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Recent studies revealed the importance of tracking continuous blood pressure (BP) changes in 
monitoring and controlling hypertension and diagnosing cardiovascular diseases. However, current 
evaluation protocols utilize distance measures as primary metrics, which cannot properly evaluate the 
ability of the estimation model to track BP changes. This paper proposes a comprehensive evaluation 
framework which evaluates the distance and trend similarity metrics, and the composite metric of 
both between the reference and estimated BPs. The results of applying both widely used conventional 
metrics and the new proposed metrics for BP estimations are demonstrated in an example of 
comparing the reference with a set of different BP estimations. Then, the metrics are applied to BP 
estimations obtained using state-of-the-art (SOTA) algorithms. It is shown that even though SOTA 
algorithms have a low mean and standard deviation of absolute difference, they are not capable of 
tracking short-term blood pressure changes. Additionally, the proposed metrics are normalized metrics 
and range from -1 to 1, making them intuitively interpretable, similar to well-known correlation 
coefficients. Therefore, we suggest that the proposed evaluation framework should be used regularly 
in evaluating continuous BP monitoring systems.

Blood pressure (BP) is one of the vital signs-together with respiratory rate, heart rate, oxygen saturation, and body 
temperature-that can evaluate an individual’s health1. Hypertension, which is the most common BP disorder, has 
been reported as the world’s leading cause of death2. Continuous cuffless BP measurements, which estimate BP 
without a cuff and incorporate machine learning, deep learning, and wearable sensors, have become a popular 
research problem in the past decade. The promise of this new technique is that it addresses the pain points of 
conventional cuff-based devices (e.g., auscultatory3, oscillometric4) in monitoring long-term BP continuously 
and comfortably. Therefore, besides intermittent systolic and diastolic BP (SBP and DBP) measurements, 
cuffless BP estimation is expected to be applied for: (1) continuous and long-term BP monitoring, tracking BP 
patterns and BP variability (BPV) for early diagnosis of BP disorders (e.g., hypertension and hypotension) and 
cardiovascular diseases (CVD); (2) nocturnal BP measurement which is hard to measure by conventional devices; 
(3) long-term BP management follow-up (e.g., the effect of anti-hypertension medication); (4) incorporating 
with other wearable sensors (e.g., body temperature, acceleration, respiration) for detailed hemodynamic and 
overall health assessment.

There have been several different technologies applied for cuffless BP estimation5. For example, a non-contact 
BP estimation method was developed by processing facial video and extracting pulse waveform features using 
a smartphone6. The ultrasound sensor was applied to measure the cross-sectional area and blood velocity of 
the carotid artery and compute pulse pressure based on fluid dynamic principles7,8. Recently, the most popular 
method involves employing a pulse wave analysis (PWA) approach, either with or without pulse transit time 
(PTT), integrated with deep learning models. The work9 proposed a non-linear model to predict BP using pulse 
arrival time (PAT) which is considered as a surrogate to PTT and it achieved the root mean squared difference 
(RMSD) of 3.43 mmHg and 3.32 mmHg for SBP and DBP, respectively. Hsu et al10 extracted 59 features from the 
PPG signal and its first derivative and selected 32 features as the input of a fully-connected deep neural network 
for BP estimation. The RMSD for SBP and DBP is 4.63 mmHg and 3.0 mmHg, respectively. The morphology of 
the PPG and BP waveforms has also been proven highly correlated11, which indicates the feasibility of modeling 
BP waveforms directly from a simultaneous PPG waveform. A U-Net-based deep learning model was developed 
to approximate BP waveforms from PPG waveforms and achieved satisfactory results, with MAD±SDAD (mean 
and standard deviation of absolute difference) of (5.73± 9.16) mmHg and (3.45± 6.15) mmHg for SBP and 
DBP respectively12.
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Although the current cuffless BP studies have shown promising results, existing performance validation 
standards are inadequate for this new research problem. In the last three decades, several organizations, such as 
the British Hypertension Society (BHS)13, Association for Advancement of Medical Instrumentation (AAMI)14, 
and the European Society of Hypertension (ESH)15 have proposed their individual protocols of clinical validation 
for BP measurement devices. In 2018, a single universal standard (AAMI/ESH/ISO Universal Standard - ISO 
81060-2:201816) was developed by AAMI, ESH and ISO experts for global use of BP device validation and it was 
expected to replace all other previous standards/protocols. Although these validation protocols were designed 
for cuff-based devices and for intermittent assessments, the majority of current cuffless BP studies10,12,17 still 
employed these protocols to evaluate the performance of their proposed approaches, which was considered 
inadequate and misleading for continuous and cuffless BP measurement18. Therefore, new standards were 
adjusted and adapted based on aforementioned cuff-based protocols for cuffless BP devices specifically. In 
2014, the IEEE (Institute of Electrical and Electronics Engineers) published the first standard for validating the 
accuracy of cuffless wearable BP devices (IEEE 1708-2014)19 and an amendment of this protocol was updated 
in 2019 (IEEE 1708a-2019)20. ISO (International Organization for Standardization) published their protocol 
ISO 81060-3:202221 which is specific for continuous noninvasive sphygmomanometers in 2022. In 2023, EHS 
also proposed their recommendations for the validation of cuffless BP measuring devices22. A summary of key 
aspects of validation protocols from several aforementioned standards are listed in Table 1.

