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Sepsis is a complex of life-threating organ dysfunction in critically ill patients, with

a primary infectious cause or through secondary infection of damaged tissues. The

systemic consequences of sepsis have been intensively examined and evidences of

local alterations and repercussions in the intestinal mucosal compartment is gradually

defining gut-associated changes during sepsis. In the present review, we focus

on sepsis-induced dysfunction of the intestinal barrier, consisting of an increased

permeability of the epithelial lining, which may facilitate bacterial translocation. We

discuss disturbances in intestinal vascular tonus and perfusion and coagulopathies

with respect to their proposed underlying molecular mechanisms. The consequences

of enzymatic responses by pancreatic proteases, intestinal alkaline phosphatases, and

several matrix metalloproteases are also described. We conclude our insight with a

discussion on novel therapeutic interventions derived from crucial aspects of the gut

mucosal dynamics during sepsis.

Keywords: sepsis, innate immunity, gut-barrier dysfunction, perfusion disturbances, enzymatic response,

microbiome

INTRODUCTION

The mucosa is a highly organized and compartmentalized structure, which lines our body
cavities for example, the respiratory, urogenital and intestinal tracts. It provides an interface
between the external environment and the host tissues (1), possessing various functions including
absorption of water, nutrients and gases, secretion of molecules, clearance of waste, improvement
of bio-mechanical features and maintenance of immunity. Therefore, it is not surprising that the
combined surface area of the digestive and respiratory tracts by far exceeds the surface dimension
of our largest organ, the skin (2). These functions also necessitate a unique immune system
which is tightly regulated and this is termed as the mucosal immune system (MIS) (2). The
MIS in the gut is capable of distinguishing between regular nutrient flux, self-antigens, a diverse
milieu of commensal bacteria and invading pathogenic microbes (3–5). Lymphoid compartments,
commonly known as the mucosa-associated lymphoid tissue (MALT), are integrated into the
mucosa and perform immune-associated activities. Organized MALT has been found not only
in the gut (GALT), but also in a number of other sites, like in the nasopharynx, salivary-gland
and duct, larynx, bronchus and urogenital tissues (6). In the intestine, the structural organization
of the coexisting symbiotic bacteria is unique, where the large intestine alone houses 1011–1012

bacteria/gram feces, the highest concentration in the entire intestinal tract (2). However, an
imbalance of the co-inhabitation of the intestinal microbiome with the host can potentially threaten
well-being (1, 5, 7, 8).

The homoeostatic status quo is essentially supported by the maintenance of the gut barrier
integrity. In principle, any infection or severe extra intestinal trauma can cause significant
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alterations of the gut barrier homeostasis, which may result in
a profound generation and secretion of intestinal proteolytic
enzymes, alterations in mucus layer formation and composition
(9, 10), increased epithelial cell permeability and damaged
intestinal cells with subsequent inflammatory signaling (5, 9,
10). These distinct pathophysiological changes are frequently
found in septic patients. Previously, sepsis was defined as
a systemic inflammatory response (SIRS) with an underlying
primary infectious cause (11). Declared as a “silent killer”
in critical care units and with high global mortality rates,
sepsis has been recently redefined as a “life-threatening organ
dysfunction caused by a dysregulated host response to infection”
(12, 13). In the clinical setting, diffused and hidden symptoms
frequently make the diagnosis of sepsis difficult. To help define
septic conditions, clinicians and clinical scientists can utilize
the sequential (sepsis-related) organ-failure assessment (SOFA)
Score, which allows more precise detection of sepsis-associated
organ dysfunction compared to the SIRS-criteria (12–15). The
alarming pace of sepsis with possible development of multiple
organ dysfunction syndrome (MODS) frequently includes
disseminated intravascular coagulopathy (DIC), making sepsis
patients a colossal challenge for both clinicians and researchers.

Years of research have focused on the various intricacies,
from the underlying pathology to clinical targets that could
help treat sepsis patients. In the scope of our review, we
consider the effects of sepsis on the intestinal mucosa regarding
the main immunological mechanisms that yield a dysregulated
intestinal mucosal system and the scope of associated promising
therapeutic strategies.

Abbreviations: AMP, antimicrobial peptide; APC, antigen presenting cell;

APACHE-II, Acute Physiology and Chronic Health Evaluation- II Score; Bcl-

2, B-cell lymphoma gene-2; C-BF, cathelicidin-BF; C3, complement factor 3;

C3a, activated complement factor 3; C5, complement factor 5; CD4, cluster

of differentiation 4; CLP, cecal ligation and puncture; COX-2, cyclooxygenase-

2; CRP, C-reactive protein; CSF, cerebrospinal fluid; DAMP, danger-associated

molecular pattern; DAO, Diamine Oxidase; DC, dendritic cell; DIC, disseminated

intravascular coagulopathy; DNA, deoxyribonucleic acid; EF, ejection fraction;

FXIII, clotting factor XIII; γ-EV, dietary dipeptide gamma-l-glutamyl-l-valine;

GALT, gut-associated lymphoid tissue; HMGB1, high-mobility-group-protein-

B1; IAP, intestinal alkaline phosphatase; IBD, inflammatory bowel disease;

ICAM, intercellular adhesion molecule; ICU, intensive care unit; IEC, intestinal

epithelial cell; IEL, intraepithelial lymphocyte; I-FABP, intestinal fatty acid-

binding protein; IFN, interferon; IgA, immunoglobulin A; IL, interleukin; IκBα,

nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor,

alpha; i. v., intravenous; LPS, lipopolysaccharide; LGG, Lactobacillus GG; M-cells,

microfold cells; MALT, mucosa-associated lymphoid tissue; MIS, mucosal immune

system; MLCK, myosin-light chain kinase; mmHG, millimeter of mercury; MMP,

matrix metalloprotease; MODS, multiple organ dysfunction syndrome; MOF,

multi-organ failure; MUC, mucin; NF-κB, nuclear factor kappa-light-chain-

enhancer of activated B-cells; NOD, nucleotide-binding oligomerization domain;

