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Mild traumatic brain injury (mild TBI), often referred to as concussion, is themost common

form of TBI and affects millions of people each year. A history of mild TBI increases the

risk of developing emotional and neurocognitive disorders later in life that can impact on

day to day living. These include anxiety and depression, as well as neurodegenerative

conditions such as chronic traumatic encephalopathy (CTE) and Alzheimer’s disease

(AD). Actions of brain resident or peripherally recruited immune cells are proposed to

be key regulators across these diseases and mood disorders. Here, we will assess the

impact of mild TBI on brain and patient health, and evaluate the recent evidence for

immune cell involvement in its pathogenesis.
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MILD TRAUMATIC BRAIN INJURY

Traumatic brain injury (TBI) is a term used to include a spectrum of insults resulting from
mechanical injury to the brain. TBI includes injuries that range from severe, with open skull injuries
and major parenchymal disruption, to the mildest form of TBI, often termed concussion. Although
widely used in everyday language, the term concussion is now less commonly used in medical and
scientific terminology, as it lacks diagnostic precision and does not refer to underlying pathological
processes (1, 2). Therefore, mild TBI is the preferred term and will be used throughout this review
(1, 2). It is estimated that TBI affects 69 million individuals each year world-wide, with the vast
majority of cases being mild TBI (3, 4). The main causes of mild TBI are motor accidents, falls,
assaults, active-duty of soldiers, and domestic violence (5, 6). Recently, greater attention has been
given to this condition due to the high prevalence of mild TBI among young athletes in relation to
their involvement in collision sports such as American Football, soccer, and rugby (7).

Mild TBI is a physiological disruption of brain function and occurs due to mechanical
distortion of brain tissue, most commonly from a blow to the head, but can also be caused
by a blast injury frequently seen in soldiers serving in a war zone (7, 8). Rapid rotational
velocity/acceleration (inertial loading) is thought to be a key component of injury (9–11). The
underlying pathophysiology of the injury remains poorly understood, as availability of human
post-mortem brain tissue for examination from this typically non-lethal injury is limited (12).
Although referred to as “mild,” individuals can still experience a variety of physical, emotional and
cognitive problems, including sleep disturbance, increased anxiety, and depression (4, 7, 13, 14).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.620698
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.620698&domain=pdf&date_stamp=2021-02-15
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:andrew.greenhalgh@manchester.ac.uk
https://doi.org/10.3389/fimmu.2021.620698
https://www.frontiersin.org/articles/10.3389/fimmu.2021.620698/full


Verboon et al. Neuroimmunology of mTBI (Concussion)

Diagnosing mild TBI and its severity is usually
based on the loss of consciousness duration (<30min),
the Glasgow coma scale score (13–15), post-traumatic
amnesia duration (momentarily to <24 h), and a lack of
intracerebral/subdural/epidural hematoma, cerebral, or
hemorrhagic contusion, penetrating TBI (dura penetrated),
subarachnoid hemorrhage or brainstem injury (2) (Figure 1).
Mild TBI is still a heterogeneous insult, and there can be major
variation in the likelihood of significant neuropathology and
varying symptoms including blurred vision, confusion, dizziness,
focal neurological symptoms, headache, and nausea (2, 7, 8).
Whilst most patients recover and return to their normal self, the
clinical outcome of concussion is hard to predict. This is because
of the heterogeneity of initial trauma, the inability to quantify
disease severity and the likely initiation of complex pathogenic
pathways (15). Even though men are at greater risk of mild TBI
due to greater participation in high-risk activities, studies have
shown that females are at greater risk of poor outcomes (16–19)
and further research of both sexes is needed to characterize the
nature of sex-dependent injury and recovery (20). In addition,
pre-existing health conditions, age, genetic background (21), and
alcohol or substance abuse also influences recovery and leads to
differences in clinical outcome between patients (22).

The following review will focus solely on consequences of
mild TBI in adults, that would be commonly be referred to
as concussion. There is a vast and important literature on
more severe TBI that includes evidence of hemorrhage and
parenchymal injury and these injuries are defined as moderate
or severe TBI. Clinically, moderate or severe TBI is diagnosed
by neuroimaging and preclinical modeling of these injuries is
much more common than mild TBI, due to the production
of frank and measurable tissue damage. As a result, there is a
large literature on neuroinflammatory and immune mechanisms
that drive both injury and repair in these insults (23–25). Much
less is known about the pathology of mild TBI with no overt
contusion or hemorrhage in the pathology, and here, a different
immune response is likely to occur. The current review will
explicitly refer to evidence of the immune response after human
mild TBI, in animal models with high translational relevance to
mild TBI (without compromising the skull and no evidence of
hemorrhage) and studies that investigate patients with a history
of head injury through sport.

EVIDENCE FOR MILD TBI AS A RISK
FACTOR FOR LONG-TERM PROBLEMS

Mild TBI is now recognized as a major public health concern
as clinicians and researchers are becoming more aware of
the dangers and potential long-term consequences associated
with this type of head injury (26). In most mild TBI
cases, acutely reported symptoms resolve within 3 months;
however, a small proportion of patients continue to suffer life
disrupting symptoms (27–29). A range of factors, not necessarily
directly reflecting injury severity, are associated with poor
outcome following mild TBI, including previous neurological
or psychiatric problems and whether the patient had suffered a

previous head injury (27, 28). Indeed, patients with a history of
mild TBI can experience changes in emotions or behavior, often
expressed by increased anxiety and depressive like behaviors
(2, 4, 7, 13, 14). Most studies investigating multiple head injuries
over a sustained period are derived from participants of contact
sports. These patients may differ greatly from those who suffer
a mild TBI as a one-off event, not only in the nature of the
head injury but also their lifestyle and pre-morbid traits (30).
Currently, there is major interest in mild TBI/concussion due
to its prevalence in sports such as the National Football League
(NFL), rugby, and soccer, where the risk of head injury is
high. Single concussive events in these sports can result in
the same myriad of symptoms as a one-off mild TBI in the
general population, andmay trigger that same initial pathological
response; however, it is the accumulation of injuries and their
long-term effect on mood and neurodegenerative outcomes that
is often assessed in these athletes.