In Table 1, several similarities can be observed among different protocols for both cuff-based and cuffless 
devices. The pairwise distances between the estimations and references are used as the primary metrics to 
validate the performance of the proposed device against the reference measurements. However, we observed 
from experiments (see Section S1 for details) that sometimes an estimation model may meet the distance 
criteria, even though it may not accurately monitor BP changes. For example, the MAD±SDAD of a 543 
seconds’ testing subset shown in Fig. 1a is (3.77± 2.51) mmHg for SBP which is considered as “Grade A” of 
IEEE Standard 1708a-201920. However, the model is unable to track one acute BP change occurred between 325 
and 375 seconds. We believe this is a general but underestimated problem of the existing studies. It is because 
the existing validation standards do not well define the metrics to evaluate the ability of the proposed methods/
devices in tracking BP changes.

Recently, the increasing number of studies revealed the BP pattern is related to different diseases and it 
is also important to accurately track BP patterns for both short-term and long-term. BP pattern refers to the 
morphology of sequential BP readings from a certain period of time which consists a number of monotonous 
trends. For example, several studies23–25 observed that BP has a daily pattern and a global experiment23 of 144,509 

Fig. 1.  (a) An example of the proposed BP model unable to track BP changes but the overall MAD and SDAD 
is low. This segment is 543 s, MAD±SDAD for SBP is (3.77± 2.51) mmHg. (b) 24-h ambulatory brachical SBP 
pattern, stratified by age. Solid lines are mean values and dash lines are 95% confidence intervals (reproduction 
of the middle figure of Fig. 2 demonstrated in work23, author authorized the use of this figure in this study).

 

ANSI/AAMI SP10:200214 ISO Standard81060-2:201816
IEEE 
Standard1708a-201920 ISO Standard81060-3:202221

ESHrecommendation 
202322

Device type Cuff-based; intermittent Cuff-based; intermittent Cuffless; intermittent Cuffless; continuous Cuffless; continuous

Reference method Ausculatory; intra-arterial Mercury sphygmomanometers; 
accurate non-mercury Ausculatory Intra-arterial Ausculatory24-h 

oscillometric

Main accuracy metrics MD;SDD MD; SDD MAD MD;SDD MD;SDD

Pass requirement 
(mmHg) −5 ≤ MD ≤ 5SD≤ 8 −5 ≤ MD ≤ 5SD≤ 8 MAD≤ 7 −5 ≤ MD ≤ 5SD≤ 8 −5 ≤ MD ≤ 5SD≤ 8

Table 1.  Key aspects of validation protocols developed for cuff-based and cuffless BP devices. MD mean 
estimation difference, SDD standard deviation of estimation difference. See Table 2, MAD mean absolute 
estimation difference. See Table 2.
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brachial SBP measurements from 2423 healthy subjects is shown in Fig. 1b. It can be observed that BP starts to 
rise a few hours before a person wakes up and continuous to increase during the day, peaking in midday. Then 
BP typically decreases in the late afternoon and evening, and even lower at night while sleeping. An accurate 
measure of BP pattern can assess BP changes and BP variability. Based on the time window BP is assessed, BP 
pattern can be categorized and measured in different ranges, including very short-term (beat-to-beat, minute-to-
minute), short-term (within 24 h, hour-to-hour, day-to-night), long-term (day-to-day, months and years)26,27. 
Abnormal BP patterns may indicate specific forms of hypertension (e.g. nocturnal hypertension) or may be 
associated with concomitant illness (e.g. sleep apnea) and recognition of these abnormal BP patterns can be 
helpful in diagnosis and management of hypertension28. Cardiovascular analysis indicates that obstructive sleep 
apnea (OSA) will cause acute hemodynamic changes29; both BP and heart rate (HR) initially decrease and then 
progressively increase by approximately 20 mmHg and 15 bpm, respectively30. Orthostatic hypotension, which 
indicates impaired physical performance and cerebral autoregulation, also causes rapid BP changes, SBP declines 
at least 20 mmHg and/or DBP declines at least 10 mmHg within 3 minutes (most declines occur within the first 
minute31) after standing up32. An example of BP change while a person stands up from sitting is demonstrated in 
Figure S1(d), where SBP rapidly decreases from 124 mmHg to 85 mmHg within 10 seconds and then recovers to 
normal. The work33 indicates 24-hour BP values are linearly related to stroke risk and the Dublin Outcome study 
concluded that nocturnal BP was overall the best predictor of cardiovascular risk, with a 10 mmHg increase in 
mean nocturnal SBP being associated with a 21% increase in cardiovascular mortality34. It was also studied that 
sleep phases, such as rapid eye movement and non-rapid eye movement, have different BP patterns35. Therefore, 
it is vital for future studies to evaluate the performance of BP pattern tracking with their estimation models, 
and eventually facilitating the adoption of continuous cuffless BP estimation in real-world clinical applications.

The main contributions of this paper are summarized as follows: 

	1.	� To the best of our knowledge, this is the first study that reveals the limitations of current evaluation protocols 
in BP pattern tracking and comprehensively compares the performance of several widely used metrics in BP 
pattern tracking;

	2.	� This study proposes a comprehensive evaluation framework for cuffless BP estimation which compares the 
similarities between the references and estimations in terms of both distance and trend. A composite metric 
is also proposed to combine both distance and trend similarity metrics. The proposed similarity metrics 
are normalized metrics which range from -1 to 1 and can be easily interpreted. The new proposed simi-
larity metrics are generic and can be applied to other healthcare monitoring studies and even general time 
series similarity comparison problems.The rest of this paper is organized as follows. Several widely applied 
numerical metrics for evaluating distance similarity and shape similarity are introduced and compared. A 
comprehensive evaluation framework is proposed which compares the similarity between the references and 
estimations in terms of distance and trend, and a composite of both. The new proposed similarity metrics 
are applied to a set of simulated data to demonstrate their performance and then applied to the estimates 
obtained using SOTA algorithms.

