
R E V I E W

Targeted Delivery of Erythropoietin Hybridized 
with Magnetic Nanocarriers for the Treatment of 
Central Nervous System Injury: A Literature 
Review

This article was published in the following Dove Press journal: 
International Journal of Nanomedicine

Chang Ho Hwang

Department of Physical and 
Rehabilitation Medicine, Chungnam 
National University Sejong Hospital, 
Chungnam National University College of 
Medicine, Sejong, Republic of Korea 

Abstract: Although the incidence of central nervous system injuries has continued to rise, 
no promising treatments have been elucidated. Erythropoietin plays an important role in 
neuroprotection and neuroregeneration as well as in erythropoiesis. Moreover, the current 
worldwide use of erythropoietin in the treatment of hematologic diseases allows for its ready 
application in patients with central nervous system injuries. However, erythropoietin has 
a very short therapeutic time window (within 6–8 hours) after injury, and it has both 
hematopoietic and nonhematopoietic receptors, which exhibit heterogenic and phylogenetic 
differences. These differences lead to limited amounts of erythropoietin binding to in situ 
erythropoietin receptors. The lack of high-quality evidence for clinical use and the promising 
results of in vitro/in vivo models necessitate fast targeted delivery agents such as nanocar-
riers. Among current nanocarriers, noncovalent polymer-entrapping or polymer-adsorbing 
erythropoietin obtained by nanospray drying may be the most promising. With the incorpora-
tion of magnetic nanocarriers into an erythropoietin polymer, spatiotemporal external mag-
netic navigation is another area of great interest for targeted delivery within the therapeutic 
time window. Intravenous administration is the most readily used route. Manufactured 
erythropoietin nanocarriers should be clearly characterized using bioengineering analyses 
of the in vivo size distribution and the quality of entrapment or adsorption. Further pre-
clinical trials are required to increase the therapeutic bioavailability (in vivo biological 
identity alteration, passage through the lung capillaries or the blood brain barrier, and timely 
degradation followed by removal of the nanocarriers from the body) and decrease the adverse 
effects (hematological complications, neurotoxicity, and cytotoxicity), especially of the 
nanocarrier. 
Keywords: erythropoietin, nanoparticles, polymers, magnetics, central nervous system, 
regeneration

Introduction
Erythropoietin Biology and Mechanism of Action
Structure
The chemical formula of erythropoietin (EPO) is C815H1317N233O241S5.1 In addition to 
the well-known hematopoietic function, extrahematopoietic actions of EPO have been 
observed in various organs, including neuroprotection in the brain and spinal cord, 
cardioprotection, renoprotection, cytoprotection in the lung and gastrointestinal tract, 
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retinal angiogenesis, and improved male reproductive func-
tion and skeletal muscle bioenergetics.2,3

Phylogenetic Differences in Erythropoietin Genes
While in vitro/in vivo animal experiments on EPO, such 
as murine EPO, have been widely utilized, genetic differ-
ences in EPO can occur among vertebrates, and genetic 
homology should be compared between human and mur-
ine species prior to experiments. The genetic homology 
of mouse EPO with recombinant human EPO (rhEPO) is 
no more than 80% based on nucleotide sequence 
analysis.4 Compared to rhEPO, the genetic homology of 
rat EPO is 79%.5 Additionally, that of monkeys is 
92–94%.6 The diverse conservation (79–94%) of EPO 
in other species relative to rhEPO may be a potentially 
significant difference and may explain why there has 
been a history of difficulties reproducing the results of 
animal studies in humans. Therefore, the selection of 
either EPO of other species or rhEPO should be made 
in accordance with the genetics of the experimental 
species.

Neuroprotective Actions of 
Erythropoietin
Central nervous system (CNS) injuries, such as spinal cord 
and brain injuries, induce severe neurological complica-
tions in the majority of patients, and medical costs related 
to CNS injury have continued to increase for both indivi-
duals and nations over time. Among the numerous thera-
peutic tools under development for CNS injuries,7 EPO 
has been extensively evaluated in brain and spinal cord 
injury models both in vitro and in vivo.8–12 In the presence 
of EPO, neuroprotection or regeneration has been reported 
since the early 2000s.7,10,11,13 However, persistent chal-
lenges have hindered the successful application of EPO in 
the treatment of CNS injuries despite the promising results 
reported at the preclinical level; on nucleotide sequence- 
based phylogenetic analysis, phylogenetically conserved 
vertebrate EPO receptors remain in the human body.14–16 

Regarding neuroprotection, heterogeneous subcomplexes 
have been reported in nonhematopoietic EPO 
receptors.17,18 Furthermore, EPO has a very short thera-
peutic time window (within 6–8 hours) after injury.19–21 

As a result, limited amounts of EPO are expected to arrive 
at the targeted area and to bind in situ EPO receptors on 
time for neuroprotection.

Neuromolecular Cascade
Following primary insults (ischemia, anoxia, hemorrhage, 
contusion, concussion, compression, acceleration, decel-
eration, etc.) in CNS injuries, secondary neuronal insulting 
cascades are always triggered.22 For example, subsequent 
reactive astrogliosis upregulates two kinds of intermediate 
filaments (glial fibrillary acidic protein [GFAP] and vimen-
tin) as well as neuroinhibitory molecules (chondroitin sul-
fate proteoglycans [CSPG])23 and promotes the secretion 
of proinflammatory cytokines (tumor necrosis factor-alpha 
[TNF-α], transforming growth factor-beta [TGF-β], inter-
leukins-1, and interleukins-6).24 Simultaneously, activated 
Rho-associated protein kinase (ROCK) signaling increases 
neuronal cell apoptosis,25 and the upregulated ephrinA4 
pathway prevents axonal regeneration.26

The following neuromolecular cascades are involved 
in the regeneration of EPO for neuroprotection against 
secondary neuronal insults: Janus kinase (JAK2) expres-
sion via signal transducer and activator of transcription 
(STAT), phosphatidylinositol 3-kinase/protein kinase 
B (PI3K/AKT), or Ras-mitogen-activated protein kinase 
(MAPK) signaling following EPO receptor activation. 
These cascades result in altered DNA translation within 
the nucleus for cell survival pathway- or apoptosis path-
way-related protein synthesis (Figure 1);2,19 ROCK 
expression via RhoA signaling and ephrin expression via 
Eph/ephrin signaling for neuroinhibitory cytoskeletal 
molecule (GFAP, CSPG, vimentin) production,23 resulting 
in altered cell migration by actin instability or actin mono-
mer loss;27,28 and TGF-β expression via Smad and Daxx 
signaling for proinflammatory cytokine release; for exam-
ple, TGF-β1 induces an acute inflammatory response and 
glial scar formation, and TGF-β2 maintains the glial 
scar.2,19,29–31

Current Modes of Erythropoietin 
Delivery in Central Nervous System
EPO has been attempted to be administered via the following 
routes:28 intramuscular injection, intestinal implantation 
using patches,32 implantation under the stomach using 
chambers,33 intraperitoneal implantation using hollow 
fibers,34 intrathecal implantation using hydrogels,35 and sub-
cutaneous implantation using microspheres (Table 1).36 

However, all of these methods are currently being investi-
gated for systemic routes in pioneering trials and thus require 
further evaluation prior to discussion about whether these 
routes have any effect on CNS penetration of EPO. 
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Therefore, the author starts by discussing two routes of 
administration that have been widely studied.