PAI-1, plaminogen activator inhibitor-1; PAMP, pathogen-associated molecular

pattern; PG, proteoglycan; PRR, pattern recognition receptor; rDNA, ribosomal

deoxyribonucleic acid; RNA, ribonucleic acid; ROS, reactive oxygen species; SATI,

short acting thrombin (factor II) and factor Xa (FXa) inhibitor; SIRS, systemic

inflammatory response syndrome; SIRT2, NAD-dependent deacetylase sirtuin 2;

SOFA, sequential organ-failure assessment; SP, surfactant protein; sTNF, soluble

TNF; TAB, TAK1-binding protein; TCR, T-cell receptor; TED, transepithelial

dendrites; TF, tissue factor; Th, T helper lymphocyte; TJ, tight junction; TLR, Toll-

like-receptor; TNF, tumor necrosis factor; TRAF, TNF receptor associated factor;

VCAM, vascular cell adhesion protein; ZO-1, zonulin-1.

Structure-Function Relationship of the
Intestine for the Maintenance of Immune
Defense
The surface of the small intestine is formed by a monolayer of
highly prismatic epithelia, which are modified into structures
like plications, villi (0.2–1mm), crypts, and microvilli. Crypts

contain stem cells, which generate intestinal epithelial cells
(IECs). Paneth cells within the crypts secrete antimicrobial
peptides (AMPs), for example, α-defensin and lysozyme, to
confer intestinal protection from pathogenic insults (16, 17).
The IECs in villi reabsorb nutrients and are interconnected
by tight junctions (TJs) (e.g., occludins, claudins) that form
apical paracellular seals thus preventing the flux of hydrophilic

molecules (18). Further along the IECs lie adherens junctions

(e.g., cadherins) and gap junctions (e.g., connexins), all of
which determine the cellular polarity and regulate cell-cell
communication and exchange of substances. The epithelium can

also secrete pro-inflammatory cytokines and reactive oxygen
species (ROS) in response to pathogens and metabolic stress

(19). Goblet cells in the villi produce mucus, a key component

of the gut barrier. A single unattached mucus layer is present
superficially on the surface of the small-bowel epithelia (20, 21).
Mucus contains soluble glycoproteins termed mucins, which are
normally negatively charged, consisting of a core protein to which
multiple polysaccharide moieties are attached, capable of binding
water molecules (22). In addition to the predominant mucin-
2 (MUC2), other bioactive molecules, for example, membrane-
bound mucins, like MUC1, MUC3, and MUC17 and peptides,
like Fc-γ binding protein and intestinal trefoil factor peptides,
are secreted by goblet cells (22, 23). These play a major

role in maintaining mucosal homoeostasis, mainly by limiting
contact between commensals/pathogens and IECs (23). The

large intestinal mucosa comprises crypts without any villi, with
significantly greater numbers of goblet cells in comparison to the
small bowel. The colon functions mainly as a reabsorbing organ

for water and electrolytes and additionally produces mucus. One
important distinction is the double layer of mucus on the colonic
epithelial cell surface, where the inner layer is immediately above
the epithelium, is mostly immobile and is thinner than the outer
mucus layer, which is not attached to the colon wall (24). Both
layers consist of gel-forming MUC2, but the glycoproteins of the
inner layer form a large and dense net, whereas the outer layer
consists predominantly of MUC2 cleavage products (25).

Regarding cellular immunity in the intestine, there is a well-
regulated interplay between antigen-presenting dendritic cells
(DCs), intestinal macrophages and adaptive immune cells. After
recognition of antigens and/or pathogen-associated-molecular-
patterns (PAMPs) via pattern recognition receptors (PRR),

including Toll-like-receptors (TLRs) and NOD-like-receptors,

intestinal DCs regulate the immune response by enhancing or
suppressing T-cell activity. To achieve this, dendrites of DCs
penetrate intercellular spaces through the intestinal TJs while
maintaining barrier integrity (26). DCs, via these dendrites sense
and bind luminal PAMPs and bacteria and present processed
antigens to immune cells located in lymphoid follicles found
in the connective tissue and the lamina propria. Intestinal
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macrophages (type CX3CR1hi) can also sense PAMPs by forming
transepithelial dendrites (TEDs). Of note, this specific type of
macrophage has only been observed in the murine ileum and
the importance of the TEDs remains uncertain (27). Another
means to reabsorb antigens is accomplished by villous microfold
cells which offer antigens a channel to lymphoid tissue, where
antigen presenting cells resorb the molecules and present them
to CD4+T-cells via Major-Histocompatibility-Complex II (28).
Moreover, DCs selectively induce a pro- or anti-inflammatory
immune response by interacting with T- and B cells. IgA+-
B cells colonize in the lamina propria and secrete IgA into
the lumen via transcytosis (29–31) (Figure 1). This complex
intestinal organization is subject to activation and dysregulation
during sepsis.