Conventional performance metrics for cuffless BP evaluation
Distance metrics
The pairwise distance measures between the estimated and reference BPs are the most common metrics employed 
by the majority of current studies, as well as the aforementioned validation standards. For SBP and DBP, the 
mean and standard deviation of estimation difference (MD and SDD), the mean and standard deviation of 
absolute difference (MAD and SDAD) and the root mean squared difference (RMSD) of the n individual paired 
measurements of the estimation and of the reference measurements for all subjects are calculated using equations 

Distance metrics Correlation coefficients

Estimation 
difference Mean Standard deviation

Pearson 
correlation ρ = σ12

σ1σ2

MD = 1
n

∑n
i=1(BPesti − BPref i)

SDD =√
1

n−1

∑n
i=1(BPesti − BPref i − MD)2

Absolute 
difference Mean Standard deviation

MAD = 1
n

∑n
i=1 |BPesti − BPref i|

SDAD =√
1

n−1

∑n
i=1(|BPesti − BPref i| − MAD)2

Concordance 
correlation

ρc =
2σ12

(µ1−µ2)2+σ21+σ22

Root mean 
squared difference

RMSD =
√

1
n

∑n
i=1(BPesti − BPref i)2

Table 2.  Definition of distance metrics and correlation coefficients widely-used for cuffless BP estimation 
evaluation. BPest: BP estimated by the test device/method; BPref : BP measured by the reference device/method. 
i: index of the individual element; n: the number of measurements σ12: covariance of BPest and BPref ; σ1 and 
σ2: standard deviation of BPest and BPref ; µ1 and µ2: mean of BPest and BPref
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shown in Table 2. Although these pairwise Euclidean distance based metrics are straightforward, intuitive and 
less computational complex, they can not properly evaluate the accuracy of BP pattern tracking. For instance, 
the values of these aforementioned distance metrics between a set of simulated BP estimations and the reference 
(see Fig. 6 and  “Applying the proposed new metrics to simulated data” for details) are illustrated in Table 7. It 
can be observed that simulated BP estimations BPest1−4 satisfy the passing requirement of IEEE Standard 1708a-
2019 (MAD≤7 mmHg), but BPest2−4 were unable to accurately track BP patterns. Though MAD between BPest5 
and BPref  is 8.14 mmHg, but BPest5 almost has the identical morphology to BPref  which performs better than 
BPest2−4 in BP pattern tracking. It can also be observed that MAD and RMSD can better indicate the accuracy 
of the estimation model in BP change tracking than MD, for example, comparing BPest2 and BPest3 against 
BPref . Furthermore, the contributions of individual error values to the final results are different for MAD and 
RMSD, since the errors are squared before being averaged, the RMSD assigns a higher weight to large errors 
than MAD. For example, the RMSD between BPest4 and BPref  shown in Fig. 6 is 6.24 mmHg whereas the MAD 
is 4.29 mmHg.

There are also some distance metrics developed to measure curve similarity, such as Dynamic time warping 
(DTW)36, Fréchet distance37 and Hausdoff distance38. These metrics address the key limitations of pairwise 
distance based metrics in terms of time scaling and shifting and time series in different lengths, but they are 
more computational complex than pairwise distance metrics. As the length of estimation and reference are 
identical and the time delay (may be caused by time series estimation models, such as RNN and LSTM) should 
be composited before comparison. These metrics are not necessary for cuffless BP evaluation.

Therefore, we suggest to use MAD or RMSD as the primary distance metric for future studies.

Correlation coefficient
A popular metric to evaluate the agreement between estimations and reference measurements is the correlation 
coefficient. Pearson correlation coefficient (PCC, denoted as ρ), which measures the linear correlation between 
two variables, is commonly employed by the majority of existing studies10,39. The mathematical definition of PPC 
is shown in Table 2. However, ρ has one major shortcoming when assessing the reproducibility of measurements: 
it is invariant to additive or/and multiplicative shifts by a constant value, which is also an issue for the Spearman 
correlation coefficient. Therefore, using ρ to compare the similarity of the estimated BPs and the reference BPs 
may be misleading.

The concordance correlation coefficient (CCC, denoted as ρc) was originally introduced by Lawrence Lin to 
address the aforementioned limitations of PCC in 198940, and the formulation of CCC is shown in Table 2. The 
relationship between ρ and ρc can be further derived as ρc = ρ · Cb (see Section S3 for details) which means 
CCC (ρc) contains the measurements of both Cb (a measure of accuracy) and PCC (a measure of precision). A 
demonstration of limitations of PCC and the robustness of CCC in detecting scale and location shifts comparing 
to PCC is shown in Section S3.

The previous works41,42 translate ρ into descriptors like ‘weak,” “moderate,” or “strong”, and McBride43 
suggested that ρc > 0.99 for “almost perfect,” 0.95 < ρc ≤ 0.99 for “substantial,” 0.90 < ρc ≤ 0.95 for “moderate” 
and ρc ≤ 0.90 for “poor.” However, there is still no clear-cut agreement how to interpret both PCC and CCC for 
cuffless BP evaluation.

Though the results of PCC and CCC shown in Table 7 can indicate the morphology similarities of a simulated 
dataset. They are not suitable for evaluating BP pattern tracking of noisy and long-term data collected from real 
subjects, as described in “Combining the segment similarity measures (global evaluation)” and “Applying the 
proposed new metrics to results of two SOTA models”.