Intranasal Administration
In contrast to the aforementioned routes, the nasal admin-
istration of EPO could reach the brain by the olfactory 
pathways, as previously shown in humans for huge pro-
teins, such as the neurotrophic factors. After intranasal 
spraying, therapeutics can bypass the blood-brain barrier 
(BBB) with the help of intracellular axonal, paracellular or 
trigeminal pathways from within minutes to a few 
hours.37,38 A single bolus intranasal administration (10 
µg/10 µL) of rhEPO showed 2- to 5-times greater brain 
uptake than intraperitoneal injection (100 µg/100 µL) 30 
minutes to 12 hours later in mice.39 Moreover, the intra-
nasal provision of recombinant nonhematopoietic EPO 
(0.25–0.5 mg/every 8 hours over 4 days) caused minor 
adverse effects, such as nasopharyngeal itching or head-
ache, in a Phase I open-label trial of safety in 25 healthy 
volunteers in 2017.40 In succession, 5 open-label trials of 
the safety and efficacy of the same EPO have been con-
ducted in stroke, Parkinson’s disease, dementia and 

neurodegenerative disease patients in Cuba (the Cuban 
Registry of Clinical Trials: https://rpcec.sld.cu/en/home).37 

However, these 5 trials have been either pending or 
recruiting since 2014. Moreover, the only published report 
on adverse effects was based only on clinical examination 
and blood tests 5 and 10 days after the end of treatment.40 

Additionally, most intranasal EPO administration trials 
have been sponsored by one biopharmaceutical company 
(CIDEM).

The transnasal delivery of pure proteins is known to 
result in very low bioavailability;41 for instance, the intra-
nasal administration of pure growth hormone showed 
1–3% of the bioavailability achieved by subcutaneous 
injection.39,42 Similarly, in the majority of animal experi-
ments, intranasal EPO administration requires a much 
higher dose of EPO (575–2490 IU/mL) for sufficient 
transnasal delivery to the CNS43–45 than intraperitoneal 
injection (10 IU/mL).46–49 To enhance absorption of ther-
apeutics, various kinds of lipoamino acid colloids have 
been tested; for example, mixing sodium tauro-24,25- 
dihydrofusidate with growth hormone solution could 
improve the bioavailability by 11-fold in rabbits and 

Figure 1 Simplified diagram showing the signaling cascades mediating the nonhematopoietic neuroprotective effects of erythropoietin. Modified with permission from 
Murua A, Orive G, Hernandez RM, Pedraz JL. Emerging technologies in the delivery of erythropoietin for therapeutics. Medicinal research reviews. 2011;31(2):284–309. 
Copyright 2011, John Wiley and Sons.2
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Table 1 Summary of Administration Routes, Advantages, and Disadvantages of Erythropoietin

Route of Administration Author Published 
Year

In vivo 
Model

Remarks

Implantation

Implantation using patches32 Venkatesan, N. Uchino, 
K. Amagase, K. Ito, Y. Shibata, N. 

Takada, K.

2006 Rats Gastro-intestinal patches 
Optimal absorption site of jejunum 

Optimal absorption dose of 100 IU/kg

Implantation 

under the stomach using 
chambers33

Lejnieks, D. V. Ramesh, N. Lau, 

S. Osborne, W. R.

1998 Rats Ring vascularized under the serosa 

Alteration of erythropoietin mRNA 
transcription

Intraperitoneal implantation 
using hollow fibers34

Schwenter, F. Schneider, 
B. L. Pralong, W. F. Deglon, 

N. Aebischer, P.

2004 Mice Xenogenic cells for erythropoietin gene 
therapy 170 IU erythropoietin secretion a day

Intrathecal implantation using 

hydrogels35

Kang, C. E. Poon, P. C. Tator, 

C. H. Shoichet, M. S.

2009 Rats Hydrogel of methylcellulose and 

hyaluronate 80% bioavailability

Subcutaneous implantation 

using microspheres36

Geng, Y. Yuan, W. Wu, F. Chen, 

J. He, M. Jin, T.

2008 Mice Microencapsulated erythropoietin into poly 

lactic-co-glycolic acid microspheres

Intranasal spraying Garcia-Rodriguez, J. C. Sosa-Teste, I. 2009 Humans Easy bypass of the blood-brain barrier37

Chauhan, M. B. Chauhan, N. B. 2015 Mice Greater brain uptake than intraperitoneal 
injection39

Santos-Morales, et al (26 persons) 2017 Humans Minor adverse systemic effects 
Just clinical examination and blood tests 5 and 

10 days after spraying Only one 

biopharmaceutical company sponsor40

Ma, R. Xiong, N. Huang, C. Tang, 

Q. Hu, B. Xiang, J. Li, G.

2009 Rats Very low bioavailability49

Bijani, C. Arnarez, C. Brasselet, 

S. Degert, C. Broussaud, 
O. Elezgaray, J. Dufourc, E. J.

2012 Humans Necessity of absorption enhancers41

Intravenous injection Vitellaro-Zuccarello, L. Mazzetti, 

S. Madaschi, L. Bosisio, P. Gorio, 

A. De Biasi, S.

2007 Rats The most popular administration route in 

neuroprotective studies54

Fisher, J. W. 2003 N/A Application readiness to patients with CNS 

injuries55

Ocampo Daza, D. Larhammar, D. 2018 Vertebrates Significant phylogenetic differences and 

heterogeneity16

Hong, H. N. Shim, J. H. Won, 

Y. J. Yoo, J. Y. Hwang, C. H.

2018 Rats Very short therapeutic time window19

Lippi, G. Franchini, M. Favaloro, 

E. J.

2010 N/A Various hematopoietic complications59

Jelkmann, W. 2004 N/A Short half-life140
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rats.50 Similarly, mixing of lauroyl proline with rhEPO 
increased the relative permeability of pure rhEPO through 
nasal cells in vitro by 3.8- to 12.1-fold.41 However, these 
kinds of colloids can damage nasal cells; sodium tauro- 
24,25-dihydrofusidate irreversibly stops the ciliary move-
ment of nasal epithelial cells in a few minutes.51,52 In 
addition to causing cell damage, it can denature the protein 
structure; adding lauroyl proline could cause a decrease in 
the α-helix content of EPO (39%) and increase the decon-
volution of EPO (76%) in vitro.41

Taking into consideration the aforementioned pro-
blems, whether intranasal administration is the optimal 
route to the CNS remains to be studied.