Effects of Repeated Mild TBI in Contact
Sports
In contact sports, diagnosed mild TBIs/concussions and even
head impacts that are frequent but do not cause noticeable
immediate injury, such as heading a soccer ball, are now being
investigated as risk factors for poor long-term brain health (31).
In a population of retired rugby players, the prevalence of major
depressive disorder was significantly higher compared to other
retired sportsmen (7). Another study investigated professional
NFL players and found a link between recurrent concussion and
diagnosis of lifetime depression and suggested that the prevalence
of depression increases with the number of past mild TBIs (32).
Indeed, retired players that reported either one to two, or three
or more previous concussions were 1.5 and three times more
likely to be diagnosed with depression, respectively, compared to
retired players with no history ofmild TBIs (32). Regardless of the
type of contact sport, diagnostic test scores for major depressive
disorder increases with the number of mild TBIs (7).

In addition to emotional disturbances, mTBI is associated with
a risk of developing a number of neurodegenerative conditions
(33). A series of studies retrospectively investigating a cohort
study of former professional footballers [Football’s Influence on
Lifelong health and Dementia risk (FIELD)] investigated the link
between at dementia pathology, mortality and mental health
and suicide in ex footballers (soccer players) (34). Mortality
from neurodegenerative disease was higher and mortality from
other common diseases lower among retired professional soccer
players than among matched controls (35). Surprisingly, in
these cohorts, hospital admissions for common mental health
disorders were lower than population controls, with no difference
in suicide, despite evidence of neurodegeneration (36). Outside
of professional athletes, a population-based administrative health
cohort study, in more than 47,000 cases of mild TBI showed
mild TBI was associated with an increased risk of diagnosis
of attention-deficit hyperactivity disorder, mood and anxiety
disorders, dementia and Parkinson’s disease later in life (37).

The majority of evidence suggests that mild TBI can be
detrimental to mental health, but also carries increased risk of
developing epilepsy and neurodegenerative disorders, such as
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FIGURE 1 | Diagnostic criteria, symptoms and immune cell involvement in moderate to severe traumatic Brain Injury (TBI) in comparison with mild TBI. Commonly

used diagnostic criteria in moderate to severe TBI compared to mild TBI shows the major clinical difference between the two reflects hemorrhage or clear contusion in

the brain. Symptoms are shared across mild, moderate and severe TBI with increasing likelihood of symptom occurrence and severity with increasing injury.

Schematics represent immune response in moderate to severe TBI (left) and mild TBI (right). In moderate to severe TBI in humans and animal models, there is clear

evidence for resident microglia activation and recruitment of macrophages, dendritic cells, neutrophils, B cells and T cells, and meningeal inflammation. In addition to

active recruitment mechanisms, peripheral immune cells can infiltrate with frank hemorrhage alongside red blood cells (RBCs) and the release of hemoglobin (Hgb),

Haem, and other damage associated molecular patterns (DAMPs), which are one set of initiators of the immune response. In contrast, in mild TBI there is little

evidence of infiltrating immune cells to the brain tissue in humans or animal models that do not produce hemorrhage or skull opening. In mild TBI, there is evidence of

meningeal inflammation, microglial activation, and some monocyte/macrophage recruitment to the cerebrovasculature.

Alzheimer’s disease, Parkinson’s disease, and chronic traumatic
encephalopathy (CTE) (2). Significant neurodegeneration
observed in retired athletes has been linked to repeated mild TBI
at a younger age and mortality from neurodegenerative disease
is significantly higher among former professional soccer players
than in matched population controls (35). Within this group,
Alzheimer’s disease as the primary or a contributory cause of

death was responsible for the largest increase of deaths (35). In a
separate study, there was increased risk and early onset of ALS in
professional players from Italian soccer teams (38).

Post-mortem studies on former contact sports athletes show
a high prevalence of CTE; a progressive neurodegeneration
associated with repetitive head trauma (39, 40). Interestingly,
neuropathological severity of CTE seemed to increase in
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accordance with the level of play and almost all cases had
behavioral or mood symptoms or both, cognitive symptoms or
signs of dementia (39). Post-mortem brains from U.S. military
veterans that have been exposed to blast exposure and/or
concussive injury display CTE neuropathology that is similar to
the pathology observed in former athletes (41).

These studies add to the growing evidence to suggest that
a history of mild TBI is a risk factor for the development of
pathological neurodegeneration. They have also brought much
needed attention to the dangers of head injury, in general.
Research is now focused on understanding the underlying
pathology of both single and accumulated mild TBIs, and
what can be learned from each individual instance to prevent
long-term problems.

Understanding Distinct or Overlapping
Mechanisms of a Single, Repeated, or
Life-Long History of Mild TBI
The Lancet Commission on dementia prevention recently added
TBI as potentially modifiable risk factor for dementia (26). In
this important document, a combination of studies relating
to severe TBI, those investigating concussion, or a career in
professional contact sport, are cited as why traumatic brain injury
is considered a risk factor for dementia and neurodegenerative
disease (26, 33). As detailed above, severe TBI can be quite
different to mild TBI. However, the role of neuroinflammation,
propagated by the immune system, is a likelymodifiable regulator
in both. Evenwhen focusing onmild TBI research alone, there are
still many challenges to assessing the role of the immune system.
Complicating factors include: heterogeneous pathology and
symptoms (2), diffuse injury across brain regions (10, 42) and the
overlapping research conclusions between one-off mild TBI and
multiple injuries sustained by professional sport participation.
However, the investigation of the immune response to discrete
injuries will undoubtedly lead to increased understanding of
the dangerous cumulative effects of multiple mild TBIs. Indeed,
much of our understanding of the mechanisms of mild TBI, and
the role of the immune system, is derived from animal models
of injury. A combination of clinical and preclinical studies in the
acute setting can provide insight into bothmild TBI in the general
population and those accumulated in professional sport.