Gut Barrier Dysfunction and Systemic
Consequences During Sepsis
A major pathophysiological mechanism of sepsis harnesses
recruitment of inflammatory cells and generation of an
overwhelming pro-inflammatory response. PAMPs, for
example, lipopolysaccharide (LPS), peptidoglycan and
bacterial DNA among others and damage-associated molecular
patterns (DAMPs), including mitochondrial DNA, High-
Mobility-Group-Protein-B1 and serum amyloid A, result
in the upregulation of adhesion molecules on the intestinal
endothelium followed by the recruitment of neutrophils and
macrophages (43). Upon migration to the intestinal tissue,
these cells of the first line of defense produce pro-inflammatory
cytokines, clinically manifested as classical signs of local
and systemic inflammation (32, 44). Cell-wall components
from gram-negative and gram-positive bacteria activate PRRs
like TLR4 and TLR2, respectively, resulting in a “cytokine
storm” of pro-inflammatory mediators generated mainly via
the mitogen-activated protein kinase and NF-κB pathways
(32). Of note, pro-inflammatory responses are interspersed with
anti-inflammatory responses, also termed the compensatory anti-
inflammatory response syndrome (45–47), where patients with
sepsis undergo a reprogramming of their defense strategies and
frequently fail to eliminate primary infection, thus being unable
to prevent secondary infection development (33). However,
an initial hyper-inflammatory response might dominate to
beneficially isolate local infectious foci and limit systemic
spillover (33). Gut barrier dysfunction can be considered both
a result and a cause of sepsis development, characterized by
enhanced mucosal layer permeability (5, 9, 10, 23, 48–51),
disturbed mucosal perfusion (38, 52–54), development of tissue
edema, coagulation-associated local dysregulation (36, 37),
bacterial translocation (48, 55, 56) and a shift in the gut
microbiome (57, 58). Furthermore, apoptotic and necrotic
mechanisms damage the mucosal epithelia, resulting in a vicious
cycle of further release of DAMPs, feeding into inflammatory
responses combined with the development of ulceration and
hemorrhage and exacerbation of mucosal homeostatic imbalance
(Figure 1) (50, 59). The causes and consequences of gut barrier
dysfunction have been described in literature extensively.

Disturbances in Vascular Tonus and
Perfusion
Hypoperfusion in the splanchnic region is considered one of
the main reasons for mucosal gut barrier breakdown during
sepsis (38). The splanchnic vasculature system normally receives
about 25% of the total cardiac output, which increases up to
35% during digestion (60, 61). Perfusion is mainly controlled
by local mediators, including nitric oxide and prostaglandin
derivatives, but also by systemic mediators, like vasoactive
substance P and by the sympathetic innervation (61). Splanchnic
hypoperfusion converts the gut into a cytokine-generating organ,
which releases a “toxic fluid,” containing pro-inflammatory
agents and induces MODS via the circulation (48). Hypovolemia
and cardiac depression during sepsis are associated with a robust
inflammatory response of cytokines and other inflammatory
mediators (39). Blood cells, endothelium and vascular smooth
musculature are potential targets of these pro-inflammatory
cytokines leading to vasodilatation, high capillary leakage,
increased venous capacity and decreased venous return, all
of which result in a decrease in cardiac output and tissue
perfusion (39, 40). In turn, the renin-angiotensin-aldosterone-
system is stimulated and increasingly generates vasoconstrictive
agents, which also adds to local hypoperfusion thus developing
both micro- and macro-circulatory disturbances (39, 52, 62–64).
As an overall consequence, gut mucosal perfusion is reduced
during sepsis, which results in further hypoxia and consequent
destruction of the mucosal barrier (38). Studies using laser
Doppler measurements have also revealed that CLP-induced
sepsis in normotensive rats caused a decrease in the number
of perfused capillaries in the small gut mucosa (65). In this
context, it is also known that mucosal blood flow is dependent
on inflammatory processes (52). As a result of sepsis-associated
excessive inflammation, the microvasculature loses its capacity
to regulate blood flow and oxygen distribution mainly based on
the generation of ROS (39, 40, 66). As a consequence, increasing
the blood flow by vasodilatation during hypoperfusion is not
possible (53, 54), explaining why maximal O2 extraction cannot
be accomplished in sepsis (Figure 1). A further process that
results in an impairment of the local vasodilatory response is the
pathological opening of arteriovenous shunts that alters the blood
flow between hypoperfused and perfused areas (39, 67).

There exist further sepsis-induced alterations in perfusion,
including increased intercapillary distances due to edema
(39) and greater diffusion distances (39, 63). However, the
pathophysiological details are beyond the scope of this review.

Increased Intestinal Permeability
It is well-established that sepsis results in a dysfunction of the
intestinal barrier with increased permeability (5, 9, 10, 23, 48,
49, 51, 68, 69). Locally transmigrated bacteria and endotoxin
exposure lead to a local activation of the MIS and in turn to
the production of various pro- and anti-inflammatory cytokines
by IECs and intestinal immune cells. This cellular response may
also contribute to the systemic response (Figure 2). Furthermore,
activation of intestinal immune cells results in a further increase
in gut permeability by altering TJs (68, 69, 84, 85). Induction
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FIGURE 1 | Sepsis is involved in several pathophysiological processes regarding the intestinal epithelial integrity, perfusion, coagulation, enzymatic response, and

MIS. In sepsis, bacteria and their products (PAMPs), including LPS, PG, and bacterial DNA, can be recognized by PRRs (e.g., TLR2 and TLR4) upon the surface of

macrophages, neutrophils, DCs, and even IECs (19, 32). Thereby, intestinal macrophages and DCs as part of the MIS can detect luminal PAMPs via transepithelial

dendrites (TEDs) (26, 27, 33). Consequently, PAMPs induce a “cytokine storm” of pro-inflammatory mediators, which drive the local intestinal and systemic

inflammation (32). The released mediators can lead to an upregulation of endothelial adhesion molecules (e.g., ICAM, VCAM, E-, and P-selectin), resulting in increased

recruitment of neutrophils and monocytes and in turn to increased levels of pro-inflammatory cytokines and ROS (34, 35). These cellular responses aggravate

vasodilatation and induce a high level of capillary leakage with the development of interstitial edema. Local DIC is frequently observed during sepsis with a decreased