Intravenous Administration
The intravenous injection of EPO is the most popular 
administration route in humans, and EPO administered in 
this manner has been reported to exert neuroprotective and 
neuroregenerative effects in numerous mouse and rat CNS 
injury models.10,53,54 The worldwide use of EPO in the 
treatment of hematological diseases guarantees that it does 
not need further approval as a new drug; therefore, it can 
be more readily available to patients with CNS injuries 
than other drugs currently under development.55 However, 
both nonhematopoietic and hematopoietic receptors coex-
ist in the human body, with significant phylogenetic differ-
ences and heterogeneity.14–18 When EPO is administered 
intravenously, competition for simultaneous binding to 
heterogeneous complexes of nonhematopoietic EPO 
receptors and hematopoietic EPO receptors, both of 
which are phylogenetically diverse, is expected to begin 
quickly.56 Only limited amounts of intravenously injected 
EPO are anticipated to reach a target area, and escape of 
EPO from binding non-in situ EPO receptors is required 
for efficacy.57,58

The therapeutic time window of EPO has been reported 
to be very short (within 6–8 hours) in CNS injury models 
in vitro and in vivo.19–21 However, transferring patients to 
a hospital within that amount of time following injury is 
very difficult in unpredictable clinical situations. 
Therefore, the small amount of high-quality evidence sup-
porting the efficacy of its clinical use and the promising 
in vitro/vivo model results demand the development of 
novel delivery methods.

Because of its hematopoietic action, hematopoietic 
complications have been reported, including thrombosis, 
upregulated viscosity, and teratogenicity.59 Even though 
the intravenous administration of EPO is already available 

to patients, methods to avoid these adverse events should 
be sought prior to clinical application. Potential solutions 
to this complex problem are reviewed in the discussion 
section.

Innovative Methods for 
Erythropoietin Delivery in Central 
Nervous System Injury
Targeted Delivery
To improve the clinical feasibility of EPO by combating 
its short therapeutic time window, ensuring the quick 
targeted delivery of EPO to an injury site is critical. 
Carriers for the targeted delivery of therapeutic agents 
have been extensively evaluated since the late 1970s.60 

However, few reports have described the targeted delivery 
of EPO in the context of CNS injury; in fact, indirect 
methods, such as epicortical implantation following cra-
niotomy and delivery61 and crossing the BBB with the aid 
of focused ultrasound sonication using microbubbles, have 
been described.20 As a direct method, the use of nanocar-
riers has gained popularity in general medical fields since 
the report by Patel5,6 et al in 2006.60 However, prior EPO 
nanocarrier trials did not examine targeted delivery but 
rather examined only the additive/synergistic effects of 
EPO and nanocarriers.62–65

Nanocarriers
Nanoparticles are defined as those of any shape measuring 
from 1 × 10−9 m to 1 × 10–7 m (Table 2). Although 100 nm 
is the limit of differentiation from macromolecules, other 
characteristics, such as filtration capability, dispersion, and 
transparency, should be considered to allow the nanopar-
ticle classification to extended to approximately 500 nm. 
In addition, fibers and tubes under 100 nm in 2 dimensions 
can be included in this classification.66 As biotechnologies 
for targeted therapeutic delivery have advanced, the word 
“nanoparticle” is often interchangeable with the words 
“nanocarrier”, “smart nanoparticle”, and “nanobot”. In 
my opinion, nanocarriers are preferred for targeted EPO 
delivery. Among them, magnetic nanocarriers refer to any 
nanoparticles exerting magnetic properties,67 and this spe-
cific characteristic is reviewed in the next section in detail. 
As drug carriers, their biocapability of staying in the blood 
or serum for prolonged amounts of time and their complex 
surface, which guarantees longer EPO exposure and a high 
contact ratio with EPO receptors, can be useful to improve 
the efficacy of targeted EPO delivery.68 Moreover, smaller 
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than other biologic structures (proteins: <100 nm; viruses: 
<450 nm; cells: <100 nm), their size can be another 
advantage, leading to fewer dimensional obstacles in 
regards to their delivery in physiologic conditions in 
cases for targeted delivery using their biologic 

fundamentals (for example, magnetic property) as 
a navigational power.69 The enhanced efficacy of targeted 
drug delivery has been reported in the context of combin-
ing magnetic field-sensitive magnetic nanocarriers with 
drugs.67

Table 2 Summary of Targeted Nanocarrier Drug Delivery Studies

Crosslinking Carrier Drug Polymer Remarks

Covalent Ionotropic gelation Double- 
stranded siRNA

Natural Dextran sulphate Significant drug loss during preparation 
Poor stability in response to biological 

changes 98% entrapment efficiency73

Polymer conjugates Doxorubicin Synthetic N-(2-hydroxypropyl) 

methacrylamide

Enhanced permeability and retention effect, 

but unstableness under inflammatory 

conditions87 No biodegradability of 
N-(2-hydroxypropyl) methacrylamide 

backbone88

Noncovalent N/A N/A Synthetic Polyethylene glycol The most commonly used synthetic 

polymers for medical purposes70

N/A N/A Synthetic Poly-L-lysine, poly ε- 

caprolactone, poly 
L-lactide, 

polyethylenimine, and 

polyacrylic acid

Alternatives to polyethylene glycol74

Nanocapsule  

(Fe3O4)

Erythropoietin 

receptor cDNA

Synthetic Poly-lactic glycolic acid Upregulated pulmonary erythropoietin 

receptor expression65

Cisplatin Natural Dextran/hyaluronic acid 

hybrid

Dose-dependent apoptosis77

Nanocapsule Erythropoietin Synthetic Poly-lactic glycolic acid Penetration of the blood brain barrier 

Reduced infarcted volume67

Nanosphere  

(Fe3O4)

Rapamycin Natural Carboxymethyl chitosan Enhanced cellular uptake76

Nanofilm N/A Natural Sodium alginate Improved thermal stability75

Core- 

shell-matrix (Fe3O4)

Mitoxantrone Allogeneic Fatty acid/albumin hybrids Improved biocompatibility78

Liposome Glucocorticoids Natural Phosphatidylcholine Higher potency and long lasting, but slow 

release81 Neuroprotection in Parkinson’s 
disease rat model82

Synthetic Polyethylene glycol-poly ε- 
caprolactone

Serious activation of the complement 
system86

Micelles Doxorubicin Natural Palmitic acid Enhance drug loading, but modest 
activation of the complement system84