A composite score to represent similarity in mean, variance and correlation coefficient
A composite score, generic composite similarity measure (GCSM)44, which was originally proposed to compare 
similarities of spatial or temporal patterns from images for ecological studies can be used to address the limitation 
that a single distance metric can not measure the pattern similarity for two compared sequences (as described 
in “Distance metrics”). GCSM composes the similarity measures of mean, standard deviation and correlation 
coefficient of two compared sequences (x and y) to a single score, and its formulation is shown in Table 3.

It can be inferred from the formulations that s1(x, y) ∈ [0, 1], s2(x, y) ∈ [0, 1] and s3(x, y) ∈ [−1, 1] and 
therefore GCSM(x, y) ∈ [−1, 1]. The mean, standard deviation and PCC are more similar for two compared 
sequences when GCSM(x, y) runs to 1. Although the GCSM consists of three different metrics to measure 

GCSM(x, y) = s1(x, y) · s2(x, y) · s3(x, y)
Components

s1(x, y) =

{
1− |µx−µy|

maxx,y−minx,y
s3 ≥ 0

1− |minx,y+maxx,y−µx−µy|
maxx,y−minx,y

s3 < 0 s2(x, y) = 1− |σx−σy|
(maxx,y−minx,y)/2 s3(x, y) =





1 σx = σy = 0

0 σx or σy = 0
σx,y
σxσy

otherwise

Table 3.  Equation for calculating GCSM and definitions of each component. µx and µy: mean values of the 
compared sequences x and y; maxx,y and minx,y are the global maximum and minimum of sequences x and y; 
σx and σy: standard deviation of two sequences x and y; σxy is the covariance of sequences x and y.
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the overall similarity between sequences, it still has drawbacks. s1(x, y) and s2(x, y) are sensitive to outliers if 
|µx − µy| ≪ maxx,y − minx,y or |σx − σy| ≪ (maxx,y − minx,y)/2, the s1(x, y) or s2(x, y) can still be close to 1 
which indicates two sequences have similar means and standard deviations, though the actual differences (the 
numerators of s1(x, y) and s2(x, y)) can be significantly large and cannot be ignored.

A new comprehensive performance evaluation for cuffless BP estimation
In this section, a new comprehensive performance evaluation method which quantifies the similarity of distance, 
trend and the composite of them, between the reference and estimated BP measurements will be introduced. 
This new method addresses the problems or limitations of the existing evaluation metrics and methods employed 
for cuffless BP estimation (as described in “Conventional performance metrics for cuffless BP evaluation”). The 
workflow of this new method is demonstrated in Fig. 2, and the pseudocode of the proposed method is shown 
in Algorithm S1. The pre-processing is done with piecewise linear representation (PLR) which divides the 
compared estimated and reference BP sequences into segments according to trend changes and approximates 
segment linear trends. For each segment, new proposed distance and trend similarity metrics will be evaluated, 
and a composite similarity metric which combines both distance and trend similarities using weighted sum is 
then calculated. Finally, the temporal normalization method will combine the segment similarity results for 
entire sequence evaluation and result interpretation.

Pre-processing
The similarity of two raw time series is difficult to measure as time series data are typically noisy and of high 
dimensions. As a result, it is common and efficient to work with data representations that are lighter than the raw 
data by reducing the dimensions of the data while maintaining their main properties, a number of techniques 
can be applied for this purpose (see study45 for methods introduction and comparison). In this study, piecewise 
linear representation (PLR)46 which can effectively extract trend information from the original time series data 
by dividing the original data into a number of segments according to trend changes and approximating the 
linear trends is employed. The number of segments that one time series should be divided into can be decided 
using several approaches, such as sliding window47, top-down48 and bottom-up49 algorithms (see50 for details). 
However, these methods are parametric which means parameters such as the number of segments to be divided 
into or the approximation error threshold must be pre-defined, and these parameters will impact the segmentation 
results and therefore affect similarity comparison between sequences (e.g., the results demonstrated in Table 2 of 
study51). In this study, a non-parametric Bayesian method, Bayesian estimator of abrupt change, seasonality, and 
trend (BEAST)52, is employed to pre-process the original compared sequences. A demonstration of detecting 
change points and segmenting the reference and estimated BPs using BEAST is shown in Fig. 5a. However, 
two time series may have different number of segments (e.g., the reference BP is divided into 8 segments and 
estimated BP is divided into 9 segments as shown in Fig. 5a), then a equal segment number (ESN) process which 
re-divides both time series into the same number of segments while also ensures a segment has enough samples 
(m ≥ 2) for linear trend approximation is developed and applied to the compared sequences.

After segmentation and ESN process, the least squares method is applied to approximate the original segment 
data to a straight line which represents the segment trend (pre-processing steps are described in Algorithm S1 
line1 to line4). A demonstration of ESN process and linear trend approximation is shown in Fig. 5b.

To better describe the proposed similarity metrics in the following sections, a set of denotations are formally 
introduced. The original reference sequence (reference BPs) is denoted as x and the original estimated sequence 
(estimated BPs) is denoted as y respectively. The i-th segment of the original sequences x and y are denoted 
as xi and yi respectively. The approximated linear representations of the original sequences x and y using 
aforementioned PLR methods are denoted as xL and yL respectively. Finally, the i-th segment of the linear trends 
of the compared sequences are denoted as xLi

 and yLi
 respectively.

Segment similarity measures
After pre-processing two compared sequences using PLR, the segment similarity measures of distance, trend and 
the composite of them will be evaluated.