supply of oxygen and nutrients, but increased carbon dioxide concentration (36, 37). Hypoxia in turn leads to increased apoptosis and necrosis of IECs and the

regeneration of these IECs is suppressed during sepsis (38–40). Furthermore, the IEC integrity is disrupted and bacterial translocation may be facilitated. Pancreatic

proteases are capable of autodigestion and potentiation of MOF and self-digestion leads to an increased release of further DAMPs (10, 19, 41, 42). MIS, mucosal

immune system; PAMPs, pathogen-associated molecular patterns; DAMPs, danger-associated molecular patterns; LPS, lipopolysaccharide; PG, proteoglycan; PRR,

pattern-recognition-receptors; TLR, toll-like receptor; DCs, dendritic cells; IECs, intestinal epithelial cells; TEDs, transepithelial dendrites; DIC,

disseminated-intravascular-coagulation; MOF, multi-organ failure; ICAM, intercellular adhesion molecule 1; VCAM, vascular cell adhesion protein 1; ROS, reactive

oxygen species; M-cells, microfold cells; AMPs, antimicrobial peptides; APC, antigen presenting cells; TJ, tight junctions; MALT, mucosa-associated-molecular pattern.

of experimental sepsis leads to a redistribution of the TJ
proteins occludin and claudin-1, 3, 4, 5, and 8 (68, 85). In
agreement with this, murine endotoxemia resulted in a disrupted
ultrastructure of occludin and zonulin-1 (ZO-1) in the intestinal
epithelium (86). Of note, these changes could be corrected
by vagal nerve stimulation (86) or even by treatment with
plant products, including berberine (87). Berberines are known
to decrease downstream myosin-light chain kinase (MLCK)
and NF-κB activity, representing mechanistic intermediates that
may modulate TJ organization. Elaborating on this mechanism,
it was found that MLCK phosphorylates myosin light chain
which causes cytoskeletal contraction and junction disruption
(88). Furthermore, β-catenin, another TJ organization protein,
was found to be irregularly distributed in LPS-treated rats
while platelet activating factor appeared to attenuate this
disorganization (89). More recently, increased plasma ZO-1
levels have been found during experimental sepsis and an
elevated plasma zonulin concentration, a regulator of TJs,
in patients with sepsis (90). Cyclooxygenase-2 (COX-2) and
particularly its product prostaglandin D2 appear to play an

important role in the maintenance of epithelial TJs and barrier
function, because the absence of COX-2 led to an increased
permeability of the murine ileum and to a reduced expression of
TJ proteins (91). Consequently, reinforced bacterial translocation
and a higher mortality rate were observed in septic COX-2-
knockout mice after cecal ligation and puncture (CLP) (91). With
enhanced permeability, what becomes entirely imminent is the
translocation of bacteria, a highly probable threat to the intestinal
mucosal system.

Bacterial Translocation via the Mucosa
Gut permeability theoretically prompts the possibility of local
bacterial translocation, supported by several pieces of evidence.
For example, TLRs play a role in directing the response viaMLCK
activation, as shown in morphine-treated animals, which in turn
facilitate bacterial translocation and even cause infection or sepsis
of gut origin (92). Other factors like insulin growth factor-1
promote bacterial translocation, which induces intestinal cell
apoptosis (93), or increased pneumoperitoneal pressure (during
laparoscopic surgery) (94). Sepsis development has also been
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FIGURE 2 | Sepsis-induced alterations in perfusion, vascular tonus and coagulation lead to a hypoxic microenvironment of the intestinal tissue (38). Therefore, the

protective gel-forming MUC2 mucus layer becomes disrupted (22). Both, bacteria (products) and (pancreatic) proteases gain access into intestinal epithelia, inducing

damage followed by increased pro-inflammatory signaling (41, 48, 70, 70, 71). Furthermore, MMPs (like MMP13) are able to cleave membrane-bound pro-TNF into

sTNF, which in turn is able to stimulate caveolin-1-dependent endocytosis of TJs (72, 73). Gut barrier breakdown and dysfunction is one consequence (72). Intestinal

commensal microbes regulate the maturation of the MIS and support local mucosal immunity (8, 74). During sepsis, the well-regulated interplay between the

commensal microbiome, IECs and mucosal immune cells becomes imbalanced. There is a sepsis-induced shift from a physiological microbiome to a “pathobiome,”

which is able to dysregulate the immune system by activating PRRs (32, 58). SP-A and SP-D can be synthetized by IECs (75, 76). These SPs are capable of

increasing the permeability of bacterial membranes and in turn reduce the bacterial burden (77). IECs produce AMPs (e.g., α-defensin and lysozyme), to confer

intestinal protection from pathogenic insults. Thereby, AMPs can act two ways, on the one hand directly by antimicrobial killing and on the other hand by innate

immune modulation (78). Complement factors are mainly produced in the liver (79, 80), but also IECs were identified to synthesize and secrete C3 into the intestinal

lumen (81), and thus may also play a role in intestinal immunity (82, 83). IECs, intestinal epithelia cells; MUC2, mucin-2; MMPs, matrix metalloproteinases; TNF, tumor

necrosis factor; sTNF, soluble TNF; TJs, tight junctions; MIS, mucosal immune system; PRR, pattern recognition receptors; TLR, toll-like receptor; SP, surfactant

protein; AMPs, antimicrobial peptides; C3, complement factor 3; LPS, lipopolysaccharide; DC, dendritic cell; IgA, immunoglobulin A.

reported as a secondary effect of pneumonia due to mucosal
and microvascular injury in the gut (95). In turn, bacterial
translocation may occur as a common process, secondary to a
primary infection, severe trauma, or major surgery, giving rise to
sepsis and consequently supporting the “gut origin hypothesis of
sepsis” (96).