N/A N/A N/A Improved target specificity using 
hydrophilic corona85

Dexamethasone Synthetic Polyethylene glycol-poly ε- 
caprolactone,

Improved water solubility in spinal cord 
injury rat model89
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Among the currently available nanocarriers, liposomes, 
micelles, conjugates, nanospheres and nanocapsules are 
commonly utilized, and the last two involve entrapment 
or adsorption on the surface. Noncovalent and covalent 
crosslinking have been used to manufacture nanocarriers 
(Figure 2).70–72 For covalent nanocarrier manufacturing, 
polymers are incorporated into therapeutic materials using 
ionotropic gelation or covalent crosslinking. However, 
both of these methods have pitfalls, such as significant 
drug loss during preparation or poor stability in response 
to biological changes (eg, ionic strength and pH).73 For the 
manufacture of noncovalent nanocarriers, polyethylene 
glycol (PEG) polymers are the most commonly used syn-
thetic polymers for medical purposes,70 but poly-lactic 
glycolic acid (PLGA), poly-L-lysine (PK), poly ε- 
caprolactone (PCL), poly L-lactide, polyethylenimine and 
polyacrylic acid can be used as alternatives to PEG.65,67,74 

As a natural carrier, a biodegradable nontoxic polymer, 
such as sodium alginate (α-L-guluronic acid units and 
(1,4)-linked β-D-mannuronic acid units),75 carboxymethyl 
chitosan76 or a dextran/hyaluronic acid hybrid77 can also 

be used. In the form of allogeneic carriers, fatty acid/ 
albumin hybrids (nanocarriers coated by lauric acid and 
then shielded by albumin) could potentially be used.78

A liposome is a spheroid consisting of a phospholipid 
bilayer allowing the containment of both lipophilic and 
hydrophilic drugs in their luminal space.79 To improve 
their characteristics, such as half-life and stability, the 
surface can be modified using noncovalent polymer 
preparations.80 As another advantage, liposomes have the 
capability to constantly release the contained drugs over 
a very long time.81 Nevertheless, this kind of slow release 
is not appropriate for EPO nanocarriers in the case of CNS 
injury due to the short therapeutic time window of EPO. 
Therefore, these nanocarriers have been applied mostly in 
cancer and rheumatoid arthritis models, and only two trials 
have been conducted with stroke and Parkinson’s disease 
models.82,83 Moreover, this approach can trigger serious 
activation of the complement system, resulting in coagu-
lopathies such as thrombosis or bleeding tendencies.

Micelles are classically made by the self-assembly of 
amphiphilic supramolecular copolymers in aqueous solution; 

Figure 2 Types of nanocarriers for targeted drug delivery Modified with permission from Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug 
delivery: pros and cons as well as potential alternatives. Angewandte Chemie (International ed in English). 2010;49(36):6288–6308. Copyright 2010, John Wiley and Sons.70 

Modified with permission from Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B, Biointerfaces. 
2010;75(1):1–18. Copyright 2010, Elsevier.72
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linear polymer, star-shaped polymer, and especially dendritic 
polymer delivery carriers can but do not necessarily involve 
micellar formation.84 As usual, these micelles are composed 
of a hydrophobic core containing drugs and a hydrophilic 
corona modifiable by noncovalent polymer preparations for 
improved target specificity.85 However, no trials have been 
conducted in neuronal cell-specific models. Moreover, this 
approach can evoke complement system activation, resulting 
in complications similar to those of liposomes, but to a lesser 
degree.86

In polymer conjugates, drugs have to covalently bind 
to the polymer backbone with the help of a linker, leading 
to stable conjugates in serum or blood. However, the 
conjugates can be unstable under inflammatory 
conditions,87 so their application may be hindered in the 
hyperacute or acute inflammatory period after CNS injury. 
Because covalent binding to the backbone copolymer can 
be achieved through various kinds of linkers, such as pH-, 
light-, enzyme- or redox-sensitive liners, drugs can be 
released under the anticipated conditions.88 As 
a backbone material, N-(2-hydroxypropyl) methacryla-
mide (HPMA) has been mostly used, but it is not 
biodegradable.81 Moreover, just one trial has been con-
ducted in a CNS injury model,89 so such nanocarriers 
require further evaluation prior to discussion as targeted 
carriers to the CNS.

The spray-drying technique has evolved to be applied 
in the manufacture of noncovalent polymer-drug nano-
spheres/nanocapsules since the report by Kala et al in 
1979.90 Currently, polymer-entrapping or polymer- 
adsorbing drugs can be fabricated on a surface even with-
out the assistance of particles.91 In detail, nanospray dryers 
consist of a pulsating casing in a spray nozzle (to atomize 
the feeding materials) and an end product gathering 
accumulator.92 The dried end products are retrieved from 
a chamber with a powder scraper. Nanospray dryers are 
well known to have high yields (approximately 70%).93 

Moreover, with the spray-drying technique,61,62,66,68 

nanospray dryers can achieve the one-step manufacturing 
of EPO nanospheres/nanocapsules through noncovalent 
entrapment or adsorption by biodegradable polymers.94

Spatiotemporal65 Magnetic Navigation
One hundred years have passed since the “magic bullet” 
concept was first introduced by Paul Ehrlich.95 Various 
kinds of magnetic navigation systems for targeted drug 
delivery have evolved, and promising results have been 
reported; for example, greater intravenously injected drug 

localization was achieved using commercialized ferro- 
nanocarriers (Fe3O4 superparamagnetic iron oxide nano-
carriers [SPIONs]) under magnetic navigation (66.3%) 
than without magnetic navigation (1%) in a rabbit cancer 
model.87,96 Based on the aforementioned findings, nano-
carriers can be delivered in a targeted manner to a CNS 
injury site and exclusively localized within the CNS injury 
site, permitting their escape from competitive binding to 
non-in situ EPO receptors. Usually, no more than five 
minutes are required for blood from the heart to systemi-
cally circulate throughout the whole body of adult humans 
one time; thus, magnetic control provides nanocarriers 
with approximately 100 passive chances to reach the 
injured area within the therapeutic time window of EPO 
(6–8 hours), which can even be potentiated by the dual 
magnetic-catalytic actions of nanocarriers.97 Once nano-
carriers reach the injured area under a magnetic field, the 
nanocarriers may remain in situ at a high density through 
mutual magnetic force. However, in terms of magnetic 
navigation to a site of CNS injury, no trials of EPO 
nanocarriers87 among dozens of nanocarrier trials have 
been reported, so the following review involves to discus-
sion of nanocarrier-mediated drug delivery to various 
organs as well as to the CNS.