Fig. 2.  The framework of the proposed comprehensive performance evaluation method for cuffless BP 
estimation, including sequence pre-processing, segment similarity evaluation and sequence similarity 
evaluation.
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Segment distance similarity
The new proposed segment distance similarity evaluates the MAD between the estimated and reference BPs, 
and maps the MAD to a value which is between -1 to 1. The distance similarity metric is a logistic function 
customized according to IEEE Standard 1708a-201920 evaluation protocol as shown in Fig. 3. For each segment, 
the MAD between two compared sequences is calculated and then the segment distance similarity DS(xi, yi) 
is defined as:

	
DS(xi, yi) = − 2

1 + e−2.2·(MADi−5.5)
+ 1� (1)

where MADi is the MAD of the i-th segment of compared sequences after change point detection and 
segmentation, MADi =

∑m
j=1 |xij−yij |

m , xij  and yij  are the j-th measurement values of the i-th segment of 
compared sequences x and y respectively, and m is number of samples of the i-th segment (m ≥ 2). It can 
be inferred from Eq. (1) and observed from Fig. 3 that DS(xi, yi) ∈ [−1, 1]. DS(xi, yi) is close to 1 when 
MADi ≤ 4 mmHg, corresponding to “Grade A” of IEEE Standard and “pass” grade of ANSI/AAMI SP1014 
requirement. DS(xi, yi) ∈ [0.5, 0.93) when 4mmHg < MADi ≤ 5mmHg, corresponding to “Grade B” of IEEE 
Standard and “mostly pass” grade of ANSI/AAMI SP10 standard respectively. DS(xi, yi) ∈ [−0.5, 0.5) when 
5mmHg < MADi ≤ 6mmHg (DS(xi, yi) = 0 when MADi = 5.5 mmHg), corresponding to “Grade C” of IEEE 
Standard and “pass or fail” grade of ANSI/AAMI SP10 standard respectively. DS(xi, yi) ∈ [−0.93,−0.5) when 
6mmHg < MADi ≤ 7mmHg, corresponding to “Grade D” of IEEE Standard and “mostly fail” grade of ANSI/
AAMI SP10 standard respectively. DS(xi, yi) is close to -1 when MADi ≥ 7mmHg, corresponding to “Grade D 
(unacceptable)” of IEEE Standard and “fail” grade of ANSI/AAMI SP10 standard respectively.

Segment trend similarity
The new proposed segment trend similarity metric evaluates the accuracy of the estimation method in tracking 
BP trends. Firstly, the approximated linear representation of the estimated BP yL is processed such that it has 
the same mean to the approximated linear representation of the reference BP xL (y′L = yL − (yL − xL), xL and 
yL are the mean values of the approximated linear representations for reference BP xL and estimated BP yL 
respectively). For each segment, the slopes of the approximated linear trends are calculated to determine if 
the compared segments are in the same direction or not. If two compared segment trends are in the same 
direction, as showing in Fig. 4a, b, both of the segments are up or down, or at least one segment is unchanged 
(slope(xLi

)× slope(y′Li
) ≥ 0). Therefore, the range of angular difference θ between the segment linear trends 

Fig. 4.  A demonstration of the proposed angular difference based trend similarity measures of approximated 
linear segments in the same direction and in opposite directions, with the corresponding calculations of θ and 
θmax.

 

Fig. 3.  A demonstration of the proposed segment distance similarity which is a customized logistic function 
according to IEEE Standard 1708a-2019 evaluation criteria20.

 

Scientific Reports |        (2024) 14:27478 6| https://doi.org/10.1038/s41598-024-77171-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


xLi
 and y′Li

 is [0, θmax] and the segment trend similarity is defined as TS(xi, yi) = 1− θ
θmax

. If two compared 
segment trends are in different directions, as showing in Fig. 4c, d, one segment is up and the other segment is 
down (slope(xLi

)× slope(y′Li
) < 0). Therefore, the range of angular difference θ between segment linear trends 

xLi
 and y′Li

 is (0, θmax] and the segment trend similarity is defined as TS(xi, yi) = − θ
θmax

. The formulations of θ 
and θmax for different scenarios are illustrated in Table 4 and Fig. 4.

As shown in Fig. 4, the angular difference θ is determined by the starting values vxL and vyL, and the ending 
values vxR and vyR of linear trends of the compares segments, as well as the segment duration ti (ti = tiR − tiL). 
The maximum angular difference θmax is determined by the maximum and minimum values of the approximated 
PLRs of the compared sequences xL and y′L, the starting values of the compared linear trends vxL and vyL 
as well as the segment duration ti. It can be inferred that the segment trend similarity TS(xi, yi) ∈ [−1, 1] 
(TS(xi, yi) ∈ [0, 1] for segment trends in a same direction, TS(xi, yi) ∈ [−1, 0) for segment trends in different 
directions). The segment trends are more similar when TS(xi, yi) is close to 1 and they are more reverse when 
TS(xi, yi) is close to -1. TS(xi, yi) > 0 indicates the compared segment trends are in the same direction while 
TS(xi, yi) < 0 indicates the segment trends are in different directions.

Segment composite similarity
The segment composite similarity CS(xi, yi) combines both segment distance and trend similarities using the 
weighted sum method which assigns different weights according to the importance of each metric, as shown in 
Eq. (2).

	 CS(xi, yi) = w1 ·DS(xi, yi) + w2 · TS(xi, yi)� (2)

The existing evaluation standards and studies primarily evaluate distance metrics (e.g., MAD, RMSD) between 
the estimations and references. In this study, we emphasized the importance of trend tracking in cuffless BP 
monitoring. Therefore, we assign the weight for distance similarity w1 = 0.6 and the weight for trend similarity 
w2 = 0.4. And these weights can be adjusted according to different evaluation priorities.

Combining the segment similarity measures (global evaluation)
Inspired by the method used in51, a temporal-normalization method which combines the segment similarity 
measures based on the proportion of the segment duration was applied for this study. The temporally normalized 
distance, trend and composite similarity of the compared reference and estimation of BPs are therefore defined 
and calculated as shown in Table 5.