There are further assumptions about the driving force of
sepsis andMODS. Translocating bacteria and endotoxin from the
gut lumen may not directly enter into the systemic circulation,
but rather induce an immune response in the local GALT or
draining lymph nodes, which results in significant systemic
effects, for example, via “toxic lymph” (Figure 2) (48, 70). The
mesenteric lymph contains several different proteins and lipid
factors, including a modified albumin species (97), which could
cause cellular damage and the activation of TLR4, resulting
in priming of neutrophils and inducing remote lung injury
(98). In agreement with this, a correlation between gut barrier
dysfunction and secondary lung injury has been found (48,
49). Because novel techniques on the nanoscale in bacterial
(product) detection have been developed over the last decade,

further clinical studies may help to re-evaluate and elucidate the
“bacterial translocation” paradigm and its mechanisms.

Coagulation and Its Factors Modulating
Mucosal Dysfunction
The mechanisms of sepsis-induced consumptive coagulopathy
are manifold. The procoagulant tissue factor (TF), which is
produced by the liver, monocytes, neutrophils and endothelial
cells, is significantly increased after exposure to endotoxin or
PAMPs (36, 99, 100). Synchronous inhibition of fibrinolysis
occurs by an enhanced production of plasminogen activator
inhibitor (PAI-1) and the downregulation of the protein-C
pathway, which are important in the initiation and progression
of coagulopathy with clinical manifestation of both thrombosis
and DIC (36, 37). While intestinal microcirculatory disturbances
are common during sepsis-induced DIC, various clotting factors
may directly or indirectly affect intestinal physiology and
immune-cell recruitment. For example, septic rats displayed a
decrease in functional capillary density, indicating a reduction
in microvascular perfusion, which could be corrected when
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these animals were treated with factor XIII (FXIII) (101). In
addition, factor-XI deficiency could confer a survival advantage
on mice with peritoneal sepsis (102). In agreement with this,
microcirculatory disturbances were found in the intestinal
epithelium of CLP rats associated with high intestinal TF levels,
all of which could be improved by sodium tanshinone IIA
sulfonate, a substance recently proposed to exhibit protective
effects against coagulatory disturbances (103). Similar effects
were shown for the thrombin inhibitor Argatroban (104).
Dual pharmacological inhibition of factor II and factor Xa by
SATI resulted in preserved activation of coagulation with no
bleeding complications and protection of organ function during
experimental sepsis in baboons, representing a promising tool
against sepsis-induced DIC (105). Furthermore, treatment with
recombinant human antithrombin has been shown to ameliorate
leukocyte adhesion in mesenteric venules and to reduce
intestinal injury in endotoxemic rats (106) and concomitantly
improved the 28-day mortality rate in septic patients (107).
Nevertheless, application of PAI-I (108) or recombinant human
thrombomodulin (109) failed to reveal beneficial effects in septic
patients. Linking mucosal immunity to coagulation, mucosal M2
macrophages have been recently shown to contain intracellular
FXIII stores. The cell number of this subtype is decreased
in inflamed mucosa in the setting of ulcerative colitis (110).
Previously, macrophage procoagulant activity was found to be
increased in rats with depleted intestinal microflora and orally
fed with streptomycin-resistant E. coli, implying that the gut is
a focal point from which systemic inflammation arises (111).
Deficiency of carboxypeptidase B2, an enzyme able to cleave
both fibrinogen and the central complement components C3
and C5, was shown to confer survival advantage to mice, which
was mainly mediated by C3a-induced peritoneal macrophage
recruitment (112). Although there is evidence of an intensive
crosstalk between coagulation and the innate immune response
in driving inflammation during sepsis, the exact underlying
mechanisms still need to be defined.

Apoptosis as a Central Driver of Intestinal
Damage
Apoptotic events play a critical role in the development of sepsis.
Interestingly, in murine sepsis models and in autopsy studies
of septic humans, there were barely any significant histological
changes except for increased gut epithelial/lymphocyte apoptosis
in comparison with non-septic deceased patients (113).
Nevertheless, experimental prevention of apoptosis in sepsis
models increased the survival rate (33, 113) and therefore, the
hypothesis of immune cell apoptosis as a relevant pathological
mechanism in sepsis could also be of special interest for mucosal
immunity (114). Sepsis induced by Pseudomonas aeruginosa
pneumonia was, for example, caused by apoptotic intestinal
epithelia associated with reduced epithelial proliferation (45).
Mechanistic investigation of intestinal cell apoptosis during
sepsis identified gene overexpression of interleukin (IL)-1β-
converting enzyme, which may play an important role during
experimental sepsis (115). In addition, when anti-apoptotic
proto-oncogene Bcl-2 was gut-specifically overexpressed,

a decrease in sepsis-induced intestinal epithelial apoptosis
was found in murine models (45, 116, 117). MicroRNA
195, a regulator of Bcl-2 gene expression, which assists in
maintaining the pro/anti-apoptotic balance, has been shown to
be upregulated in murine sepsis and its inhibition could prevent
apoptosis and even the development of MODS (118). Therefore,
new approaches to improve gut barrier function during sepsis
could be represented by application of silencing microRNAs
regulating intestinal apoptosis (117, 118).

Apart from generic apoptosis related transducers, other
molecules have also been implicated to play a role in sepsis-
associated apaptotic mechanisms. Cytokine IL-15 was identified
to be capable of preventing apoptosis and of immune suppression
as well. In sepsis, IL-15 attenuated the apoptosis rate of intestinal
epithelia and increased Bcl-2 and IFN-γ expression in IECs as
well as the natural killer cell population, which produced further
IFN-γ (119, 120). Of note, the lung surfactant proteins SP-A and
SP-D have additionally been found to be generated by epithelial
cells of the small and large intestines and in gastric cells (75, 76),
and the absence of SP-A and -D resulted in increased LPS-
induced apoptosis of primary IECs (77). Nonetheless, to what
extent surfactant molecules may therapeutically protect the gut
barrier remains to be investigated.

