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Abstract
Acetabular fractures (AFs) are relatively uncommon thereby limiting their study. Analyses using population-based health
administrative data can return erroneous results if case identification is inaccurate (‘misclassification bias’). This study measured the
impact of an AF prediction model based exclusively on administrative data upon misclassification bias.
We applied text analytical methods to all radiology reports over 11years at a large, tertiary care teaching hospital to identify all AFs.

Using clinically-based variable selection techniques, a logistic regression model was created.
We identified 728 AFs in 438,098 hospitalizations (15.1cases/10,000 admissions). The International Classification of Disease,

10th revision (ICD-10) code for AF (S32.4) missed almost half of cases and misclassified more than a quarter (sensitivity 51.2%,
positive predictive value 73.0%). The AF model was very accurate (optimism adjusted R2 0.618, c-statistic 0.988, calibration slope
1.06). When model-based expected probabilities were used to determine AF status using bootstrap imputation methods,
misclassification bias for AF prevalence and its association with other variables was much lower than with International Classification
of Disease, 10th revision S32.4 (median [range] relative difference 1.0% [0%–9.0%] vs 18.0% [5.4%–75.0%]).
Lone administrative database diagnostic codes are inadequate to create AF cohorts. The probability of AF can be accurately

determined using health administrative data. This probability can be used in bootstrap imputation methods to importantly reduce
misclassification bias.

Abbreviations: AF = acetabular fracture, aOR = adjusted odds ratio, CT = computerized tomography, ICD = International
Classification of Disease.
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1. Introduction

Although pelvic and acetabular fractures (AFs) account for only
1.5% of adult fractures, they are complex to treat.[1] AF incidence
ranges between 3 and 9.5 per 100,000 and typically follows a
Editor: Maya Saranathan.

The authors have no funding and conflicts of interest to disclose.

The datasets generated during and/or analyzed during the current study are not
publicly available, but are available from the corresponding author on reasonable
request.
a Department of Surgery, University of Ottawa, Ottawa Hospital Research
Institute, Canada, b Department of Medicine, University of Ottawa, Canada,
c Department of Epidemiology & Community Medicine, University of Ottawa,
Ottawa Hospital Research Institute, ICES, Canada.
∗
Correspondence: Carl van Walraven, ASB1-003, 1053 Carling Ave, Ottawa, ON

K1Y 4E9, Canada (e-mail: carlv@ohri.ca).

Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.
This is an open access article distributed under the terms of the Creative
Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is
permissible to download, share, remix, transform, and buildup the work provided
it is properly cited. The work cannot be used commercially without permission
from the journal.

How to cite this article: Adamczyk A, Grammatopoulos G, van Walraven C.
Minimizing misclassification bias with a model to identify acetabular fractures
using health administrative data: a cohort study. Medicine 2021;100:52(e28223).

Received: 3 June 2021 / Received in final form: 29 October 2021 / Accepted: 24
November 2021

http://dx.doi.org/10.1097/MD.0000000000028223

1

bi-modal age distribution.[2–4] Mechanisms of injury typically
varies by age with high-energy trauma primarily responsible for
AF in the young and while low-energy injuries, such as falling
from a standing height, commonly cause AF in the elderly.[2] AF
incidence has quadrupled over the past 4 decades but seems to
have recently stabilized.[5]

Epidemiological studies focusing on AF are relatively uncom-
mon (Table 1). These studies involve multiple countries including
Finland,[2] Scotland,[3] France,[6] and the United States.[4,7] These
data suggest that the preferred AF management in the young
clearly consists of open reduction and internal fixation. In the
elderly population, however, best management remains unclear
due to the anatomical and medical implications involved in their
treatment. AFs in the elderly have been of particular interest
to trauma and arthroplasty surgeons alike since such elderly
patients, compared to age matched patients with hip fracture,
have longer hospital stays and higher risk-adjusted mortality.[8]

To date, outcome studies of the elderly AFs are limited to
retrospective cohorts of limited size.[9–11]

The lack of epidemiological studies focusing on management
and outcomes of elderly AF patients hampers its study and
advancement. This issue could be solved with population-based
health administrative databases. Several population-based stud-
ies have created AF cohorts using diagnostic codes within
hospitalization abstracts (Table 1). To our knowledge, however,
the accuracy of diagnostic codes for AF has not been measured
and no algorithms to identify patients with AF within health
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Table 1

Description of published acetabular fracture cohort studies.

