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Simple Summary: Long-term selection should lead to reduction in heritability, due to fixation of
positive alleles. Selection on multiple traits should lead to negative genetic correlations because
alleles with positive effects on both traits will respond first to selection, leaving alleles with opposing
effects. Efficient selection for milk production traits began in Israel in the 1980s, and selection for
female fertility in 2000. Introduction of genomic selection increased rates of genetic gain. Many
studies have shown the negative relationships between milk production traits and female fertility.
Phenotypic and genetic changes for female fertility and production traits in the Israeli dairy cattle
population over the last three decades were studied in order to determine if long-term selection has
resulted in reduced heritability and increased negative genetic correlations. Heritabilities were 0.4
for protein production and 0.05 for conception status. The genetic correlation between conception
status and protein yield was −0.38. Heritabilities decreased with increase in parity for protein but
remained the same for conception status. For milk, fat, and protein production and female fertility,
heritabilities increased or stayed the same over the entire period of 30 years. There is no indication
that a selection plateau is imminent for dairy cattle.

Abstract: Phenotypic and genetic changes for female fertility and production traits in the Israeli
Holstein population over the last three decades were studied in order to determine if long term
selection has resulted in reduced heritability and negative genetic correlations. Annual means for
conception status, defined as the inverse of the number of inseminations to conception in percent,
decreased from 55.6 for cows born in 1983 to 46.5 for cows born in 2018. Mean estimated breeding
values increased by 1.8% for cow born in 1981 to cows born in 2018. Phenotypic records from 1988
to 2016 for the nine Israeli breeding index traits were divided into three time periods for multi-trait
REML analysis by the individual animal model. For all traits, heritabilities increased or stayed the
same for the later time periods. Heritability for conception status was 0.05. The first parity genetic
correlation between conception status and protein yield was −0.38. Heritabilities decreased with the
increase in parity for protein but remained the same for conception status. Realized genetic trends
were greater than expected for cows born from 2008 through 2016 for somatic cell score, conception
status and herd-life, and lower than expected for the production traits.

Keywords: dairy cattle; female fertility; genomics

1. Introduction

In 1960 Falconer [1] noted that selection on a multiple trait index should lead to the
generation of negative genetic correlations among the index traits. This will occur because
those polymorphic genes for which the same alleles have positive effects on both traits will
respond first to selection, leaving the genes with economically negative correlations. It is
also conventional wisdom that selection should result in a reduction in genetic variance, as
alleles with positive effects reach fixation. However, as shown by [2] by simulation, and
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by [3] based on theoretical considerations, in some cases selection can lead to temporary
increases in genetic variance due to the increase in frequency of positive rare alleles.

Genomic selection based on genotypes for thousands of genetic markers has been incor-
porated into nearly all commercial dairy cattle breeding programs over the last decade [4].
In all cases, genomic evaluation is performed on each individual trait included in the
selection index without consideration of possible genetic correlations [4].

Female fertility traits were first included in national breeding indexes by the Scandi-
navian countries in the 1970s. Female fertility was included in the total merit index for
Norwegian dairy cattle since 1972 by considering the 56-d nonreturn rate in virgin heifers,
that is, the fraction of cows with a first insemination that were not re-inseminated [5]. Israel
incorporated “conception status” in the national index in 2000 [6], and the US included
“daughter pregnancy rate” in 2003 [7]. Development of the Israeli breeding index since 1985
is given in Table 1. Since 1990, protein production has been given the greatest emphasis
in the breeding index. This has been the case for nearly all dairy commercial breeding
programs since 2000 [8]. Genomic selection began in Israel in 2015 [9].

Table 1. Development of the Israeli breeding index since 1985. Table values are index coefficients.

Year of Change

Traits 1985 1990 1991 1996 2000 2001 2004 2007 2011 2016 2019

Milk (kg) 0.51 0 −0.274 −0.274 −0.274 −0.22 0 0 0 0 0
Fat (kg) 14 0 6.41 6.41 6.41 8.5 6.3 6.3 7.9 8.48 9.94

Protein (kg) 1.0 34.85 34.85 34.85 31.0 25.4 25.4 23.7 21.2 19.88
SCS 1,2 −300 −300 −300 −300 −300 −300 −300 −300

CS 3 (%) 26 26 26 26 26 26 26
Herd-life (days) 0.6 0.6 0.6 0.6 0.6
Persistency (%) 10 10 10 10
Dystocia (%) 2 −3 −3 −3 −3
Stillbirth (%) 2 −6 −6 −6 −6

1 Somatic cell score. 2 Negative values are economically favorable. 3 Conception status, defined in the text.

Much has been written about both the phenotypic and genetic economically negative
correlation between milk production traits and female fertility, reviewed by [10,11]. Nu-
merous studies have attempted to estimate the negative genetic correlations between milk
production traits and various measures of female fertility, reviewed by [12].

One major problem with these studies, as noted by [13], is that nearly all measures
of female fertility are biased with respect to milk production traits. With respect to the
non-return rate, the fact that the cow was not re-inseminated does not mean that the first
insemination was successful. The cow could have died, or the farmer could have decided
to cull, and farmers are more likely to cull low-producing cows. Similarly, other measures
of fertility, such as the number of inseminations per lactation and days open will also be
biased, because low production cows are more likely to be culled before a days-open record
is generated, and cows with the lowest fertility do not become pregnant. Most studies that
have attempted to estimate genetic correlations between fertility and production traits have
used sire models and have considered only first parity cows [12].

Insemination data in Israel is unique in that nearly all cows that are inseminated are
vet-checked for pregnancy after 60 days [13]. Routine genetic evaluations are computed in
Israel for “conception status” (CS), calculated as the inverse of the number of inseminations
to conception in percent. For cows that are culled prior to conception or cows for which
conception has not yet been recorded, the expected number of inseminations to conception
is estimated [14]. Thus, all cows that are inseminated at least once have a record for this
trait, and biases with respect to production traits are likely to be minimal.