The following sections will outline what is known about
the immune system’s response to CNS injury in general, and
why aspects of the immune system have become considered
drivers of neurodegenerative disease, of which head injury is
now considered a risk factor. This will provide context for the
review of the current literature for immune involvement in the
pathology of mild TBI.

POSITIONING OF THE IMMUNE SYSTEM
WITHIN THE CNS

Immune cells are present throughout the adult CNS (43).
Microglia are a type of tissue resident macrophage and are
the major immune cell type (44). Microglial cell bodies and
their processes cover every cubic micrometer of the brain

during constant surveillance activities (45, 46). Recent work
shows that, of the total number of immune cells in the
brain, ∼80% are microglia, with the remainder comprised of
barrier-associated macrophages and cell types more traditionally
associated with the periphery such as neutrophils and T
cells (44, 47–49). Microglia are highly plastic and defend the
brain against external challenges. Pattern recognition receptors
(PRRs) are scattered along their membrane, by which they can
recognize pathogen-associated molecular patterns (PAMPs) and
host-derived danger-associated molecular patterns (DAMPs),
making microglia equipped with the tools to evoke a rapid,
fine-tuned inflammatory response to immunological challenges
(50). Microglia phenotype and morphology are determined by
their local environment and several concepts relating to their
function, such as “homeostatic,” “primed,” “trained,” or “tolerant”
microglia, have emerged from experimental models (51).
Microglial priming is defined as a prolonged and exaggerated
immune response resulting from an acute inflammatory event
in an ongoing inflammatory environment (52). Innate immune
memory is associated to cell reprogramming following a primary
immune stimulus that leads to increased (trained) or decreased
(tolerant) responses to a secondary inflammatory stimulus (53).
These concepts are important in the context of mild TBI as
repeated head injuries lead to greater risk of poor outcome
(32, 54). Although not defined as immune cells per se, astrocytes,
oligodendrocytes, and endothelial cells all perform various
functions that are critical to the immune response (55–58), and
the important actions specific to these cells in mild TBI are
reviewed elsewhere (59–62).

Neuroinflammatory cascades rely on the activation of the
inflammasome, a protein complex, consisting of caspase-1,
apoptosis-associated speck-like protein (ASC) and nod-like
receptor protein (NLRP1 or NLRP3) (63, 64). Common
microglial pathways activated upon the detection of a challenge
involve NF-κB, which is a pro-inflammatory transcription
factor that stimulates cytokine release in conjunction with the
inflammasome (50). Metabolic changes within microglia also
sustain or restrain inflammation (65). Rapid motility, reactive
oxygen species (ROS) and cytokine production require quick
energy utilization through glycolysis and fatty acid synthesis
(65–67). In contrast, anti-inflammatory microglia require
efficient energy production utilizing oxidative phosphorylation
for transcription of ATP-dependent tissue repair genes, reduce
ROS, perform amino acid and fatty acid oxidation to produce
growth factors, including polyamines and prolines, and to
support mitochondrial respiration (65–67).

In the event of CNS injury, microglia reduce their
ramifications and extend cell processes to the site of injury,
helping to maintain the integrity of critical CNS barrier
structures such as glial limitans and vasculature (68–70).
Moreover, they increase their migration to damaged brain
sites and become phagocytic to clear cell debris (71–73).
Microglia and other resident immune cells can be joined
by their infiltrating counterparts from the circulation, such
as neutrophils, monocytes, and lymphocytes, depending on
the severity of injury (43, 71, 73–79). These peripheral cells
are recruited through a multitude of mechanisms, including
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endothelial and microglial signaling, and can enter the brain
through the compromised blood brain barrier, circumventricular
organs or other brain blood interfaces, such as the meninges
(80, 81).

In the context of human mild TBI, it is unknown whether
circulating immune cells are recruited to the brain in patients,
and closed head animal models provide differing results
depending on induction and severity of the injury [see below].
Recruitment of immune cells may vastly affect progression of
pathology, as the actions of these cells can differ compared to
their resident counterparts (43). Furthermore, evidence suggests
that infiltrating immune cells influence resident microglia
populations, whichmay have long lasting consequences for injury
outcomes (74, 82–85).

Here, it is again important to distinguish between TBI with
parenchymal hemorrhage (and associated animal models) and
mild TBI, as hemorrhage is likely to create a type injury and
immune response that is completely distinct to that of injuries
with no bleeding (Figure 1). For example, extravasated red blood
cells (RBCs) are a source of multiple immune response triggers
andDAMPs (86). RBCs are phagocytosed by immune cells, which
drives an inflammatory phenotype in those cells (87), and a
portion of which stay within the tissue, die and degranulate,
releasing endothelins and oxygen free radicals (88). Extravasated
RBCs also releases toxic Hgb which is oxidized to haem and
acts as a DAMP to exacerbate the inflammatory response (89).
A further metabolite, iron is also implicated in brain injury
after hemorrhage (88, 90, 91). Thus, several stages of RBC lysis
contribute to a type of brain injury not seen in mild TBI without
parenchymal bleeding. For information on the immune response
to TBI including hemorrhage, we would like to point readers to
the following excellent reviews on the topic (23–25).

In mild TBI, whether immune cells from the periphery
are recruited or not (see below), microglia and the other
resident immune cells are present and can respond rapidly
to changes in the brain (44, 47–49). In the wider field
of neuroimmunology, the interest in the microglia-mediated
immune response during brain injury and disease has risen
exponentially in the past decade, mainly due to genome wide
association studies that implicate many microglial genes as risk
factors for neurodegenerative disease (92, 93). It is here, in
the brain’s immune response, where mild TBI and the risk of
cognitive decline and neurodegeneration may meet.