Study Country Case identification method Sampling frame Time period N

Rinne[2] Finland ICD-10 S32.4 (1∗ or 2∗) All hospitals 1997–2014 5022
Laird[3] Scotland Trauma registry query Single hospital 1998–2003 351
Melhem[6] France Not reported All hospitals 2006–2016 32,614
Ferguson[7] USA Case registry all surgeries by single surgeon Single hospital 1980–2007 1309
Best[4] USA ICD-9-CM 808.0 or 808.1 All hospitals 1990–2010 497,389

ICD = International Classification of Disease.
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administrative data have been published or assessed. Measuring
and optimizing the accuracy of AF identification using
administrative data is essential to accurately study AF using
population-based health administrative data with bias from
case misclassification. In this study, we derived and internally
validated a model using health administrative data which returns
the probability that an AFwas identified during a hospitalization.
We then compared misclassification bias with AF identification
using this model to that using single diagnostic codes for AF.
2. Methods

2.1. Study setting

The study took place at The Ottawa Hospital, a 1000-bed
teaching hospital with 2 campuses that is the tertiary referral
institution and trauma center in our region of approximately 1.3
million people. Annually, The Ottawa Hospital has more than
175,000 emergency department visits, 40,000 non-psychiatric
admissions, and 50,000 surgical cases. The study was approved
by the Ottawa Health Science Network Research Ethics Board
(File: 20210026-01H).

2.2. Case identification

Our goal was to detect all AFs diagnosed at The Ottawa Hospital
by reviewing the text reports of all computerized tomographic
(CT) studies of the pelvis. To create this text search algorithm, we
first collated a sample of AFs identified in our hospital’s trauma
registry. The trauma registry includes all patients who: presented
to the hospital as a trauma code; were admitted under the trauma
service; or had an injury severity score of 12 or higher upon
presentation to the hospital. Detailed diagnostic, radiological,
procedural, and outcome information is collected prospectively
on each patient. For a separate analysis, we had retrieved the CT
pelvis reports of all patients with radiographically confirmed AF
in the trauma registry from January 2008 to December 2013 and
January 2016 to December 2018. Using clinical experience and
text analysis of this sample, we derived a text search algorithm
that identified all CT pelvis reports indicating AF in this sample.
We then applied this text search algorithm to the reports of all

CT pelvis studies at our hospital between January 1, 2008 and
December 31, 2018. This time frame was chosen because of data
availability. The reports of all CTs that were AF screen-positive
were then manually reviewed (by AA) to identify patients with
true AF. These people constituted all AF cases radiographically
diagnosed at The Ottawa Hospital during the study period.
2.3. Creation of the AF model

We assumed that diagnostic and procedural codes would be
important for a model that returned the probability of AF based
2

exclusively on administrative data. However, the number of
distinct codes present in the discharge abstract of a large group of
patients can be extensive. To identify diagnostic and procedural
codes that might identify AF, we retrieved for the AF cases
(identified in the previous step) all International Classification
of Diseases, 10th revision (ICD-10) diagnostic codes and all
Canadian Classification of Intervention procedural codes regis-
tered in their hospital discharge abstracts. Diagnostic and
procedural codes were grouped by their first 3 and 5 alpha-
numerics, respectively, with the exception of the ICD-10 code
specific to AF (S32.4). Code groups that were present in at least
5% of cases were independently ranked by 2 studymembers (AA,
GG) regarding their clinical sensibility and likelihood to
distinguish between patients with and without AF.
We then identified all non-psychiatric adult hospitalizations