Intestinal Microbiome as an Actor and
Target
During the last decade, the commensal microbiome has been
defined to play a key role in intestinal immunity because
microbes regulate the maturation of the MIS (8, 74), support
local mucosal immunity (7, 8) and regulate cellular growth and
maintenance of epithelial barrier function (1, 5). It is likely
that the human immune system not only controls bacteria, but
that the microbiome also regulates the immune cell function,
particularly on mucosal surfaces (8, 121). It putatively modulates
neonatal immunity and determines susceptibility to infection
depending on the mode of childbirth (122–125). Alterations of
the lung microbiota due to colonization by gut microbes has also
been shown in animal studies, which to some extent may explain
the frequent simultaneous appearance of acute respiratory
distress syndrome with sepsis (126). If the symbiosis between
commensal bacteria and the human host becomes imbalanced,
the innate and adaptive immune systems are disturbed (Figure 2)
(121, 127). A decline or even a loss of protective anaerobes in fecal
specimens has been observed in patients with severe sepsis (57,
58) and hypothetically this “pathobiome” is able to manipulate
and dysregulate the immune system in critically septic and
ill patients (58). Moreover, commensal bacteria are involved
in the regulation of CD4+ T-cell immunity though the exact
mechanisms remain unknown (128). Indicating the harmful
effect of opioid analgesics in treating critical care patients, murine
polymicrobial sepsis with opioid treatment selectively influenced
gram-positive gut microbiome translocation and dissemination,
inducing its pro-inflammatory effects through IL-6 and IL-
17A cytokines (129). Furthermore, the function and aging of
neutrophils as first cellular line of defense were also shown to be
regulated by the microbiome during sepsis (130, 131). Overall,
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it is tempting to speculate that therapeutic interventions on the
altered microbiome might improve barrier, immune and organ
function as well as sepsis outcome.

Intestinal Enzymatic Response Induces
Self-Destruction
The underlying mechanisms of the interplay between pancreatic
enzymes, sepsis, and septic shock remain unclear, although
Schmid-Schönbein and colleagues had already hypothesized
in 2005 that pancreatic enzymes are capable of self-digestion
and potentiation of multi-organ failure (MOF) (41). In the
case of sepsis-induced hypoperfusion/ischemia of the intestine,
autodigestion processes can affect the mucosal barrier (10, 42).
Such self-digestion may lead to an increased release of DAMPs
and enhance the systemic response due to the release of pro-
inflammatory mediators by stressed IECs (Figure 2) (19, 42,
71). The inhibition of pancreatic enzymes with subsequent
prevention of gut-specific autodigestion indeed improved the
outcome of septic mice (132). In this regard, inhibiting pancreatic
proteases with tranexamic acid reduced inflammation and could
also be exploited as a future sepsis treatment beyond its
application in treating traumatic coagulopathy (132). Intestinal
alkaline phosphatase (IAP) is another enzyme that protects the
intestinal brush borders, particularly against intestinal bacterial
invasion (133). Some of the major functions of IAP are duodenal
surface pH regulation (via HCO−

3 secretion), mitigation of
intestinal inflammation by PAMPs and gut microbiome control
(134). IAP-mediated inactivation of bacterial products, including
LPS, decreases their binding to TLR4 and reduces the resultant
inflammatory responses. Interestingly, in the absence of bacteria,
a lack of IAP expression results in the loss of mucosal protection
(135). Mice treated with IAP after exposure to a lethal dose of
Escherichia coli had an improved survival rate of 80%, compared
to 20% in the control sepsis group (135, 136). In conclusion, loss
of IAP expression or function increased intestinal inflammation,
dysbiosis, and bacterial invasion, culminating in systemic
inflammation (134).

LPS can furthermore induce matrix metalloprotease 7
(MMP7) expression and degranulation of Paneth cells, leading
to increased intestinal permeability (17). MMP7 was observed
as an amplifier of inflammation; MMP7-deficient mice displayed
an attenuated intestinal inflammatory response (137). MMP7
is able to activate α-defensin, which in turn stimulates IL-6
release by macrophages and ileal epithelia, thereby enhancing
local intestinal inflammation and damage (137). Moreover,
MMP7 has also been correlated with the loss of intestinal
barrier integrity, enhanced bacterial translocation and MOF
development (137). Similarly, MMP13 has been described to
play a role in inflammatory bowel diseases (IBD) and during
sepsis (72). It is able to cleave membrane-bound pro-TNF into
soluble bioactive TNF, which can affect TJs through caveolin-
1-dependent endocytosis (72). The consequences are the loss
of TJs, increased intestinal permeability and the creation of
a new pathway for migrating bacteria, which induces further
inflammation (72, 73, 138). MMPs are also present in the large
intestine and play a similar role in sepsis progression through

similar mechanisms. MMP-1, 2, 3, and 9 were detected in the
human colon mucosa and were also increased during IBD (139,
140). However, their exact role in sepsis is yet to be investigated.