The Immune System’s Role as a Driver of
Neurodegeneration
To understand if the immune response to mild TBI increases the
risk of neurodegenerative disease, it is important to understand
the known role of the immune system in neurodegeneration. The
CNS and innate immune system continuously modulate each
other through a sophisticated bidirectional crosstalk (43, 94).
Under pathological conditions, disrupted communication may
result in an inflammatory response. When the inflammatory
response of CNS resident immune cells remains unresolved, this
may lead to initiation, propagation, and progression of tissue
damage, ultimately resulting in neurodegeneration (50). The

immune system may therefore be a driver of neurodegeneration,
in general (95–98) and mild TBI’s activation of the immune
system may be a causative trigger, although this is yet to be
formally demonstrated.

Many neurodegenerative disorders display concurrent and
chronic alterations in immune function and signaling. However,
there is now strong evidence that immune dysregulation can be
a direct cause of neurodegenerative disease. Somatic mutation
specifically in the erythro-myeloid progenitor lineage fromwhich
microglia derive can drive late-onset neurodegeneration in mice
(56). More recently, biallelic mutations in NRROS (Negative
Regulator Of Reactive Oxygen Species), which is necessary for
TGFB-1 signaling in microglia, were found to cause an early
onset lethal microgliopathy in humans (99, 100) and NRROS-
deficient (Nrros-/-) mice show neurodegeneration (101), defects
in motor functions and die before 6 months of age (102).
Together, these data show that microglia-specific alterations
can cause neurodegenerative disease, confirming that the well-
documented immune response to neurodegeneration may not
solely be secondary to injury.

Several genes involved in the immune system, and particularly
microglia, have been identified as risk factors for the most
common form of neurodegenerative disease, Alzheimer’s (103–
105). The APOE gene, encoding apolipoprotein (Apo)E (106)
is mainly expressed in the brain by microglia and astrocytes
and is component of Aβ plaques and promotes Aβ aggregation
and deposition (107). The three major human isoforms, apoE2,
apoE3, and apoE4, are encoded by different alleles and differ
in their effects on AD risk and pathology, with one APOE-
ε4 allele increasing AD risk 3-fold and two APOE-ε4 alleles
increasing AD risk by 12-fold (108). In addition, APOE-ε4 is also
implicated in Dementia with Lewy bodies and Frontotemporal
dementia (97). Another molecule implicated in AD is the
triggering receptor expressed on myeloid cells 2 (Trem2) and
is highly expressed in microglia in the brain and important for
microglial, phagocytosis, proliferation and environment sensing
(109). Single-nucleotide polymorphism (SNP) mutations in
Trem2 drastically increase the AD risk (110), estimated to be with
a 3.0- to 4.5-fold (96). Moreover, homozygous Trem2 variants
have been proposed to be causal for Frontotemporal Dementia
(FTD) or linked to increased FTD risk (111). A recent genome-
wide meta-analysis identified new loci and functional pathways
influencing Alzheimer’s disease risk that localized to immune-
related tissues and cell types (microglia), highlighting the role
of the immune system and its principle brain-resident cell in
neurodegenerative disease (92). In sum, the immune system and
its dysfunction are now strongly implicated in neurodegenerative
disease, for which mild TBI (particularly repeated mild TBI) is
proposed as a risk factor. We will now summarize how mild TBI
may activate the brain’s immune system, potentially linking it to
long-term neurodegeneration.

THE IMMUNE RESPONSE TO MILD TBI

To reiterate the focus of this article, we will review the known
immune response to injuries that are defined as mild TBI
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or concussion and their relevant animal models. This would
therefore exclude brain injuries with intracerebral, subdural,
epidural hematoma, cerebral or hemorrhagic contusion,
penetrating TBI (dura penetrated), subarachnoid hemorrhage
or brainstem injury (2) (Figure 1). This definition describes a
population of patients that have potential pathology too subtle
for standard imaging, but represents up to >80% of those that
suffer a TBI (3). Animal models representing this “mild” situation
are less common as researchers investigating brain injury are
in search robust, reliable, modifiable readouts to demonstrate
mechanisms and new treatment options; such animal models
often employ craniotomy and/or hemorrhage and contusion
and would be considered moderate to severe TBI in the clinic.
If the immune response to mild TBI is a factor in pathology, it
is important to understand how this may be initiated in a brain
without bleeding or overt lesion.

Triggers of the Immune Response in Mild
TBI
The immune system is ubiquitous in the CNS and is equipped
to respond to brain tissue injury after mild TBI. The injury
produced after a closed-head impact is the result of physical
movements of the brain within the skull, including acceleration
and differential inertial loading (10, 11). Physical forces are
thought to lead to axonal injury due to excessive regional
stretching of axons (112) (Figure 2A). Using head kinematics
from athletic events, modeling showed that the brain can be
described as a hyperviscoelasticmedium and deformation ismost
sensitive to specific frequency oscillations, particularly in deep
brain regions, and is aligned with areas of pathology after mild
TBI (10).

Stretching of axons is the leading hypothesis as to why white
matter appears most sensitive to mild brain injury. However,
from the view of the immune system, microglial cells are also
sensitive to mechanical signals (113, 114). Viscoelastic testing
of individual CNS cells showed that other glial cells, such as
astrocytes and Müller glia are twice as soft as neurons and
act as compliant structures surrounding the neuronal cells, and
are described as “cushioning material” (115). This opens the
possibility that glia, in general, are differentially susceptible
to forces produced in the brain during mild TBI. Mechanical
changes in glial cells may physically protect neurons from initial
mechanical damage, but then subsequently become activated
and produce factors that drive neuronal pathology (Figure 2A).
Alternatively, glia may be bystanders, solely responding to
neuronal injury when the force is big enough to affect neurons
directly. In either scenario, an aberrant microglial response
due to either genetic factors, such as APOE genotype or
TREM2 mutations (see above), or environmental influences,
such as inflammation due to infection, poor diet or obesity
may contribute to concussive injury as a risk factor for
neurodegenerative disease (26).

