliferative capacity,
fibroblast-like morphology, and expressing nestin and vimentin
while still retaining endocrine cell-like properties, such as
expression of chromogranin. These findings are not inconsistent
with their findings13,15, and suggest that adult pancreatic b-cells
possess phenotypic plasticity.

Because the dedifferentiated pancreatic b-cells eventually were
lost during long-term culture in recent studies14,16, it is not
known if the dedifferentiated b-cells have the potential to redif-
ferentiate into insulin-expressing cells. By using fetal pancreatic
cells as feeder cells, we were able to maintain pre-existing b-cells
throughout the culture. It is likely that the fetal pancreatic cells
provide an environment for dedifferentiation of the b-cells. In
fact, when ISC were released from this environment and cul-
tured further with PD98059, insulin was re-expressed in the
ISC. This is the first direct evidence of reversible phenotypic
change in pancreatic b-cells.

We also analyzed the cell cycle of pancreatic b-cells purified
from intact islets for the first time. We found that 98.9% of nor-
mal b-cells were in G0/G1 phase and that 1% were in S or
G2/M phase. This shows that the rate of pancreatic b-cell turn-
over is very low. However, 33% of the b-cells were in S or G2/M
phase when they underwent dedifferentiation in vitro, showing
that native pancreatic b-cells have the potential to proliferate
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and that there is a close relationship between phenotypic change
(dedifferentiation) and progression of the cell cycle in pancreatic
b-cells.

In contrast to a previous study showing that dedifferentiated
pancreatic b-cells rarely proliferate16, we found that a consider-
able number of the cells in vitro entered the cell cycle. In our
culture system, removal of FGF2 from the expanding stages
(Stages 1 and 2) results in a marked decrease in the number of

b-cells at Stage 3, whereas treatment of ISC with FGF2 at Stage
3 inhibits induction of b-cells (data not shown). FGF2 is known
to activate the MEK/MAPK pathway20. At Stage 3, treatment
with the MEK1/2 inhibitor PD98059 results in reversion to
insulin-secreting cells. Thus, the MEK/MAPK pathway might
play a pivotal role in both proliferation and phenotypic change.
The effects of FGF2 as well as the use of fetal pancreatic cells
could account for the difference in proliferative potential of de-
differentiated b-cells between our data and Weinberg’s report16.

In pancreatic islets, the b-cells form 3-D structures with both
cell–cell and cell–matrix contacts21,22. In our culture system,
pancreatic islets were dissociated into single cells that lost all of
these contacts. As disruption of basement membranes and loss
of intercellular contact are known to cause dedifferentiation23,24,
it is not unlikely that cell dispersion triggers the dedifferentiation
process in pancreatic b-cells. We found that dedifferentiated
pancreatic b-cells formed ISC at Stage 2 and re-expressed insu-
lin at Stage 3. These cells are compactly packed into ISC, which
are abundant in laminins (data not shown). Thus, cell–cell and
cell–matrix contacts are reconstituted at Stage 3, and the micro-
environment of the cells within the ISC might be critical in
redifferentiation.

In summary, pre-existing b-cells undergo dedifferentiation
and redifferentiation in vitro, their phenotype being reversible,
and such dedifferentiation is associated with the progression of
the cell cycle in b-cells. Further studies are needed to clarify
whether such phenotypic change occurs in vivo under normal
and pathological states.
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