Metabolic Response Within the Intestinal
Mucosa
While intestinal permeability is enhanced, amino-acid
absorption by the intestine is affected as early as 24 h after
sepsis onset (141). In this regard, in vivo and in realiter
studies revealed that gut glutamine absorption and metabolism
decreased during sepsis because of suppressed glutaminase
activity (142). By contrast, glutamine supplementation improved
other effects of sepsis: it reduced bacterial translocation, restored
permeability and microcirculatory characteristics (143–146),
and even increased the number and survival of intestinal
epithelia while blocking inflammatory cytokine secretion by
CD8αα(+) TCRαβ(+) IEL cells (147) and γδT-IELs (148). As
a further risk factor, a high-fat diet was detrimental for sepsis
outcome and worsened endotoxemia in mice by disrupting the
Bifidobacterium spp. colony. Correction of the dysbiosis and
its consequences by feeding prebiotic oligofructose resulted
in reduced systemic inflammation in experimental (149) and
clinical sepsis (150). This preliminary evidence suggests that
the intricate repertoire between metabolic intermediates, gut
microbiome and inflammatory responses following sepsis
requires further investigation and represents a promising
therapeutic potential.

Therapeutic Approaches to Improve
Sepsis-Associated Mucosal
Immunopathology
In the era of resurrection from the “therapeutic graveyard of
sepsis,” novel pharmacological approaches address crucial aspects
of gut mucosal dynamisms. For example, the dietary dipeptide
gamma-l-glutamyl-l-valine (γ-EV), which leads to decreased pro-
inflammatory cytokines in both plasma and the small intestine, is
also effective against bacterial infections (151). γ-EV stimulates
the interaction of β-arrestin-2 with toll-interleukin-1-receptor
signaling proteins, including TRAF6, TAB1, and IκBα, which
further suppress the inflammatory response in the small intestine
(151, 152). Similar results in murine IBD models have been
shown for γ-glutamyl-cysteine, which inhibits TNF signaling
in intestinal epithelia (152). In other studies, the small peptide
hormone ghrelin was identified to be protective by inducing
autophagy in the case of tissue hypoxia. Thereby, ghrelin appears
also able to protect IECs in the small intestine in the early stage
of sepsis (153). Application of deacetylase sirtuin-1, a signaling
intermediate that is decreased in obesity and results in enhanced
microvascular inflammation within the small intestine, reduced
themortality rate in the early stage of sepsis (154, 155). Treatment
with resveratrol increased the expression of sirtuin-1 in obese
septic mice and the inflammatory response thereafter was
diminished (154). Sirtuins also play a major role during the late
onset of septic “hypo-inflammation”; SIRT-2 inhibition in obese
septic mice preserved a decreased microvascular inflammation
and protected against thrombotic events (155).
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The antimicrobial peptide cathelicidin-BF (C-BF) has been
observed as a protective molecule, which can safeguard LPS-
induced septic rodents from the development of small intestinal
barrier dysfunction (156). C-BF prevented LPS-induced TJ
breakdown and reduced IEC apoptosis by attenuated expression
and secretion of TNF and suppression of the underlying NF-
κB pathway (156). Ulinastatin is another drug able to increase
the survival rate and to reduce injury of the small intestine,
for example, through diminished IEC apoptosis (142). Post-
treatment IL-6 and TNF plasma levels were decreased, suggesting
an interesting strategy for sepsis (59, 157).

Stem-cell therapy could also represent a potential treatment
approach for sepsis. In murine CLP-sepsis, human adipose-
derived mesenchymal stem cells were able to modulate sepsis
by downregulation of Th1-cell responses, associated with
lower levels of pro-inflammatory cytokines (TNF, IL-1β, IL-
6, IL-12, IFNγ) and higher levels of anti-inflammatory IL-10
derived from macrophages (158). Application of (mesenchymal)
stem cells may, therefore, protect septic mice by reducing
inflammatory cell infiltration and pro-inflammatory responses
and enhancing anti-inflammatory signals (158). Nevertheless, to
what extent stem cells or their cellular structure or secretome will
modulate mucosal immunity during sepsis has to be clarified in
future studies.

Defining the undisputed role of the microbiome in shaping
sepsis-associated immunopathology is gradually gaining
momentum, discussed in detail in several reviews (159–161). A
dysregulated gut microbiome is a common causation of sepsis
(162), like in late-onset sepsis development of preterm neonates
(163). Conversely, burn-injury associated altered gut microbial
community and leakiness of the gut have been implicated in
sepsis development (164). A common approach undertaken to
manage sepsis patients involving therapy with antibiotics can
impair the diversity of microbes in the intestine and reduce
the protective role of bacteria, which in turn leads to increased
inflammation in murine models of Gram-positive as well as
Gram-negative pneumosepsis (7, 165, 166). Thus, the loss of
microbiome diversity was indeed identified as a predictive factor
for the length of hospitalization of patients in the ICU (166, 167).
Though a recent study disproved that antibiotics-mediated
disrupted microbiota modulates innate immune system in
endotoxemic patients (168), the exact role of how the immune
system is modulated is left to be delineated. Nevertheless, to
correct this ensuing dysbiosis, treatment options have included
procedures like fecal microbiota transplantation (FMT) with
combined usage of antibiotics in the clinical management
of sepsis (169–171). In the 1950s, FMT had been developed
to treat Clostridium difficile associated pseudomembranous
colitis and has since subsequently proven to be an effective
treatment modality in the management of C. difficile infection
(172–174). Recently, the US Centers for Disease Control
indicated that “death rates from sepsis following infections
(e.g., C. difficile) have surged (175). Therefore, a perfect premise
to facilitate new treatment approaches, FMT is a potentially
effective treatment route, which could counterbalance dysbiosis,
support the gut microbial barrier and improve the outcome of
sepsis (171, 172, 176). Microbial dysbiosis of the gut leads to

changes in the metabolism of bacteria and as a consequence
to an impaired interaction between microbes, immune cells
and IECs (1, 5, 7, 8). During sepsis, the exact mechanism of
action for the use of FMT on the intestine is still unknown.
Recolonization of the intestinal microflora has been beneficial
as well, where 16 days post-FMT, improved symptoms were
observed in two separate patient studies involving stroke (176)
and post-surgical sepsis development (171). FMT proves to be
a viable future treatment option for sepsis and further human
clinical research is needed to evaluate its effectiveness in critically
ill patients.