Physical forces may also result in damage to the blood-
brain barrier (BBB), a specialized endothelial barrier that tightly
regulates molecular and cellular movement into the brain (116).
BBB breakdown is long associated with moderate to severe brain

injury (Figure 2B) but has recently been shown to be present in
clinically relevant models of mild TBI. In awake mice, 24 h after
a closed-head impact injury, serum albumin extravasation and
evidence of myeloid inflammatory cell infiltration due to BBB
breakdown was localized to the lateral surface of the ipsilateral
perirhinal cortex adjacent to the impact contact zone (117).
In a swine model of head rotational acceleration and in the
absence of hemorrhage or other focal pathology, disruption of
the BBB was found 6–72 h after injury, by extravasation of serum
proteins, fibrinogen and immunoglobulin-G (12), confirming
earlier mouse studies (118). BBB disruption was consistent with
the biomechanical insult as extravasated serum proteins were
observed at interfaces between regions of tissue with differing
material properties, including gray–white matter boundaries
and periventricular and subpial regions which overlapped with
regions of axonal pathology in the white matter (12). This
highly relevant model of mild TBI provides insights to subtle,
yet significant pathology that is likely to trigger immune
responses, yet be undetectable in humans through standard
clinical imaging techniques.

Fibrinogen is a central blood coagulation protein that is
deposited in the CNS after BBB disruption (62, 119) and is
found in brain tissue in models of mild TBI described above
(12). Fibrinogen induces encephalitogenic adaptive immune
responses and peripheral macrophage recruitment into the
CNS leading to demyelination in models of multiple sclerosis
(120). Interestingly, fibrinogen deposition in the CNS affects
many processes across diseases, including suppression of
remyelination through OPC function (121) and induction
of microglia-mediated spine elimination, leading to cognitive
deficits in a model of AD (122). Both white matter damage
and cognitive deficits are described in mild TBI. Currently,
a promising advance for treating pathologies in involving
fibrinogen deposition, is the generation of amonoclonal antibody
5B8, that selectively inhibits fibrin-induced inflammation and
oxidative stress without interfering with clotting and shows
efficacy in animal models of MS and AD (123). Whether such
strategies will be employed to improve pathology and cognitive
and emotional deficits after mild TBI remains to be seen.

More data are required to understand the initial triggers of the
immune response in mild TBI, and a combination of neuronal
damage through mechanical stretching, direct mechanical
damage of glia and endothelial cells and BBB-breakdown are all
likely to play a role. Irrespective of the initial driver of brain
tissue damage, patient studies indicate there is an active immune
response in those individuals exposed to mild TBI injury.

Clinical Evidence of the Immune Response
to Mild TBI–Serum Biomarkers
An important area of brain injury and disease research is the
search for blood biomarkers that reflect brain processes, to
predict disease course and used as readouts to assess utility of
interventions to improve outcome for patients. Recently, a range
of proteins, including neurofilament light (NfL) polypeptide
released from damaged axons, have been proposed as viable
biomarkers of mild TBI (60, 124, 125). The brain’s immune
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FIGURE 2 | Potential triggers of the immune response in mild TBI. (A) Physical forces lead to stretching of axons, axonal injury and glial activation. (i) Schematic

representing a neuron with its myelinated axon surrounded by glia in the healthy brain. (ii) Represents the stretching of axons due to physical forces during mild TBI

and the subsequent glial activation (iii) Key–indicates glial subtypes hypothesized to be activated after axonal stretching. (B) Diffuse blood-brain barrier (BBB) in the

brain after concussion leads to extravasation of harmful molecules to the parenchyma. (i) Schematic shows a coronal section of a human brain with representations of

diffuse BBB breakdown after mild TBI (brown areas). (ii) Enlarged image shows compromised cerebral blood vessel leaking molecules that may trigger inflammation

and glial activation.

response to mild TBI is also evident in the blood, as elevated
c-reactive protein (CRP) levels at admission are independently
associated with the increased risk of persistent psychological
problems and cognitive impairment (29). Plasma interleukin
(IL)-2 and IL-6 levels are also significantly higher for mild TBI
patients compared with orthopedic injury controls, indicating
a brain-specific injury initiated an immune response that is
present in the periphery (126). Elevated IL-2, 24 h after injury,
is associated more severe early post-concussive symptoms, while
elevated plasma IL-10 level at 6 months is associated with
more severe posttraumatic stress disorder (PTSD) and mood
scores (126). Overall plasma levels of IL-1ß, IL-4, IL-6, and
IFN-γ are reduced at 6 months compared to acute levels,
indicating a subsiding of inflammation caused by the initial

injury. Interestingly, plasma levels of the anti-inflammatory
cytokine IL-10 have also been shown to be predictive of
a mild TBI vs. a moderate-to-severe TBI (as defined by
hemorrhage on CT) (127), again highlighting the different
immune responses between injury types. Further to immune
mediators detected in the plasma, complement pathway proteins
(key mediators of the immune response) are elevated in
astrocyte-derived exosomes in the plasma within seven days
of a mild TBI (128). In the non-acute setting, a study of
veterans with a remote history of mild TBIs found an association
between concentrations of TNF-α and post-concussive syndrome
(PCS) and PTSD symptoms (125). The total number of mild
TBIs correlated with exosomal and plasma NfL levels and
plasma IL-6 (125). These results indicate a persistent elevated
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neuronal and neuroinflammatory response many years after
mild TBI.

Serum biomarkers of brain injury and the immune response
are now being collected in a range of settings, from single
injuries to chronic sport related mild TBI in male and female
participants (129). Although, the peripheral immune response
to more severe TBI is well documented (24, 64, 130), the
data specifically in mild TBI highlights that circulating immune
mediators are also present and may be involved in symptom
progression and resolution.