(defined as age exceeding 14) between January 1, 2008 and
December 31, 2018 using our hospital’s discharge abstract
database. This dataset was linked to all AF cases to determine
patients who were diagnosed with AF during their admission.We
determined for each person the values of covariates from the
hospital discharge abstract that we felt might be important to
identify AF status including: age and sex; encounter urgency and
ambulance status; hospitalization service; status of the diagnostic
and procedural codes identified in the previous step; hospital
length of stay; and death status.
Binomial logistic regression was then used to create a model

that returned the probability of AF during each admission. To
help prevent over-fitting, we limited the number of variables
offered to the model to ensure no fewer than 20 degrees of
freedom per AF case. To account for possible non-linear
associations between continuous variables (i.e., age and hospital
length of stay) and AF status, we used fractional polynomials
with 2 terms identified with a transformation identification
macro from Sauerbrei et al,[12] thereby consuming a total of 4
degrees of freedom for each continuous variable. We did not use
univariate inferential testing to screen for variable inclusion;
instead, we ranked all variables by potential model relevance
based on clinical experience and offered to the model all variables
whose cumulative sum (degrees of freedom) was no less than one
twentieth the total number of AF cases in our cohort. These
variables were then all entered in the model with no subsequent
variable selection based on their statistical association with AF
status. This approach was used to minimize biased parameter
estimates from variable selection using inferential testing
(“testimation bias”).[13] We did not use other binary modelling
methods, such as classification trees, random forests, neural
networks, or support vector machines, because they do not
necessarily improve model calibration.[14]

Model performance was internally validated using optimism
corrected c-statistics (for discrimination) and calibration in the
large (for calibration) using methods described by Steyer-
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berg[13,15] using 200 bootstrap samples.We used Youdenmethod
to identify the expected AF probability having the greatest ability
to discriminate between patients by AF status.[16] We also
measured the sensitivity of our model by using it to determine the
expected AF probability of all AF patients from the trauma
registry whowere not used to derive our AF text search algorithm
for pelvic CTs (i.e., all AF in the trauma registry admitted from
January 1, 2014 to December 31, 2015).
We then quantified misclassification bias. First, we used the

reference standard AF status to calculate true values of 9 statistics
(prevalence of AF in study cohort; the association of AF with 2
continuous variables [age, hospital length of stay]; and the
association of AF with 6 categorical variables [sex, admission
urgency and ambulance status, packed red blood cell transfusions
during the hospitalization, death status, and hospital procedure
status]). With the exception of the latter (which was deemed
present if patients had any Canadian Classification of Inter-
ventions code starting with ‘1’ [indicating therapeutic interven-
tion]), none of these statistics relied on administrative database
codes and are very accurately measured.[17]

We repeated measurement of these 9 statistics again after
determining AF status using the ICD-10 code of S32.4 and the AF
model. The latter approach used bootstrap imputation meth-
ods.[18–20] Bootstrap imputation started by creating 1000
random bootstrap samples (with replacement) of the study
cohort, each with a sample size identical to the original cohort.
For each patient within each bootstrap sample, a uniformly
distributed number between 0 and 1 was randomly selected; AF
was imputed to be present if the random number was below the
expected probability of AF for that patient (as determined from
the AF model). Within each bootstrap sample, we measured all 9
statistics with the median value of all 1000 bootstrap samples
used as the final point estimate and the 2.5th and 97.5th

percentiles as the confidence intervals. We quantified misclassifi-
cation bias as the unsigned relative difference in each of the 9
statistics compared to that achieved using true AF status. All
analyses were conducted using SAS 9.4 (Cary, NC, USA).
3. Results