Further therapeutic approaches have diversified to include
supplementing antibiotics with probiotics, prebiotics and
synbiotics. Probiotics are live beneficial microorganisms,
which can improve the health of hosts (170), prebiotics
are non-viable and non-digestible dietary ingredients e.g.,
fructooligosaccharides which stimulate the growth and/or
activity of a limited number of bacteria in the large intestine
(170, 177) and synbiotics refer to combined usage of prebiotics
with probiotics (178). Studies have shown that supplementation
of Bifidobacterium breve strain Yakult and Lactobacillus casei
strain Shirota as probiotics and galactooligosaccharides as
prebiotics can reduce the incidence of infectious complications,
e.g., enteritis, pneumonia and bacteremia in patients with
severe SIRS compared to those who did not receive synbiotics
(179, 180). The administration of synbiotics could maintain
the gut flora and reduce septic complications in patients with
severe SIRS by enhancing the levels of beneficial bacteria in the
intestine. A further study suggests that the orally consumed
synbiotics (Lactobacillus planatrum and fructooligosaccharide)
in newborn infants improve the primary outcome (complication
of sepsis or death) as well as lower respiratory tract infections
compared to newborn infants with placebo treatment (181). In
contradiction to these studies, other studies have suggested no
difference in incidence of late-onset sepsis and mortality rate
in preterm infants (182, 183). Similar results postulated that
prophylactic administration of B. clausii to preterm neonates
do not reduce the burden of late-onset sepsis compared to
placebo (184). Further, research may be focused on dysbiosis
of the gut microbiome and resultant immunosuppression
as one consequence of sepsis restored by gut commensals
through administration of probiotics, to reduce the incidence
of late infections and the sepsis mortality rate (185, 186).
Synbiotics also seem to be a potential treatment option for
sepsis patients. The complications of enteritis and ventilation-
associated pneumonia were significantly lowered in the patients
who have been treated with synbiotics, compared to those
without synbiotic administration, although the incidence of
bacteremia and the mortality rates did not differ between the
groups (169). The process of bacterial translocation from the
intestinal lumen to systemic circulation as described in section
Bacterial Translocation via the Mucosa is another interesting
premise to consider as a treatment target. There are some
clinical correlations showing bacterial translocation as one
cause for subsequent sepsis, or in reverse, induce late onset-
sepsis complications. In patients with acute pancreatitis, septic
complications as a result of pancreatic necrosis is a major cause of
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death. Therefore, bacterial overgrowth and subsequent bacterial
translocation can be prevented by administration of selected
probiotics, because the usage of these bacterial supplementation
have been shown to reduce infectious complications in patients
with severe acute pancreatitis (187). The oral administration of
Lactobacillus plantarum in combination with enteral feeding
improved gut permeability and led to a significantly better clinical
outcome (188). Treatment of severe acute pancreatitis could be
adjusted by enteral nutrition (EN) and ecoimmunonutrition
(EIN), because alone as well as in combination, both decrease
the expression of plasma endotoxin, TNF, IL-6, bacterial
translocation and pancreatic sepsis (189). As described in this
review, synbiotics could prevent dysbiosis of the human gut,
but administration of synbiotics may not affect the intestinal
permeability in critically ill patients (150). A further clinical
study with 72 patients have found the influence of pro- and
synbiotics (termed as Synbiotic 2000FORTE) (P. pentoseceus 5-
33:3, L. mesenteroides 32-77:1, L. paracasei ssp. 19, L. planatarum
2362) on the immune response in patients with multiple injuries
(190). A significant decrease (p = 0.028) have been shown in the
incidence of septic events as well as the occurrence of ventilation
associated pneumonia by Acinetobacter baumannii. The risk of
sepsis as a consequence of bacteremia was significantly decreased
and even the treatment with the specific synbiotics prolonged
the time of progression of primary bacteremia, compared to the
placebo group (190). In the molecular level, white blood cell
counts and serum C-reactive protein were significantly lower
in patients treated with Synbiotic 2000FORTE compared to the
placebo cohort and it could reduce the incidence of death caused
by MODS (190).

CONCLUSION

The impact of sepsis on the gut is manifold, e.g., sepsis
mediated alteration of the gut-blood barrier and increase
in the intestinal permeability, which may correlate with the
phenomena of bacterial translocation and lymphatic activation
(“toxic-lymph”). Systemic consequences of sepsis are widespread
and concern to the coagulative system, the microbiome as
well as enzymes, such as pancreatic proteases, MMPs and
IAPs. Nevertheless, the therapeutic approaches for modulating

the mucosal immune system are still rarely effective in daily
routine. Recent published studies showing that treatment with
FMT, probiotics and synbiotics are new concepts for gut-
specific therapeutic prevention of sepsis (Table 1). Since the
past decade, several clinical trials have been completed and are
underway to comprehensively actualize the currently understood
putative effectiveness of targeting the gut during sepsis. This
has been presented in Table 1, enlisting all completed published,
completed unpublished and ongoing trials so far. One exemplary
study was proven to be an effective synbiotic treatment of
fructooligosaccharides and Lactoacillus plantarum to preterm
neonates which prevented sepsis and mortality in the treatment
group (181). However, these promising therapeutic approaches
are yet to be appraised as accepted therapeutic options. More
clinical investigations could help substantiate these findings
and extend them into becoming alternative treatment options.
This also brings into light the importance of understanding
the gut mucosal immune system, where further investigation
is required to evaluate unknown sepsis-induced intestinal
pathophysiological processes. Scarce as of now, nonetheless,
investigations to understand the MIS would prove additionally
beneficial so as to identify added novel therapeutic modalities.
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