Internal methods consisting of magnetic implants, eg, 
ferric steel placed in the subarachnoid space for intrathecal 
delivery,98 have been applied to reduce the systemic toxi-
city of nanocarriers. Epidural ferro-nanocarrier implants 
showed a high collection rate within the targeted area 
(891%) in a human spine model.99 However, both inade-
quate drug delivery and invasiveness remain limitations.91 

To achieve improved internal spatiotemporal navigation of 
administered drug-loaded ferro-nanocarriers, the combina-
tion of magnet implantation into blood vessels and the 
external application of a magnetic field showed a high 
targeted delivery rate (no less than 60%).100 Based on 
Halbach arrays of magnets101 and Earnshaw’s 
theorem,102 internally located magnetic forces could be 
created with dynamic magnetic fields at deep locations 
in vitro,100,103 such that the external application of 
a magnetic field for internal navigation is more relevant 
than before. The external application of a magnetic field 
has been widely investigated as a useful targeted delivery 
strategy for paramagnetic nanocarriers, ranging from 
in vitro experiments to near clinical validation studies.67 

To gain high targeted delivery efficacy, a field strength of 
200–700 mT and a gradient of 8–100 T/m should be 
provided, depending on the speed of blood circulation.69 
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Additionally, the external application of a magnetic field in 
a pulsed (on/off) mode was preferable to that in a constant 
mode in a mouse Alzheimer’s disease model.104 External 
magnetic navigation has been extended in terms of applic-
able forms; for instance, magnetizable aerosols can be 
delivered in a targeted manner to a specific area within 
the lungs through inhalation with the aid of nebulizers.105 

Although the aforementioned results are technically pro-
mising, it may still be challenging to maintain magnetic 
traps more than 2 cm deep in animal and human tissues 
under the external application of a magnetic field.69,103

Similar to external magnetic field applications, external 
magnetic resonance navigation can be applicable. 
Magnetic resonance imaging (MRI) machines can easily 
focus the location of the magnetic field to any area within 
the human body with a high magnetic flux density (no less 
than 1.5 T). If nanocarriers can be under the control of an 
external magnetic concentrator with the aid of multiple 
rewinding helix/multiangular coils, they can be delivered 
to a targeted area under an internally focused magnetic 
field.106 The direction of ferro-nanocarriers can be remo-
tely controlled using an external magnetic field gradient at 
a high velocity of up to 8 mm/s.97 Furthermore, the swarm 
actuation of ferro-nanocarriers can be controlled in blood 
plasma or whole blood at no more than 30 μm/s with a 10° 
pitch angle, and their targeted navigation has been demon-
strated ex vivo in a bovine eyeball using 3-axis Helmholtz 
electromagnetic coils.107 In an in vivo experiment, multi-
functioning drug ferro-nanocarriers could be delivered to 
pathological lesions within the brain under magnetic reso-
nance navigation in a rat brain tumor model.108

For spatiotemporal magnetic navigation, any magnetic 
subject can be incorporated into drug delivery carriers; exam-
ples include magnetosomes in Magnetospirillum species109 

and various kinds of nanocarriers. Nanocarriers of the follow-
ing materials have been investigated since the report by Marty 
et al in 1978:110 gold, silver, carbon, and metal oxides, such as 
TiO2, ZnO, Fe3O4, Fe2O3, Al2O3, and CrO3

105,111 Both Fe3O4 

and Fe2O3 are known to be superparamagnetic, and the others 
are paramagnetic.67 As superparamagnetic nanocarriers, 
maghemite (γ-Fe2O3) and magnetite (Fe3O4) are most com-
monly used because of their good tolerance.107,112 To synthe-
size nanocarriers, a chemical coprecipitation method is 
commonly used.113,114 As alternatives, ultrasound irradiation, 
hydrothermal, solvothermal, microemulsion and thermal 
decomposition methods can be used.68 It is advantageous that 
nanocarriers can pass through the BBB successfully under 
magnetic control, as demonstrated in rat models in vivo.104,115 

In the presence of organic materials such as polysaccharides 
and fatty acids, colloidal nanocarriers in solution exhibit the 
added benefit of stability during targeted delivery. Even though 
some of the materials listed have fairly weak magnetic proper-
ties, nanocarrier magnetization could be augmented through 
close proximity in the aforementioned manufacturing meth-
ods; for example, magnetization increases by no less than 
5-fold in nanospheres compared to single superparamagnetic 
iron nanocarriers.116 As an alternative, an internally focused 
magnetic concentrator can be applied at a high magnetic flux 
density of up to 8 T in adults and 4 T in children according to 
the FDA guidelines.103,117,118 Furthermore, to compensate for 
poor navigation due to weak magnetic properties, dual mag-
netic-catalytic actions can be useful; for example, O2 bubbles 
produced by ferro-nanocarriers catalyzing the breakdown of 
H2O2 can generate trajectory propulsion of nanocarriers in 
biological fluids, the direction of which can be controlled by 
a magnetic field gradient.97 In addition to functioning as 
a magnetic mediator, nanocarriers can promote neuronal dif-
ferentiation, improve neuronal survivability, and stimulate 
neuronal regrowth such that they can act as neuroregenerators 
or protectors by themselves.119 Moreover, the combination of 
EPO and nanocarriers showed a neuroprotective effect that 
was no less than 10-fold that of rhEPO in a hypoxic rat 
model.64 The synergistic/additive effects of EPO and nanocar-
riers have been observed in EPO-loaded nanocarrier targeted 
delivery trials.62–64 Although the molecular mechanism of 
neuroprotection by solitary or incorporated nanocarriers has 
not yet been precisely elucidated, the targeted delivery of EPO 
using magnetic nanocarrier navigation may be a more war-
ranted delivery method than that with other magnetic media-
tors, such as magnetosomes.120

Contrary to the aforementioned advantages of passive 
magnetic navigation, magnetotactic bacteria, such as 
Magnetococcus marinus MC-1, could be attached to drug 
nanocarriers for active propelling without additional pro-
pulsion appendages. This approach could be applicable in 
the treatment of difficult-to-reach lesions, such as hypoxic 
regions within solid tumors.121

Characterization of Erythropoietin 
Nanocarriers
Scanning Electron Microscopy and 
Transmission Electron Microscopy
Following the combination of EPO and nanocarriers, the 
physical characteristics of each component, such as mor-
phology and size, can be changed. A nanocarrier can be 
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visually evaluated using transmission electron microscopy 
(TEM) or scanning electron microscopy (SEM). For exam-
ple, differences in the diameter of a ferro-nanocarrier 
(approximately 10 nm)122 and the diameter of EPO 
(approximately 4.2 nm)55,123 can be visualized using 
SEM and TEM. Furthermore, visual differentiation of 
EPO and nanocarriers was achieved by Beh et al using 
TEM.124