Clinical Evidence of the Immune Response
to Mild TBI–Neuroimaging
The immune response can also be measured indirectly in the
brain by clinical neuroimaging. The meninges, a protective
layer of membranes surrounding the brain, have gained much
attention in the field of neuroimmunology as they are the
home of the brain’s lymphatic system (131, 132) and a variety
of immune cell populations (44, 47, 49) which, in animal
models, can regulate brain function in health (133), disease
(134, 135), infection (136), and recovery from TBI (137). In
patients with mild TBI, enhancement of the meninges on
post-contrast images obtained by fluid attenuated inversion
recovery (FLAIR) magnetic resonance imaging (MRI), show
abnormalities that may reflect inflammation in the immune
cell rich meningeal membranes (138, 139). Meningeal immune
cell-mediated inflammation can influence neuronal populations
in the brain parenchyma in mice, resulting behavioral changes
that are also associated with symptoms of mild TBI, such as
anxiety (133, 137). As yet, it is unknown whether meningeal
inflammation in human mild TBI plays a role in emotional
symptoms seen after injury.

In the context of athletes with a history of mild TBI,
initial neuroimaging studies of former retired NFL players
reported cognitive deficits that were correlated with white
matter abnormalities and changes in regional cerebral blood
flow (140) and that mild TBI is a risk factor for development
of mild cognitive impairment (140). Following these findings,
work began to show that neuroinflammation in the brain
tissue proper was also a key component in those at risk
from concussive-symptoms.

It is well-known that brain injury and disease cause a
change in the functional state of microglia, the major cell
type in the brain responsible for neuroinflammation (141).
Neuroinflammation is associated with the de novo expression
of the mitochondrial 18 kDa translocator protein (TSPO), a
binding site for which many selective high-affinity compounds
for PET imaging have been developed (142). During brain
injury or disease, TSPO is mainly expressed in microglia but
can also be detected in astrocytes (51, 143, 144). Increased
regional TSPO expression in the brain typically covaries with
disease state and activity and is proposed to be a non-
diagnostic biomarker and secondary to disease etiology. As
result, many clinical studies use in vivo measurements of TSPO
expression as a biomarker of disease progression or therapeutic
efficacy (142).

In former NFL players, early studies showed significant
increase in binding of the radio-ligand [11C]DPA-713 to TSPO in
several brain regions, such as the supramarginal gyrus and right
amygdala, compared to age-matched, healthy controls, indicating
neuroinflammation in those areas (145). The same former players
had varied performance on a test of verbal learning and memory
(145). Interestingly, studies performed in much younger, active
and recently retired NFL players with a self-reported history
of mild TBI also revealed increased [11C]DPA-713 binding to
TSPO in eight of the 12 brain regions examined, but did
not differ from control participants in regional brain volumes
or in neuropsychological performance (146). This opened the
possibility of using TSPO binding a biomarker for brain changes
in the younger concussed brain, prior to cognitive decline
(146). Postmortem studies of former NFL player confirmed that
repeated head injury is associated with chronic activation of
microglia (147). In addition, the duration of repeated head injury
exposure, as defined by the years of football played, predicted
greater density of CD68 positive inflammatory microglia in NFL
players with and without CTE pathology and that increased
neuroinflammation was related to the risk of a subject being
diagnosed with dementia, independent of age (147). Together,
these studies show that the immune response is detectable in
patients before cognitive changes, and persists throughout the
lifetime of those exposed to concussive injury.

Other strategies to assess immune cell activation in response
to concussion injury include the quantification of protein
markers in the CSF, such as soluble TREM2 (sTREM2).
TREM2 is a transmembrane receptor of the immunoglobulin
superfamily highly expressed in microglia which multiple
ligands (148). TREM2 surface expression rapidly declines on
activation of microglia which is partly due to sequential
cleavage of membrane-bound TREM2 by proteases that release
soluble TREM2 (sTREM2) (149). As result, sTREM2 has been
hypothesized to be predictive of microglial activation if detected
in the CSF. In former NFL players, sTREM2 levels were higher
in their CSF compared to controls and were associated with
higher t-tau concentrations, which are thought to be a major
factor in neurodegeneration (150). However, in patients with
TREM2 mutations with AD and FTD, sTREM is reduced in the
CSF (151). Other studies have shown increases of CSF TREM2
in AD dementia (152, 153), or increase in MCI-AD but not
AD dementia (154). Therefore, the use of sTREM as a direct
biomarker for microglia activation is yet unproven, and the
biological role sTREM2 in neurodegeneration is unknown.

Patient studies investigating the microglial response to mild
TBI have largely focused on individuals with a known history
of head injury, such as professional athletes. Recently, TSPO
expression was assessed after a single-event mild TBI in patients
without signs of structural damage 1–2 weeks and at 3–4 months
after injury (155). Importantly, patients were not included if
they showed any intracranial lesion on the initial computed
tomography scan or had a history of head trauma with loss
of consciousness. Using the single photon emission computed
tomography tracer 123I-CLINDE, persistent TSPO upregulation
was found at 3–4 months post-injury, even in patients with
good clinical recovery (155). This is consistent with the data
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from active or recently retired NFL players that had increased
TSPO binding, but no change in neuropsychological testing
(146). Clearly, it is unknown whether a single head injury and
subsequent TSPO increases is comparable to a history of head
injury and persistent TSPO increases, and whether they have
the same long-term consequences, but it is evidence that a
sub-chronic immune response occurs in even mild injury with
resolved short-term clinical symptoms.

The Immune Response in Animal Models
of Mild TBI
Models of traumatic brain injury have provided insight into
multiple mechanisms of tissue damage. Even for “mild” TBI,
animal models vary widely, from impacts direct to the brain’s
surface in fixed-head, anesthetized animals to injury with no
surgery or anesthesia with forces that allow head rotation (59,
156). Each model (even similar in description), in different
laboratory’s hands can lead to different etiologies and severities,
which should be considered when assessing the literature. Often
the least “clinically relevant” model can lead to the most useful
mechanistic insight, and those most likely to best recapitulate
human concussion should inherently be the most heterogeneous
in their outcome. Both extremes are now being used to explore
the role of the immune system in mild brain injury. We will
not attempt to review the different models of injury here, but
we point the reader to excellent reviews in the field (59, 156).
As mentioned previously, we will focus our attention on closed
head injury models that most closely resemble clinical mild TBI,
at least in as much as do not use any type of craniotomy or
produce frank tissue damage or hemorrhage. We will assess the
only those models that are “closed skull” with no observable
bleeding and investigate the immune reaction to injury. These
models are relatively few compared to the wider TBI literature
but may offer key insights to pathology.