As shown in Table 5, DS(xi, yi), TS(xi, yi) and CS(xi, yi) are the segment distance, trend and composite 
similarity respectively. ti is the duration of the i-th segment, tD is the duration of the compared sequences, K is 
the number of segments. Therefore, 

∑K
i=1

ti
tD

= 1 which means the temporal normalization method is similar 
to the weighted sum method and the weight of each segment result contributes to the final result is determined 
by the segment duration, indicating the longer the segment is, the more ratios it contributes to the final result. 
Also, it can be inferred that TN_DS(x, y) ∈ [−1, 1], TN_TS(x, y) ∈ [−1, 1] and TN_CS(x, y) ∈ [−1, 1]. The 
segment distance, trend and composite similarity metrics, as well as their temporally normalized results for 
whole sequence comparison of the example shown in Fig. 5 are illustrated in Table 6.

The results illustrated in Table 6 indicate PCC and CCC can not properly evaluate trend similarity between 
the reference and estimated BPs. For example, the trends of the 5th segment are almost parallel and the MAD 
between the estimations and references is only 0.44 mmHg which are accurately evaluated by new proposed 
distance and trend similarity metrics, whereas the PCC and CCC are 0.601 and 0.096. It can also be observed 
in Fig. 5 that the trends of the 2nd segment are more distinct than the 1st segment with the proposed trend 
similarity of −0.68 and −0.14 respectively. However, the PCC values for these two segments are identical.

Interpretation of the proposed metrics
The proposed segment distance, trend similarity metrics and their composite metric, as well as their temporally-
normalized versions for whole sequence evaluation, are normalized metrics (defined in53) and they have a same 
range of [−1, 1].

The estimation is more reliable when the distance similarity DS(x, y) > 0 (also applicable to segment distance 
similarity DS(xi, yi)) and it is more accurate when DS(x, y) is close to 1. The estimation is more unreliable when 
DS(x, y) < 0 and it is more inaccurate when DS(x, y) is close to −1. The estimated and the reference segment 
BP trends are in the same direction when the segment trend similarity TS(xi, yi) > 0 and they are more similar 
when TS(xi, yi) is close to 1. The estimated and the reference segment BP trends are in opposite directions 
when the segment trend similarity TS(xi, yi) < 0 and they are more reverse when TS(xi, yi) is close to −1. The 
estimated BP pattern are more similar to the reference BP pattern when TS(x, y) is close to 1 and the majority of 
the estimated and the reference BP trends are in the same direction when TS(x, y) > 0 and vice versa.

Since the composite similarity metric CS(x,  y) combines distance DS(x,  y) and trend TS(x,  y) similarity 
metrics with weighted sum, the estimation is more accurate in terms of both distance and trend when CS(x, y) 
is close to 1, the estimation is more different to the reference in terms of distance and/or trend when CS(x, y) is 
close to -1. Therefore, a BP estimation model is expected to have the composite similarity metric CS(x, y) that 
is as close to 1 as possible and we suggest that a BP estimation method/device can be considered capable for 
tracking BP changes if the proposed metrics TN_DS≥0, TN_TS≥0 and TN_CS≥0. Detailed interpretation of 
the proposed metrics with a set of simulations can be found in Section S8.
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Experiments and results
To demonstrate the performance of the proposed distance, trend and composite similarity metrics, these metrics 
are firstly applied to compare a set of different simulated BP estimations to the reference BP for feasibility 
validation. Then, these new metrics are applied to compare the estimated BPs using two SOTA models to the 
reference BPs of a real world dataset.

Segment (local) Whole sequence (global)

1 2 3 4 5 6 7 8 9 10

Duration [Start,end] 4s [0, 4) 9s [4, 13) 4s [13, 17) 10s [17, 27) 15s [27, 42) 11s [42, 53) 4s [53, 57) 6s [57, 63) 17s [63, 80) 10s [80, 90] 77s [0, 77]

MAD (mmHg) 12.87 5.28 9.00 4.13 0.44 1.51 3.96 1.39 1.99 0.75 2.96

PCC(xi, yi) −0.998 −0.998 −0.012 −0.082 0.601 −0.532 0.788 −0.465 0.949 −0.126 −0.016

CCC(xi, yi) −0.007 −0.625 0 −0.003 0.096 −0.113 0.019 −0.049 0.432 −0.030 −0.015

DS(xi, yi) −1.000 0.240 −0.999 0.907 1.000 0.999 0.935 0.999 0.999 1 0.73

TS(xi, yi) −0.14 −0.68 0.95 −0.36 0.98 −0.18 0.93 −0.19 0.94 −0.14 0.26

CS(xi, yi) −0.66 −0.13 −0.22 0.40 0.99 0.53 0.93 0.53 0.98 0.54 0.54

Table 6.  Segment similarity measures of the example shown in Fig. 5 proposed by existing works and this 
study and their temporally-normalized results for whole sequences comparison.

 

Fig. 5.  A demonstration of (a) segmenting the compared reference and estimated BPs using BEAST method, 
the reference BP is divided into 8 segments while the estimated BP is divided into 9 segments (t = 4 is a change 
point for both reference and estimation); (b) the equal segment number (ESN) will re-process the change 
points and re-divide the compared sequences such that the compared sequences have the same number of 
segments (e.g., the reference and estimated BPs are re-processed to 10 segments), and the least squares are used 
to approximate the linear trend for each segment.