We initially identified 207 AF patients from our hospital’s trauma
registry. One hundred seventy-six of these patients (85.0%) had
their acetabular imaging conducted at our hospital with CT
reports available for analysis. All reports had at least 1 of the 4
text combinations that we found were important to identify AFs.
This screen was then applied to the radiological reports of all
pelvic CT studies at our hospital during the study period (n=
296,588) and identified 1804 screen-positive reports conducted
on 1558 patients. Manual review of these reports identified 1117
AFs in 908 patients. Of the latter, 728 unique patients were
hospitalized when they were diagnosed with AF; the other cases
had been transferred directly from our emergency department to
another institution following their assessment at our center or
were diagnosed based on ambulatory imaging.
During the 11-year study period, there were 438,098 non-

psychiatric adult admissions to the hospital resulting in an AF
incidence of 15.1 per 10,000 hospitalizations per year. AF
admissions were distinct from other hospitalizations (Table 2).
AF patients were slightly older and were much more likely to be
male, arrive to the hospital by ambulance, or be admitted
urgently. More than two-thirds of AFs were treated by the
orthopedic or trauma service compared to only 10.1% of non-AF
3

admissions. The diagnostic code for AF (i.e., ICD-10 “S32.4”)
was present in only 51.2% of AFs and only 73.0% of patients
with this code had an AF (i.e., S32.4 sensitivity and positive
predictive value of 51.2% and 73.0%, respectively). A diagnostic
code starting with “S32” was present in 33.9% of fractures but
less than 1% of non-cases. Other relevant diagnostic codes most
commonly present in AF related to co-injuries or injury
mechanisms commonly found in AF. Similarly, the most common
procedural codes identified in AF patients dealt with fixation of
the pelvis or other loco-regional bones as well as local imaging
studies. Hospital length of stay for AFs was much longer than the
average but death risk was not distinctive.
Most of the selected covariates were significantly associated

with AF status (Table 3). After adjustment for all model
covariates, AF likelihood increased slightly with age but did not
vary by sex. AF was notably more likely when patients were
admitted urgently and under the orthopedics or trauma team.
The strongest predictors for AF included codes for AF (adjusted
odds ratio [aOR] 1782 [95% confidence interval 1289–2464])
and for lumber spine/pelvic fracture excluding AF (aOR 82.3
[62.2–108.9]). Fixation of the pelvis (aOR 2.93 [2.03–4.21]) and
hip (aOR 4.75 [2.36–9.56]) were the procedural codes having the
strongest association with AF. The optimism-corrected overall
model fit (Nagelkirke R2: 0.618), discrimination (c-statistic:
0.988), and calibration (calibration slope: 1.06) was excellent. In
patients without and with AF, the median (interquartile range;
5th–95th percentile) expected AF probability distribution was
0.01% (0.001%–0.03%; 0.00007%–0.008%) and 45.9%
(6.2%–85.6%; 0.07%–98.5%), respectively. In 60 patients with
AF from our trauma registry who were not used to generate our
text search algorithm, the median (interquartile range; 5th–95th

percentile) expected probability of AFwas similar at 33.5% (7.1–
71.3, 1.5%–99.4%).
Despite a very strong model, however, considerable misclassi-

fication occurred when we categorized the model-based expected
AF probability (Table 4). We found that the most discriminating
model-based expected AF probability was 0.09%. Using this
cutpoint captured all but 44 of the 728 AF cases in the cohort
(sensitivity 94.0%). However, only 3.7% of people with this
expected AF probability or more actually had an AF (i.e., positive
predictive value of 3.7%).
When AF status was determined using the AF model and

bootstrap imputation, misclassification bias was always smaller –
with 1 exception –when compared to that using the ICD-10 code
S32.4 (Fig. 1). True AF incidence was 16.6 per 10,000
admissions; using the AF model and bootstrap imputation
returned an identical value (Fig. 1A). In contrast, ICD-10 code of
S32.4 significantly underestimated incidence by 29.5%. With the
exception of “any procedure” (Fig. 1F), misclassification bias of
association measures using the AF model and bootstrap
imputation (median [range] unsigned relative difference 1.0%
[0%–9.0%]) was always smaller than that when ICD-10 code
S32.4 was used for case identification (median [range] unsigned
relative difference 18.0% [5.4%–75.0%]). In most cases,
estimates were biased towards the null; however, the association
of AF using S32.4 with sex was significantly greater than true
values (Fig. 1C).