In a pig model of closed-head rotational acceleration,
biomechanical loading parameters can be replicated that are
thought to underlie neuropathology of mild TBI in humans
(157). Pigs have a large gyrencephalic brain and a gray to
white matter ratio similar to humans, which is important as
diffuse axonal injury in white matter is believed to be the
principal pathology of closed-head diffuse brain injury (42, 158).
Using these models, changes in microglia morphology around
compromised neurons was described as early as 15min after
injury, potentially allowing microglia to influence the evolution
of subsequent neuronal damage (159). Evidence frommany other
models of CNS injury suggest that initial actions of microglia
are protective (69, 160–162), though this is unknown in the
context of mild TBI. In the same pig model, investigation of later
time points after injury, found subtle neuronal changes in the
hippocampus (163, 164) and microglia had increased signs of
activation up to 1 year after injury (164). Just as acute microglial
actions at sites of CNS injury are proposed to be beneficial,
long-term microglial-mediated inflammation is thought to be
detrimental and may be involved in the long-term complications
associated with mild TBI (165–173). Longer-term activation of
microglia was also seen in non-surgical, diffuse closed-head
injury in mice, in a model characterized by an impact as well
as linear and rotational acceleration (174). Thirty days after

injury, multifocal, bilateral axonal damage with neuronal death in
the hippocampus was detected, microgliosis was prominent and
neurobehavioral deficits observed in spatial learning/memory
and socialization (174). Indeed, a range of studies in appropriate
rodent models show microglial activation across multiple time
points, particularly in white matter tracts (165–172) and may
be a result of rotational stress or reduced cerebral blood flow
(175, 176).

To investigate the causality of inflammation and the
immune response on mild TBI deficits, multiple studies
have manipulated these pathways and investigated behavioral
outcome measures. For example; selective, small molecule
inhibition of acute pro-inflammatory cytokines and chemokines,
nanopeptides targeting apoE mediated the neuroinflammation
and minocycline administration all reduce microglial activation
and improve neurological outcome after mild TBI, respectively
(177–179). Hippocampal microglia activation is attenuated by
inhaled nitrous oxide and correlates with improved performance
on memory tasks (180) and statins reduce pro-inflammatory
cytokine gene expression in the brain, reduce microglial
activation and improve functional neurological deficits after mild
TBI (181). Nilvadipine, a tyrosine kinase inhibitor, suppresses
inflammation and restores spatial memory deficits (182) and
administration of Carnosic acid, and inhibitor of NF-kB,
significantly improves motor and cognitive function and reduces
microglia activation in white matter tracks in a mouse models
of repetitive mild TBI (183). The neuronal expression of pro-
inflammatory mediator complement receptor C5a is upregulated
after mild TBI and is dependent on TNF (184). Mice lacking
a functional alternative pathway of complement activation have
reduced neuronal cell death after mild TBI (185) and removal
of the protective neuronal-derived complement protein CD59,
worsens neurological outcome seven days after mild TBI in
mice (186).

These studies show that, like in humans, inflammation and
microglial activation are prolonged after injury. Animal models
show that the neuroimmune response correlates with cognitive
deficits and may be modified to improve outcome, though
more evidence of causal contribution of the immune system to
behavioral deficits is needed.

Models of mild TBI are continually being refined. Recently, it
was shown that a commonly used inhaled anesthetic, isoflurane,
inhibits microglial ramification and surveillance in vivo (187),
therefore potentially blocking the immediate immune response
of the brain to injury when animals and anesthetized. The issue
of anesthesia is prominent in almost all models of brain injury,
but some have begun to produce concussive injuries in awake,
restrained animals. In awake rats, using an injury paradigmwith a
bespoke helmet, injury produced memory deficits, and microglia
activation after impact verses sham (188). Although, these studies
remove the issue of anesthetic effects on the immune system,
the stress induced by restraint of animals must be considered.
Restrain habituation for the above study was performed for 3
days before injury, and stress induced inflammation may still be
a contributing factor.

The onset and duration of inflammation driven by immune
mechanisms after concussion is likely to play a key role in
pathology. Activation of Toll-like receptor 4 (TLR4), which
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plays a fundamental role in pathogen recognition and activation
of innate immunity, following repeated mild TBI is either
beneficial or detrimental depending on the timing of activation.
Administration of low dose LPS 1 day after injury was associated
with a reduction in neuronal injury, a restoration of levels of
myelin basic protein (MBP) and PSD-95 and no behavioral
changes in locomotion, anxiety, depressive-like behavior or
cognition at 3 months post-injury (189). Conversely, when
LPS was given at 5 days after injury, it was associated with
an acute increase in pro-inflammatory cytokine production,
an exacerbation of neuronal damage and increased levels of
aggregated and phosphorylated tau which led to a slight
exacerbation of cognitive deficits and depressive-like behavior
at 3 months (189). Due to the interest in the immune response
after mild TBI, a natural avenue for therapeutics are anti-
inflammatory treatments. However, modulating the immune
response may require a strict, and yet unknown, time course.
The strength of immune modulation should also be considered.
In a model of AD, it was found that targeting the TLR4
receptor before onset of pathology by inducing either immune
tolerance (4xLPS injections) or immune training/priming (1xLPS
injection), either alleviates later B-amyloidosis with the former,
or makes it worse with the latter (190). Such mechanisms
must be considered when approaching inflammation after mild
TBI, especially considering mild head injury’s convergence with
neurodegenerative disease (89).