 

Temporally-normalized similarity of distance (TN_DS) TN_DS(x, y) = 1
tD

∑K
i=1DS(xi, yi) · ti

Temporally-normalized similarity of trend (TN_TS) TN_TS(x, y) = 1
tD

∑K
i=1 TS(xi, yi) · ti

Temporally-normalized composite similarity of distance and trend (TN_CS) TN_CS(xi, yi) =
1
tD

∑K
i=1CS(xi, yi) · ti

Table 5.  Equations of calculating temporally-normalized similarity metrics.
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Applying the proposed new metrics to simulated data
In this section, a synthetic dataset spanning a 3-minute interval was generated, simulating BP estimations using 
reference experimental data characterized by substantial variations within that time frame. Consequently, the 
dataset includes waveforms with varying degrees of fidelity such that various conventional metrics and the 
proposed metrics can be assessed in tracking BP changes. The waveforms of the reference BP and simulated 
BP estimations and their relations are illustrated in Fig. 6. BPest1 and BPest5 have almost identical pattern to 
BPref  but with different distances. BPest2 simulates a random estimation of BPref . BPest3 simulates an estimation 
model that is unable to track any BP change and just estimates the average BP level, and BPest4 simulates a 
reverse estimation of BPref .

The conventional distance metrics (MD, MAD, RMSD), correlation coefficients (PCC and CCC), a composite 
similarity measure GCSM44, and the proposed similarity metrics between different simulated BP estimations 
and the reference BP are shown in Table 7.

It can be observed from Table 7 that conventional distance metrics can only measure the dissimilarity of 
pairwise values for the compared sequences. Though PCC can indicates the pattern similarities between the 
simulated BP estimations and the reference. For example, BPest5 and BPest1 have almost identical morphology 
to BPref  and therefore PCC=1, PCC=-1 for BPest4 indicates the estimated BP has a reverse morphology to 
BPref  and PCC ≈ 0 for BPest3 indicates the estimation model does not track any BP changes. The GCSM, 
which composes similarities of mean, standard deviation and PCC, demonstrates its potential in assessing both 
distance and trend similarities for most of the scenarios, except for BPest5. As previously stated, the sensitivity of 
s1(x, y) and s2(x, y) of GCSM (see “A composite score to represent similarity in mean, variance and correlation 
coefficient” ) is significantly affected by outliers or instances where the disparity between the global maximum 
and global minimum values (maxx,y − minx,y in Table 3) is substantial. Consequently, s1(x, y) and s2(x, y) 
when comparing BPest5 and BPref  will still approximate to 1 even though the MAD is 8.14 mmHg, which is a 
considerable large error for cuffless BP estimation. CCC and GCSM will exhibit more limitations in cases when 
the compared time series are long and noisy which can be observed from results obtained from DailA BP in 
“Applying the proposed new metrics to results of two SOTA models”. The new similarity metrics are proposed to 
address the drawbacks of the aforementioned metrics, and the results from this simulated dataset validated the 
proposed methods can accurately quantify both distance and trend similarity for cuffless BP studies.

Applying the proposed new metrics to results of two SOTA models
The wearable physiological and BP measurements during activities of daily living dataset54 (from now on referred 
as DailA BP) will be used to train and evaluate two SOTA cuffless BP estimation models with proposed metrics. 
DailA BP includes approximately 6.5 hours’ physiological waveforms (ECG, PPG and BP) from 5 healthy subjects 
(4 males, age (28±6.6) yrs) performing daily activities and several activities such as Valsalva Maneuver, walking 
and hand gripping were performed to induce BP changes (see Section S2 and Fig. S1).

Conventional metrics Composite measure
Temporally normalized 
metrics (ours)

MD ± SDD∗ MAD ± SDAD∗ RMSD∗ PCC CCC GCSM TN_DS TN_TS TN_CS

BPest1&BPref 1.36± 0.34 1.36± 0.34 1.40 0.996 0.914 0.91 0.999 0.98 0.99

BPest2&BPref 0.08± 4.45 2.85± 3.41 4.43 −0.23 −0.22 −0.19 0.56 0.17 0.40

BPest3&BPref 0.51± 3.16 2.27± 2.26 3.20 −0.02 −0.004 −0.012 0.81 0.34 0.62

BPest4&BPref −0.28± 6.28 4.30± 4.57 6.27 −1 −0.996 −1 0.34 −0.46 0.02

BPest5&BPref −8.14± 0.16 8.14± 0.16 8.14 1 0.24 0.68 −0.994 0.98 −0.20

Table 7.  Conventional distance metrics, correlation coefficients, composite similarity measure GCSM and the 
proposed similarity metrics calculated between simulated BP estimations and reference BP. ∗unit: mmHg.

 

Fig. 6.  Waveforms of the reference SBP measurement (BPref) and five simulated SBP estimations (BPest1 to 
BPest5), and relations between the simulated SBPs and reference SBP.
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Two SOTA models , which differ in BP estimation errors and trend tracking, were selected to assess the 
feasibility of the proposed metrics. ApproximateNet12 which is a deeply supervised one-dimensional U-Net 
model, was proposed to approximate BP waveform from a simultaneous PPG waveform. It was originally trained 
and evaluated with 127,260 subsets of simultaneous PPG and BP waveforms from UCI BP55. The reported 
MAD±SDAD for SBP and DBP estimation is (6.42±9.52) mmHg and (3.58±5.80) mmHg respectively12. 
DeepRNN-4L56, which consists of a bidirectional LSTM layer and four forward LSTM layers with residual 
connections, was proposed to estimate SBP and DBP using 7 features extracted from ECG and PPG in a time 
series analysis fashion. DeepRNN-4L was originally trained and evaluated on the static continuous BP dataset 
which includes simultaneous ECG, PPG and BP data from 84 healthy subjects (51 males and 33 females) while 
stationary, and the reported RMSD of SBP and DBP is 3.75 and 2.43 mmHg respectively56. Different training 
strategies were applied for ApproximateNet and DeepRNN-4L models (details of implementation, model 
parameters and training processes are described in Section S5), also due to the fact that DeepRNN-4L model 
considers temporal dependency. Therefore, these two models generate different estimations on the same data in 
terms of both distance and pattern tracking accuracy. A proportion (approximate 30 minutes) of reference SBPs 
and estimated SBPs using two SOTA models are shown in Fig. 7.