Fourier-Transform Infrared Spectroscopy
With the aid of Fourier-transform infrared spectroscopy (FT- 
IR), the adsorption of EPO on the surface of nanocapsules/ 
nanospheres can be confirmed by assessing the characteristic 
peaks; for example, the FT-IR spectrum of a ferro- 
nanocarrier shows a peak at 598–628 cm−1 for Fe-O, con-
firming nanoparticle adsorption.125,126 Another peak at 
approximately 1632 cm−1 indicates the presence of hydroxyl 
groups (O-H bending) on a ferro-nanocarrier. These findings 
confirm the presence of Fe(OH)2 on the nanocapsule/nano-
sphere surface.127 In the characteristic FT-IR spectrum of 
EPO, the S-H peak at 2414 cm−1 demonstrates the presence 
of the sulfhydryl group of free cysteine at position 31, con-
firming EPO adsorption on the surface.128

Thermogravimetric Analysis
For the determination of incorporation efficiency, thermal 
stability with phase transitions can be analyzed in terms of 
the portion of decomposition and weight loss using ther-
mogravimetric analysis (TGA); for example, nanocarriers 
can be synthesized from inorganic materials such that no 
characteristic weight loss occurs.129 However, a large sin-
gle weight loss step representing the decomposition of 
polymer chains can occur in the examination of well- 
entrapped polymer nanocarriers by TGA.130

Methods to Monitor Effectiveness of 
Magnetic Navigation
Magnetic navigation can be readily confirmed in vitro 
using soft lithography, especially using 2- or 3-dimen-
sional furcated microchannels, which are commonly com-
posed of polydimethylsiloxane and used to simulate blood 
vessels.100 The migration of nanocarriers coupled with 
fluorescent microbeads or antibodies into a chamber 
under a magnetic field confirms this navigation.94 As an 
alternative, nanocarriers can be trapped in an artificial 
glass capillary; for example, magnetic nanocarriers can 
be trapped by switching on an external magnet.106 In 

addition to several kinds of nonhistological in vivo 
approval using MRI,131 there have been few reports on 
ex vivo histological demonstrations of external magnetic 
navigation. Drugs conjugated with nanocarriers show 
a controllable organ distribution; for example, magnetite 
nanocarriers were guided into rat mesenteric microvessels, 
and the organ-specific distribution of magnetite nanocar-
riers was measured by magnetometry in a mouse 
model.106,132 Preferably, ex vivo necropsy should be con-
ducted following the tagging of fluorescence microbeads 
or antibodies to the nanocarriers. Following the approval 
of external magnetic navigation methods, parameters such 
as the exposure time to the magnetic field, magnetic field 
strength (A/m), and magnetic flux density (T) should also 
be optimized under in vitro/vivo conditions.

Troubleshooting
Alteration in Synthetic and in vivo 
Biological Identity
Thermal Stability
During noncovalent nanocarrier manufacturing via 
a nanospray dryer, the temperature of the inlet is usually 
set to approximately 120°C so that the nanocarrier can 
undergo a heat-induced morphological alteration.133 

However, the temperature of the outlet is set to approxi-
mately 40°C, and end products are stored in a desiccator at 
a temperature of 25°C, allowing them to be exposed to 
heat for a relatively short time at a pressure of 28 mbar.93 

EPO maintains thermal stability up to 56°C through car-
bohydrate tagging. Moreover, EPO displays reversible 
denaturation below 75°C, allowing recovery of its confor-
mational stability following cooling.134 However, confir-
mation of the stability of the nanocarrier/EPO 
conformation and preservation of the neuroprotective 
effects in vivo may be necessary prior to the start of 
clinical trials.

In vivo Aggregation and Phagocytosis by the 
Mononuclear Phagocyte System
Biological fluids such as serum and plasma can cause 
nanocarriers to aggregate in vivo.111 As a result, nanocar-
riers are engulfed by mononuclear phagocyte systems and 
removed from the body, thus prohibiting their localization 
to an injured area and the exertion of their neuroprotective 
and regenerative actions. Furthermore, nanocarrier aggre-
gation and/or engulfment by mononuclear phagocyte sys-
tems may cause microthrombotic foci. Prior to clinical 
application, nanocarriers should be evaluated in terms of 
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in vivo aggregation, which can be readily achieved by 
TEM or dynamic light scattering (DLS) using measure-
ments of the nanocarrier size distribution following incu-
bation in biological fluids.

Moreover, upon the exposure of nanocarriers to phy-
siological conditions, numerous kinds of proteins quickly 
attach to their surface and form a protein corona.111,135 As 
a result, the biological identity of nanocarriers can be 
modified such that opsonin-marked nanocarriers are pha-
gocytized by mononuclear phagocyte systems.136 

Especially in the CNS, nanocarriers are typically engulfed 
by microglial cells,137 and coating nanocarriers with PEG 
is the most popular method to prevent nonspecific protein 
adherence and subsequent phagocytosis.138 Similarly, var-
ious kinds of polymer coatings may be useful to prohibit 
the removal of nanocarriers by mononuclear phagocyte 
systems before they approach the targeted area.136

Spontaneous or Artificial Degradation of 
Nanocarriers into Subcomponents
To date, the targeted delivery of EPO represents 
a departure from approaches focusing on the sustained, 
slow release of EPO from nanocarriers in most 
trials.57,58,62 Whereas most EPO nanocarriers sponta-
neously break down, the noncovalent crosslinking stability 
of an EPO polymer can be maintained for a very long 
time; for example, this stability can be maintained for up 
to 8 weeks in the case of EPO entrapped in gelatin 
microspheres.139 In contrast, the half-life of conventional 
rhEPO is 6–8 hours,140 and the peak presence of rhEPO in 
the cerebrospinal fluid (CSF) occurs 2 hours after intrave-
nous administration.53 For optimal neuroprotection or 
regeneration, both the spontaneous breakdown of nanocar-
riers and the physiological nature of EPO must be 
balanced simultaneously.