4. Discussion

Population-based health administrative databases are very
attractive for studying uncommon conditions like AF. However,
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Table 2

Description of study cohort hospitalizations.

Acetabular fracture Total

No Yes
N=437,370 N=728 N=438,098

Mean age (SD) 56.3±20.7 60.8±21.6 56.3±20.7
Male 174,315 (39.9%) 421 (57.8%) 174,736 (39.9%)
Arrived by ambulance 124,439 (28.5%) 608 (83.5%) 125,047 (28.5%)
Admitted urgently 263,952 (60.3%) 720 (98.9%) 264,672 (60.4%)
Primary service
Orthopedics 40,616 (9.3%) 311 (42.7%) 40,927 (9.3%)
Trauma 3652 (0.8%) 183 (25.1%) 3835 (0.9%)

Diagnostic codes (description)
S32.4 (acetabular fracture) 138 (0.03%) 373 (51.2%) 511 (0.1%)
S32

∗
(fracture of the lumbar spine and pelvis) 2604 (0.6%) 247 (33.9%) 2851 (0.6%)

S37 (injury of urinary and pelvic organs) 727 (0.2%) 53 (7.3%) 780 (0.2%)
S72 (fracture of femur) 8014 (1.8%) 80 (11.0%) 8094 (1.8%)
S22 (fracture of rib[s], sternum and thoracic spine) 3803 (0.9%) 157 (21.6%) 3960 (0.9%)
S27 (injury of other and unspecified intra-thoracic organs) 2174 (0.5%) 112 (15.4%) 2286 (0.5%)
V43 (car occupant injured in collision with vehicle) 835 (0.2%) 76 (10.4%) 911 (0.2%)
S82 (fracture of lower leg, including ankle) 4831 (1.1%) 90 (12.4%) 4921 (1.1%)
S36 (injury of intra-abdominal organs) 1818 (0.4%) 81 (11.1%) 1899 (0.4%)

Procedural codes (description)
1SQ74 (pelvic fixation) 122 (0.0%) 208 (28.6%) 330 (0.1%)
3OT20 (CT abdomen) 34,980 (8.0%) 181 (24.9%) 35,161 (8.0%)
1VA74 (hip fixation) 914 (0.2%) 41 (5.6%) 955 (0.2%)
1VA73 (hip joint reduction) 131 (0.0%) 38 (5.2%) 169 (0.0%)
1VA53 (implantation hip prosthesis) 10,827 (2.5%) 40 (5.5%) 10,867 (2.5%)
1VC74 (femoral fixation) 4501 (1.0%) 54 (7.4%) 4555 (1.0%)
3VZ20 (CT, MRI, or US of leg) 2116 (0.5%) 184 (25.3%) 2300 (0.5%)

Stay in days (SD) 7.2±10.7 19.2±16.1 7.2±10.7
Any procedure done during admission 217,844 (49.8%) 481 (66.1%) 218,325 (49.8%)
Blood transfusion 43,139 (9.9%) 259 (35.6%) 43,398 (9.9%)
Patient died in hospital 17,941 (4.1%) 32 (4.4%) 17,973 (4.1%)

CT = computerized tomography, MRI = magnetic resonance imaging, US = ultrasound, SD = standard deviation.
∗
Excludes acetabular fractures (S32.4).

Adamczyk et al. Medicine (2021) 100:52 Medicine
accurately identifying rare conditions in administrative data is
always a challenge. In this study, we used our hospital’s data
warehouse to identify every AF case diagnosed at our hospital
over 11 consecutive years. Using health administrative data, we
found that the diagnostic code for AF had a sensitivity and
positive predictive value of only 51% and 73%, respectively.
Using this code to determine AF status underestimated AF
prevalence by almost 30% and returned biased associations with
other covariates. Using data found exclusively within health
administrative databases, we created a very accurate model that
returned the probability of AF for hospitalizations. When these
expected probabilities were used to determine AF status using
bootstrap imputation methods, misclassification bias was greatly
reduced compared to that from using the ICD code for AF.
Our study makes several important points. First, our results