The conventional distance metrics (MD, MAD, RMSD), correlation coefficients (PCC and CCC), a composite 
similarity measure GCSM, and the proposed similarity metrics between BPs estimated by two SOTA models and 
reference BPs from DailA BP dataset are shown in Table 8.

As shown in Table 8 that DeepRNN-4L outperforms ApproximateNet in estimating BP using DailA BP 
dataset by comparing distance metrics and correlation coefficients. But these conventional metrics can not 
indicate the performance of these estimation models in BP change tracking. The GCSM results almost align with 
PCC, this is because the denominators of of the s1(x, y) and s2(x, y) can be much larger than their numerators 
(maxx,y − minx,y ≫ |µx − µy| or (maxx,y − minx,y)/2 ≫ |σx − σy|) and therefore s1(x, y) or s2(x, y) ≈ 1 for 
long and noisy sequences. Eventually, GCSM is mostly determined by s3(x, y) which is PCC of the compared 
sequences. The aforementioned issues are tackled by the proposed methods by the utilization of PLR which 
simplify noisy and high dimensional time series with a number of line segments. This approach leads to improved 
accuracy in quantifying trend similarity. The utilization of temporal normalization also effectively tackles the 
problem associated with evaluation strategy by providing varying weights to the final outcome based on the 
duration of each segment. The distance similarity TN_DS of ApproximateNet is -0.22 and -0.001 for SBP and 
DBP respectively, indicating the estimations of this method more likely dissatisfy IEEE Standard. DeepRNN-
4L outperforms ApproximateNet in terms of both distance and trend tracking, which is also indicated by the 
composite similarity TN_CS.

Conventional metrics Composite measure
Temporally normalized 
metrics (ours)

MD ± SDD∗ MAD ± SDAD∗ RMSD∗ PCC CCC GCSM TN_DS TN_TS TN_CS

ApproximateNet SBP −5.82± 11.77 9.88± 8.65 13.13 0.68 0.62 0.64 -0.22 0.36 0.015

DBP −1.70± 8.04 6.50± 5.02 8.22 0.65 0.62 0.61 −0.001 0.34 0.13

DeepRNN-4L SBP 0.21± 5.28 4.13± 3.29 5.29 0.94 0.93 0.92 0.87 0.70 0.80

DBP 0.77± 5.25 4.15± 3.30 5.30 0.75 0.73 0.72 0.74 0.55 0.66

Table 8.  Conventional distance metrics, correlation coefficients, composite similarity measure GCSM and the 
proposed similarity metrics calculated between the estimated BPs and reference BPs using SOTA models from 
DailA BP dataset. ∗Unit: mmHg.

 

Fig. 7.  An approximate 30 minutes’ example of reference SBPs and estimated SBPs using SOTA models 
(BP variations might be caused by daily activities, such us standing up and walking), the distance, trend 
and composite similarities between estimated SBPs using ApproximateNet and reference SBPs are 0.37, 0.23 
and 0.32 respectively, and 0.81, 0.81 and 0.81 between estimated BPs using DeepRNN-4L and reference BPs 
respectively (the composite similarities with different combinations of w1 and w2 are demonstrated in Sect. S9).
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Conclusion
Continuous cuffless BP tracking has become a popular research problem recently and has shown promising 
results. However, current evaluation standards which primarily use pairwise distance metrics are not robust 
and comprehensive. In this paper, we firstly reviewed several commonly used BP evaluation standards and 
then introduced BP patterns and the importance of accurate tracking of BP changes. The conventional distance 
metrics, correlation coefficients which are commonly used by existing studies, a composite similarity metric 
GCSM were reviewed and their drawbacks in terms of BP pattern tracking were described and demonstrated 
with examples. Finally, we proposed a comprehensive framework with new distance, trend and composite 
similarity metrics with temporal normalization, for continuous cuffless BP evaluation.

The results from the simulated dataset and the re-implementation of two SOTA models using a realistic 
dataset DailA BP verified the feasibility of the proposed similarity metrics for cuffless BP evaluation. Our 
results demonstrated that the composite similarity metric has advantages in evaluating both distance and trend 
similarities for long and noisy time series, comparing to conventional metrics and GCSM. Additionally, the 
proposed metrics are normalized metrics and range from −1 to 1, making them intuitively interpretable, similar 
to well-known correlation coefficients. The proposed methods and metrics can also be used to benchmark 
different algorithms for cuffless BP estimation, diagnose and improve the estimation accuracy by analyzing 
proposed metrics (see Section S7), facilitating the adoption of this new technique in real-world applications. The 
future work will adapt the proposed similarity metrics as customizable loss function to improve the performance 
of estimation models in tracking BP pattern.

Data availibility
The datasets generated and analysed during the current study, as well as the MATLAB implementation of the 
proposed methods with examples are available in the GitHub repository, ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​s​h​a​n​​h​e​0​4​2​6​/​m​e​t​r​i​
c​s​-​f​o​r​-​c​u​f​f​l​e​s​s​-​b​l​o​o​d​-​p​r​e​s​s​u​r​e​.​g​i​t​​​​​.​​
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