In a model of lateral closed-head impact injury that uses
momentum transfer to induce traumatic head acceleration in
unanaesthetised mice, an abrupt onset and rapid resolution of
a concussion-like syndrome is characterized by altered arousal,
locomotor impairments and neurobehavioral deficits (117). The
majority of brains in injured mice (∼90%) had no evidence
of frank hemorrhage or contusion but BBB breakdown was
observed. An increase in the number of microglia and in
infiltration ofmonocytes was observed 3 days after injury, though
this was localized to the impact region (117). Uniquely, the study
presented post-mortem brains from four teenage athletes in the
acute-subacute period after mild closed-head impact injury and
found, among other pathology, perivascular neuroinflammation
in the form of haemosiderin-laden macrophages surrounding a
small blood vessel (117). These data indicate that microglia may
not be the only immune cell contributing to mild TBI pathology,
as monocyte-derived macrophages from the circulation may
enter brain tissue after mild injury, though more data is required
to confirm this as an immune response to mild TBI pathology,
in general.

Repeated mild TBIs cause more significant neurological
damage than a single injury, including longer recovery time and
a higher likelihood of subsequent brain injury (32, 54). It is
hypothesized that priming of the immune response may play
a role. Repeated mild brain injury produces greater microglial
activation, anxiety-like behavior and impaired spatial memory
compared to a single injury, in mice (191). In rats tested
with projectiles and helmets, repeated injury produced a more
significant and long lasting inflammatory response associated
with microglial activation than a single injury (192). Delivering
multiple mild impacts over a shorter inter-injury interval leads

to a more significant acute microglial activation and prolonged
astrogliosis in select regions of the brain, compared to the
same number of administered over a longer time-period (193).
The corpus callosum, hippocampus and lateral septum appear
particularly vulnerable to injury (191, 193) and these areas
may contribute to clinical symptomology, including anxiety
and memory problems (191, 193). Frequent mild head injury
also promotes trigeminal sensitivity with associated microglial
proliferation and increased neuropeptide levels in the trigeminal
pain system (194), which is associated with headaches and
migraine that accompany post-concussion syndrome. In a mouse
model of highly repetitive mild TBI, 30 injuries cause white
matter pathology, and microglial proliferation and activation.
This pathology is present 60 days after final injury, and is still
apparent at 1 year (195).

The Immune Response in Animal Models
of Mild TBI and Alzheimer’s Disease
As discussed above, epidemiological studies associate increased
risk of AD-related clinical symptoms with a history of mild
TBI (2, 26, 33, 35). To investigate the link between mild
TBI and AD, studies have performed brain injury in genetic
mouse models of AD and assessed the neuroinflammatory
response driving pathology and clinical symptoms (196–200). In
APP/PS1 mice that contain human transgenes for both mutated
APP and PSEN1 (201), neuroinflammatory gene expression
is increased seven days after injury and microglia activation
is greater at 2 months in APP/PS1 compared to WT mild
TBI controls (197). Importantly, a small molecule inhibitor,
previously described to selectively limit pro-inflammatory
cytokine production after mild TBI (202), improved cognitive
behavior outcomes in APP/PS1 mice after injury (197). Thus,
providing a link between neuroinflammatory responses and
altered risk for AD-associated pathology changes after mild TBI
(197). Other studies in APP/PS1 mice and mild TBI models
have investigated acute neuroinflammatory outcomes in young
and old mice, however, the interplay between the immune
response and AD-like progression was more complicated as
neuroinflammation is increased in aged WT mice but reduced
in aged APP/PS1 mice (199, 200). In a repeated mild TBI
model (12 injuries in 1 month) and aged APP/PS1 mice, there
was no increase in various makers of microglia activation
1 month after final brain injury compared to sham control
(203). However, there was an increase in brain insoluble to
soluble Aß42 ratio in injured APP/PS1 mice compared with
sham and a parallel reduction in phagocytic receptor, TREM2,
suggesting pathology mediating microglia changes induced by
injury (203). In a transgenic mouse model for human tau
(hTau), acute microglia activation after mild TBI is increased
in both young and aged animals, however, this response is not
as robust in aged animals compared to young, suggesting a
diminished acute microglial response tomild TBI in animals with
established AD pathology (204) and highlights the complicated
nature of priming and tolerance in chronic neurodegenerative
disease (53).

To model subthreshold injury be expected in competitive
contact sports, a 7 days 42-impact paradigm with helmets in
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mice was used to simulate frequent head injury (196). This
paradigm resulted in chronic gliosis and T-cell infiltration
of the superior colliculus and optic tract, with concomitant
demyelination of the optic nerve and associated white matter
tracts 1 month after injury (196). When injuries were performed
in Tau58.4 mice, there was progressive neuroinflammation and
neurodegeneration in multiple brain regions compared to WT
mice. To investigate the role of T-cells in these specific areas
vulnerable to demyelination, T-cell-deficient Rag2/ Il2rg (R2G2)
mice were subjected to the same injury paradigm. R2G2 mice
had altered myeloid cell gene expression and fewer demyelinated
lesions compared to T cell-competent mice. This study suggests
that vulnerable regions known to be affected in CTE, such as
white matter, may be protected by manipulating the immune
system (196).

In summary, animal models of mild TBI are varied, but
extremely powerful tools investigate mechanisms of injury. There
is now a wealth of evidence linking the immune response to
mild TBI and the behavioral and pathological outcomes. This
is fueling many investigations into new therapeutics targeting
these mechanisms.

CONCLUSION

Mild TBI, often referred to as concussion, is the most common
form of traumatic brain injury and can result in insidious effects
including emotional and cognitive dysfunction. In addition, a

history of mild TBI is proposed as a risk factor for longer
term neurodegenerative disease. Despite this, the underlying
pathology is still unclear. Immune activation, and particularly
changes to microglia are associated with human mild TBI and
a variety of animal models of mild brain injury. In many
cases these are descriptive, although evidence suggests immune
activation correlates with cognitive and behavioral symptoms.
Animal studies are beginning to demonstrate a causative role of
the immune system in acute brain dysfunction following mild
TBI. The fact that the immune system is readily reactive, and
can remain active over a long period of time after injury, leaves
open the possibility that an aberrant immune response, driven by
factors that have shown to be important for neurodegenerative
disease, may contribute to the long-term consequences of mild
brain injury.
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