highlight the potential misclassification resulting from using a
single diagnostic code to identify AF. Although S32.4 (the ICD-
10 code for AF) was very strongly associated with AF (with an
aOR of 1783 [95% confidence interval 1289–2465]), the
creation of an AF cohort using this code alone would miss
almost half of cases and a quarter of this cohort would not
actually have AF. In addition, we found that associations
measured using this code for AF case identification frequently
returned values that were importantly distinct from true values
(Fig. 1). These results indicate the caution one must use when
interpreting results from studies using non-validated codes for
4

case identification. Second, our model was well constructed using
methods that addressed all of the key aspects highlighted in the
PROBAST criteria[21] for predictive model assessment. These
include factors involving study participants (appropriate data
sources and inclusion criteria), predictors (defined and available
predictors), outcomes (determined appropriately and standard-
ized, independent of predictors or model), and analysis
(reasonable number of participants, appropriate handling of
continuous variables, inclusion of all enrolled participants in the
analysis, model predictors selected without univariate screening,
and model performance measured adjusting for optimism). The
AF model demonstrated exemplary optimism-adjusted perfor-
mance explainingmore than 66%of the observed variation in the
cohort. It also had almost perfect discrimination (c-statistic
0.988) and was very well calibrated. Despite having such an
accurate model, there was extensive misclassification when we
categorized the model’s expected AF probability for case
identification (Table 3). This seemingly paradoxical result – a
very accurate case-probability model returning misclassified
disease status when a probability cutpoint is used – has been
illustrated in other studies.[18,20] These results highlight the need
to use analytical methods, such as bootstrap imputation, that
account for uncertainty of case ascertainment when using health
administrative data. When case probability estimates from our
AF model (Table 3) were applied using bootstrap imputation
methods, prevalence estimates and measures of association with



Table 3

The acetabular fracture model.

Variable Parameter estimate (SE) P value Adjusted odd ratio (95% CI)

Intercept �10.73 (0.52) <.0001 –

Age increased by decade 0.066 (0.03) .0195 1.07 (1.01, 1.13)
Male 0.004 (0.11) .9718 1.00 (0.81, 1.24)
Arrived by ambulance 0.316 (0.14) .0243 1.37 (1.04, 1.81)
Admitted urgently 2.775 (0.44) <.0001 16.0 (6.80, 37.8)
Primary service: orthopedics 1.286 (0.13) <.0001 3.62 (2.79, 4.69)
Trauma 0.729 (0.19) .0001 2.07 (1.42, 3.02)

Presence of diagnostic codes
S324 (acetabular fracture) 7.486 (0.17) <.0001 1782.7 (1289.4, 2464.9)
S32

∗
(fracture of the lumbar spine and pelvis)† 4.411 (0.14) <.0001 82.3 (62.2, 108.9)

S37
∗
(injury of urinary and pelvic organs) 0.586 (0.24) .013 1.80 (1.13, 2.85)

S72
∗
(fracture of femur) �0.444 (0.28) .1164 0.64 (0.37, 1.12)

S22
∗
(fracture of rib[s], sternum and thoracic spine) �0.179 (0.17) .3012 0.84 (0.60, 1.17)

S27
∗
(injury of other unspecified intra-thoracic organs) 0.684 (0.21) .0009 1.98 (1.32, 2.96)

V43
∗
(car occupant injured in collision with vehicle) 0.333 (0.21) .1208 1.40 (0.92, 2.12)

S82
∗
(fracture of lower leg, including ankle) 0.016 (0.19) .9337 1.02 (0.70, 1.47)

S36
∗
(injury of intra-abdominal organs) 0.398 (0.20) .0508 1.49 (1.00, 2.22)