Electrical charge can accumulate in specific solid mate-
rials such as crystals and ceramics in response to an 
applied mechanical force; this is known as the piezoelec-
tric effect.141 This phenomenon can occur in nanocarriers 
such that electrical energy can be harvested from compres-
sive stress.142,143 Similar to heat production by ultrasonic 
waves during physiotherapies, the inverse piezoelectric 
effect can be induced, leading to heat production. The 
alternation of a high-frequency magnetic field potentially 
produces motion among nanocarriers.138 Through this kind 
of inverse piezoelectric effect, the rapid movement of 
nanocarriers creates internal heat (thermal conversion),137 

which can weaken the strength of noncovalent polymer 

crosslinking and accelerate the degradation rate,133,144 thus 
allowing for potential control over the EPO release rate. 
Moreover, the application of an alternating magnetic field 
over only the target area can prohibit the unintended 
breakdown of nanocarriers by heat conversion at non-in 
situ areas during delivery. As an alternative to thermal 
conversion, preconditioned sonication can be utilized, but 
this weakens the stability of noncovalent polymer cross-
linking, resulting in release earlier than expected.145

However, prior to clinical application, parameters such 
as intensity (W) and exposure time should be optimized 
depending on the type of biodegradable polymer and 
whether the nanocarrier is being utilized under in vitro or 
in vivo conditions.

Removal of Nanocarriers by the Mononuclear 
Phagocyte System After Breakdown
Due to the foreign body nature of nanocarriers, they 
should be removed from the body following breakdown 
of the EPO nanocarriers. Because the same cell-surface 
receptors responsible for macrophage phagocytosis are 
expressed by J774A.1 cells, they have been widely used 
as a model for pathogen clearance.146 The total phagocy-
tosis rate of nanocarriers compared to that of EPO nano-
carrier formulations can be calculated by inductively 
coupled plasma atomic emission spectroscopy.147 

However, phagocytosis is only a potential step in the 
process and does not equate with elimination. There have 
yet to be reports on the complete elimination of nanocar-
riers from the human body.

Biological Requirements for High 
Bioavailability Treatment
Passage Through the Lung Capillaries
For systemic redistribution from the left ventricle, every 
EPO nanocarrier must be sufficiently small to pass through 
the lung capillaries. The lung capillary diameter varies 
depending on the species as follows: 3.0 to 13.0 µm in 
mice and rats and approximately 6.3 µm in humans.148,149 

As nanomaterials, nanocarriers measure from dozens to 
hundreds of nanometers in size;85 for example, the dia-
meter of a ferro-nanocarrier not approved for magnetic 
navigation is approximately 10 nm in vivo122 or 30 nm 
in vitro,76 and that of one approved for magnetic reso-
nance or magnet-assisted navigation is 20–30 nm in vitro-
150 or up to 100 nm in vivo.116 rhEPO is a light 
glycoprotein that is very small in size (30,400 Da),55 and 
its minimum diameter has been calculated to be 4.2 nm 
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using Erickson’s equation.123 Regarding assembled pro-
ducts, the diameter of ferro-nanocarriers encapsulated by 
carboxymethyl chitosan was 500–600 nm in vitro.150 The 
mean diameter of EPO ferro-nanocarriers was approxi-
mately 500 nm (100–875 nm).94 Both of these materials 
were approved for magnetic navigation. Therefore, the 
diameter of EPO nanocarriers is expected to be much 
smaller than that of lung capillaries. However, on the one 
hand, it is important that the nanocarriers are small enough 
to be efficiently distributed to the tissues; on the other 
hand, it is important to remember that a certain amount 
of iron should be incorporated in order to allow respon-
siveness to the magnetic field.151 Iron is the component 
that is mainly implicated in causing the enlargement of the 
core of paramagnetic nanocarriers.

Passage Through the Blood Brain Barrier
To bind in situ EPO receptors inside the brain or spinal 
cord, BBB penetration after entering the systemic circu-
lation is required. Following intravenous administration, 
EPO was observed in the same amounts as simulta-
neously injected mannitol for up to 8 hours in the CSF 
through the cisterna magna in a rat model.53 

Furthermore, chemical group-tagged EPO can also pene-
trate the BBB; for example, carbamylated EPO has been 
observed in the CSF for 4 to 24 hours following intra-
venous injection in a rat model.54 Similar to EPO, 
nanocarriers can be transported through the BBB spon-
taneously in rat or mouse models in vivo;115,152 for 
example, gold nanocarriers were observed at levels of 
0.3–0.6 µg/1 g brain tissue/1 mg nanocarrier (up to 3.2 
µg) in the frontal cortex, hippocampus and hypothala-
mus 24 hours after intraabdominal injection and 
0.16 mg/L/60-105 mg nanocarrier in CSF 6 hours after 
injection in rats.115 In addition, the BBB penetration of 
nanocarriers can be augmented with the aid of receptor 
targeting153 or the application of implanted or external 
magnets67,104,116 or externally focused ultrasound154 in 
rat or mouse models in vivo. Furthermore, nanocarriers 
such as solid lipid nanoparticles, liposomes, and poly-
meric micelles are also known to transport drugs to the 
brain.115 However, their limited BBB penetrability may 
confer them with an insufficient capacity to transport 
EPO to the brain. Further, efficient applicability in 
humans remains to be studied because nanocarrier 
dimensions can still be too big for crossing the BBB 
without eliciting side effects, such as further 
neuroinflammation.

Hemotoxicity, Neurotoxicity, and 
Systemic Toxicity
Carbamylated EPO does not bind to hematopoietic EPO 
receptors, and hematopoietic activity can be precluded151 

while neuroprotection is still provided in a cerebral infarc-
tion rat model.54 Therefore, hematological complications 
can be avoided through the use of tagging chemical groups 
onto EPO. As an alternative to carbamylated EPO, mutant 
EPO (EpoR76E and EpoS71E),155 EPO without sialic 
acid,37 or synthetic EPO (Epobis)156 can be tried.

To investigate the in vitro neurotoxicity of drug nano-
carriers, the SH-SY5Y line, a human-derived neuronal cell 
line, has been commonly used,157 while PC12 and micro-
glial cell lines can be used as alternatives. Measurements 
of neurotoxicity may be needed in both the form of solu-
tion and particles. Moreover, irrespective of its well- 
known neuroprotective actions, a high concentration of 
EPO beyond a certain limit can be cytotoxic.11,19,158 

Although EPO exhibited the dose-dependent neuroprotec-
tion of spinal neurons, cortical neurons, and hippocampal 
neurons up to 100 IU, a higher concentration (200–300 IU) 
exerted impaired effects.11,158 Considering several reports, 
the optimal concentration of EPO for nanocarrier fabrica-
tion under in vitro conditions is approximately 10 IU/mL 
(0.000084 mg/mL).46–49 However, the amount of neuro-
protection or regeneration provided by EPO is dependent 
on the nature of neuronal cell injury. Furthermore, the 
threshold may be dependent on numerous variables, such 
as the cell type, in vitro/in vivo experiment type, and 
species type.48 Individualization may be needed in every 
in vivo trial in vertebrates, especially humans. Regarding 
the in vitro/in vivo neurotoxicity of nanocarriers, neuroin-
hibitory effects of several kinds of nanocarriers (silver 
nitrate, copper oxide, graphene, quantum dots, and carbon 
nanotubes) have been observed in neural and neuropro-
genitor cells and rat and mouse models such that increased 
neuronal damage and decreased neuronal population can 
occur.119