Presence of procedural codes
1SQ74 (pelvic fixation) 1.074 (0.19) <.0001 2.93 (2.03, 4.21)
3OT20 (CT abdomen) 0.520 (0.13) <.0001 1.68 (1.30, 2.18)
1VA74 (hip fixation) 1.557 (0.36) <.0001 4.75 (2.36, 9.56)
1VA73 (hip joint reduction) 2.031 (0.52) <.0001 7.62 (2.76, 21.0)
1VA53 (implantation hip prosthesis) 0.560 (0.29) .0571 1.75 (0.98, 3.12)
1VC74 (femoral fixation) 0.390 (0.31) .2123 1.48 (0.80, 2.72)
3VZ20 (CT, MRI, or US of leg) 1.755 (0.17) <.0001 5.78 (4.16, 8.03)
1/(length of stay+1)2 1.592 (0.61) .0096 –

1/(length of stay+1)0.5 �2.582 (0.54) <.0001 –

Died in hospital 0.380 (0.23) .098 1.46 (0.93, 2.29)

This table presents parameter estimates, P value, and adjusted odds ratio (with 95%) of all variables in the acetabular fracture model. Adjusted odds ratios exceeding 1 are associated with an increased likelihood
of acetabular fracture. Odds ratios for length of stay are not presented because its association with AF is non-linear.
AF = acetabular fracture, CI = confidence interval, CT = computerized tomography, MRI = magnetic resonance imaging, US = ultrasound.
† Excludes acetabular fractures (S32.4).
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key variables were very close to true values (Fig. 1). These results
highlight the power of applying an accurate case-identification
model using statistical methods that account for determination
uncertainty. Third, it is commonly believed that misclassification
will bias estimates towards the null. Our results indicate that this
is not always the case (Fig. 1C).
Several issues should be kept in mind when assessing our

results. First, our model has not been externally validated. This
step will be important before it is applied to identify AF at a
population-level. Second, our model can only be applied to health
jurisdictions using other coding methods if ‘cross-walks’ are used
to transform the codes used in our model to those native to the
study center. Obviously, model accuracy should be reassessed if
such steps are taken to confirm the validity of using this model.
Third, it is likely that our AF case identification method will have
missed some cases treated in our hospital during the study period.
In our cohort of AF from the hospital’s trauma registry, we found
that 15% of patients did not have any imaging done at the
Table 4

Operating characteristics of categorized expected acetabular fractu

Acetabular fr

Expected AF probability ≥0.0009 (N=18,436)
Expected AF probability <0.0009 (N=419,662)

We used Youden method to identify the most discriminative threshold for expected AF probability from th
AF = acetabular fracture.

5

hospital because imaging had been done at the referring hospital.
When patients have no imaging done at our hospital, they will be
missed by our case identification methods. However, the bias
introduced into our model by this misclassification is unlikely to
be extensive because of the overwhelming number of people in
our cohort without AF.
In summary, we found that health administrative database

diagnostic codes for AF are inadequate by themselves to create
AF cohorts. We derived and internally validated a model that
exclusively uses information available within health administra-
tive database to return an accurate probability that AF is present
during a particular hospitalization. When AF probability
estimates were used to determine AF status using bootstrap
imputation methods, misclassification bias was greatly reduced
compared to that from using the ICD code for AF. If this model is
validated in other centers, it could be used along with statistical
methods accounting for its probabilistic nature to study AF at a
population level.
re probability.

acture (N=728) No acetabular fracture (N=437,370)

684 17,752
44 419,618

e AF model (Table 3). This returned a sensitivity of 94.0% but positive predictive value of only 3.7%.

http://www.md-journal.com


Figure 1. Misclassification bias when determining acetabular fracture status using the AFmodel or diagnostic code. This figure presents values for 9 statistics when
AF status was determined with reference standard methods (“True”), with the AF model (Table 2) using bootstrap imputation (“BI”), or with the ICD-10 code for AF
(“S32.4”). These statistics include AF incidence and the association of AF with continuous variables (AGE, LENGTH OF STAY) or binary variables (remaining
variables). Associations are presented with 95% confidence intervals and were measured using linear regression for continuous variables (presented as the
parameter estimate “Estimate”) or logistic regression for binary variable (presented as the odds ratios “OR”). AF = acetabular fracture, ICD = International
Classification of Disease.
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