In terms of the in vitro cytotoxicity of EPO nanocar-
riers, biodegradable polymers and EPO have been widely 
applied in humans. However, literature documenting con-
cern regarding the cytotoxicity of nanocarriers has been 
increasing;157,159 for example, ferro-nanocarriers at 
a density of 100 mg/L showed 5% lethality after 24 
hours of incubation in cell models of parasitic 
species.122,133 Although it has been claimed that there is 
no systemic toxicity from granular biodurable 
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nanocarriers,160 many studies showing concern regarding 
the in vivo systemic toxicity of nanocarriers have been 
performed.159 For the systemic toxicity of nanocarriers, 
many kinds of physicochemical and molecular mechan-
isms are involved; for instance, altered intracellular cal-
cium homeostasis and oxidative stress-mediated cellular 
events lead to cell proliferation suppression, cell cycle 
interference, and cell damage.161,162 Moreover, the pre-
sence of nanocarriers may cause immune reactions in the 
CNS,137 which may need to be tested in various cell types, 
as no details regarding cell type were reported.

Regarding the in vivo systemic toxicity of EPO nano-
carriers, the following model organisms have been tested: 
yeast (Saccharomyces), Drosophila, Caenorhabditis ele-
gans, zebrafish, mice, and monkeys.163 Among vertebrate 
organism models, zebrafish, vertebrates with highly con-
served signaling pathways and genomic homology with 
humans (approximately 75% similarity), have recently 
gained popularity.163,164 The hatching of zebrafish eggs is 
very rapid, and their larvae can feed themselves 120 hours 
after fertilization.165 Because of the transparent embryos, 
the organs are readily observable in vivo from the initial 
larval stages.166 Several techniques can be explored, such 
as analyzing hatching achievement, observing organ and 
embryo malformation in development, in vivo imaging 
using microcomputed tomography, examining live biosen-
sors such as the skin and gills, and analyzing swimming 
behavioral kinetics, reproduction, genotoxicity, neurotoxi-
city, and immunotoxicity.163 Finally, ex vivo necropsy 
should be conducted depending on the hematopoietic and 
nonhematopoietic systems to evaluate the tissue/organ- 
dependent deposit rate and tissue toxicity of the EPO 
nanocarriers.

Future Outlook
In 2013, approximately 7.6 billion US dollars were spent 
on the nanotechnology business, and this number is 
expected to increase to 1 trillion US dollars in 2020.167 

Moreover, 1814 nanoparticle products were commercia-
lized by 2013.168 However, in terms of medically com-
mercialized application for human beings, their 
disadvantages (scale up, human safety, technical limita-
tions, regulatory policies, etc.) must be remedied prior to 
Food and Drug Administration (FDA) and European 
Medicines Agency (EMEA) approval. Although the con-
cept of magnetic navigation in medicine was suggested 
by Freeman in 1960,169 related technologies have been 
utilized since the 2010s. Despite numerous studies 

reporting successful magnetic nanocarrier-mediated tar-
geted drug delivery, none reach beyond the feasibility or 
proof-of-concept due to this technical limitation, and the 
majority of in vivo trials remain restricted to small- 
animal models. To date, only a few medical trials using 
magnetic nanocarriers are ongoing; among them, few 
trials are being conducted in patients with CNS diseases, 
and no trials of targeted EPO delivery are being 
conducted.103 Apart from targeted drug delivery, no com-
mercialized magnetic nanocarriers have successfully 
been applied to humans except for several iron oxide 
nanocarriers (SPION compounds: Feridex® in the USA 
[Berlex Laboratories], Endorem™ in the EU [Guerbet S. 
L.], Resovist® in the EU [Bayer Healthcare], Combidex® 

in the USA [AMAG Pharmaceuticals], etc.), which were 
approved for only diagnostic aids and not for therapeutic 
treatment.67,170 Nonetheless, approval of Rienso®/ 
Feraheme® for intravenous replacement of iron in 
patients with chronic renal failure may provide a good 
chance to monitor the systemic toxicity of 
nanocarriers.120 For technical handicaps, maintaining 
a constant magnetic field in deep tissues in a precise 
manner will be another challenging issue regarding the 
magnetic navigation of EPO nanocarrier complexes. To 
overcome these complicated barriers to commercializa-
tion, multimodal disciplinary research team consisting of 
doctors, chemicophysicists, biologists, bioengineers, and 
pharmacologists is warranted to determine the ideal para-
meters (nanocarrier type, dosage, delivery/navigation 
hardware, etc.). Finally, regulatory policies for these pro-
ducts, which are highly variable among countries, ran-
ging from no regulation (neither drug nor medical 
equipment in very undeveloped countries) to no permis-
sion (either very limited drug approval or no approved 
medical equipment in the EU and the USA), are another 
handicap that must be remedied for successful 
commercialization.

Conclusion
EPO is known to function as both a neuroprotector and 
neuroregenerator. However, its clinical use is very diffi-
cult due to its very short therapeutic time window (within 
6–8 hours), its heterogeneity and phylogenetic differ-
ences among the EPO receptors. To overcome these 
drawbacks, targeted delivery carriers have been under 
development. For carrier manufacturing, the noncovalent 
crosslinking of EPO polymers using the nanospray- 
drying technique that can be performed with ease is of 
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great interest. For externally controlled EPO delivery 
within the therapeutic time window, magnetic navigation 
following coupling with magnetic nanocarriers may be 
a promising method. Nonetheless, it should be deter-
mined how EPO nanocarriers can be selectively delivered 
to the site of CNS injury (and not surrounding tissue) 
using an internally/externally applied magnetic field. 
Prior to clinical trials, manufactured EPO nanocarriers 
must be characterized in terms of their in vivo size dis-
tribution and high efficiency of incorporation. The fol-
lowing issues remain challenges for achieving a high 
degree of therapeutic bioavailability: alteration of 
in vivo biological identities, such as protein corona for-
mation; a sufficiently small size to pass through the lung 
capillaries or the BBB; timely carrier degradation fol-
lowed by removal from the body; and avoidance of bind-
ing to non-in situ EPO receptors with heterogeneity and 
phylogenetic differences. Problems regarding the hema-
tological complications, neurotoxicity, and cytotoxicity of 
EPO nanocarriers and their degraded subcomponents 
should also be solved. These challenges lay the founda-
tion for the development of a new treatment paradigm for 
patients with CNS injuries and for the incorporation of 
a variety of therapeutic agents in the future, with the 
expectation of fast targeted delivery in vivo and exclusive 
localization at a high density.
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