In order to determine if long-term selection for fertility and production has in fact
resulted in reduced heritability and more negative genetic correlations, we estimated the
phenotypic and genetic changes for CS over the last three decades, and the environmental
and genetic correlations among the traits included in the Israeli breeding index by the
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individual animal model, including CS and milk, fat, and protein production. Genetic and
environmental variance components were computed for first parity for the nine index traits
over the last 30 years, and for protein and CS for the first three parities over the last eight
years. Genetic trends over the last decade were computed for all traits included in the Israeli
breeding index, and the realized values were compared to the expected values derived from
the principles of selection index. Finally, genome-wide association studies (GWAS) were
performed for both protein production and CS, and correlations were computed between
the marker effects.

2. Materials and Methods
2.1. The Data Sets and Traits Analyzed

The seven data sets analyzed are described in Table 2. The first data set included
phenotypic records of cows born from 1988 through 2016 with valid records for herd-life
and valid first parity records for the other eight index traits listed in Table 1. For cows born
prior to 1988, some of the index traits were recorded only on subsets of the data. Records
for cows born after 2016 were incomplete, especially for herd-life. This data set was divided
into three parts for estimation of variance components and genetic parameters by restricted
maximum likelihood (REML) methodology, as described in Table 2.

Table 2. Basic description of the seven data sets analyzed.

Data Trait Analysis Parities Birth Years Number of

Set Analyzed Type 1 Beginning End Records HYS Animals Genetic
Groups

1 Phenotypic MVC 1 1988 1997 177,073 14,715 290,921 2
values for the 1 1998 2007 213,495 15,169 349,012 2
9 index traits 2 1 2008 2016 234,276 11,041 377,631 2

2 Phenotypic MVC 4 1 2008 2015 229,036 10,634 370,999 2
values for 2 186,687 10,558

Protein and CS 3 3 129,576 9887

3 Phenotypic values for milk
production traits MAM 1–5 1983 2018 1,070,284 50,630 1,198,095 92

4 Phenotypic
values for CS MAM 1–5 1983 2018 970,883 54,396 1,126,063 80

5 EBV of cows for 9 index traits Regression 5 1–5 2009 2018 359,202 - 359,202 -
6 EBV of bulls for protein GWAS 6 1–5 1991 2016 1663 - 1663 -
7 EBV of bulls for CS GWAS 1–5 1991 2016 1610 - 1610 -

1 MVC = Multi-trait REML variance component analysis based on the animal model, MAM = multi-trait animal
model with variance components assumed known, GWAS = genome-wide association study, based on the genetic
evaluations of sires. 2 Index traits for PD19 are given in Table 1. 3 Conception status, see text for details. 4 A single
multi-trait analysis was performed including parities 1–3 of protein and CS. 5 Regression of the cows’ breeding
values on their birth years. 6 Birth years and number of records refer to bulls with reliabilities >0.5.

The second data set included phenotypic records of cows born between 2008 and
2015 with valid first parity records for protein and CS. This data set was used to estimate
variance components and genetic parameters by REML for protein and CS for parities
1 through 3. Genetic and environmental correlations were computed among the three
parities for both traits. Both data sets were analyzed by the multi-trait individual animal
model (IAM).

The third and fourth data sets were used to compute genetic evaluations for the three
milk production traits and CS, respectively, for all cows with valid records born from 1983
through 2018 by the multi-trait IAM, including valid records for parities 1 through 5. Data
set 3 included only parities with valid records for all three milk production traits. Data
set 5 included estimated breeding values (EBV) for the nine index traits from cows born
between 2009 and 2018 and was used to compute realized genetic trends in the Israeli
Holstein population. Data sets 6 and 7 included bulls with reliabilities >0.5 for protein and
CS respectively, from the analyses of data sets 3 and 4, and genotypes for >40,000 SNPs.
These two data sets were used for the GWAS analyses.
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Edits applied for all traits included in PD19 prior to genetic evaluation were as de-
scribed previously [15,16]. All the traits included in PD19, except for herd-life, were
analyzed by a multi-trait IAM, with each parity considered a separate trait. Except for the
calving traits, all valid parities up to fifth were included in the analyses. In addition to
the additive genetic effects, the analysis models included the effects of herd-year-season
and parity. The single parity evaluations were then combined into a multi-parity index as
described previously [15]. Herd-life was computed as the number of days from first calving
to culling and analyzed by a single trait animal model. For cows that have not yet been
culled, expected herd-life was computed as described previously [17]. First and second
parity dystocia and rate of stillbirth were analyzed jointly by a multi-trait IAM including
the effects of the cow calving and the sire of calf as described by [18]. Reliabilities for all
traits were estimated as described previously [18,19].

2.2. Statistical Analyses

Variance components were estimated for data set 1 with the MTC program [20] and
the AIREMLf90 program for data set 2 [21]. The AIREML90 could not be applied to data
set 1, in which nine traits were analyzed, because of software limitations. AIREML90
can accept different numbers of records per trait, differing analysis models for each trait
and estimates of standard errors for estimates of all variance components and genetic
parameters. Both data sets were analyzed by the multi-trait IAM. In addition to the random
residual and the random additive genetic effect, data sets 1 and 2 included fixed herd-year-
season (HYS) effects. Two seasons were defined for each herd-year, based on freshening
month, beginning in April and October of each year. In the analysis of data set 1, the same
HYS classes were defined for all nine traits relative to first parity. In the analysis of data
set 2, different HYS classes were defined for each parity. In the analysis of data set 1 the
same number of records were analyzed for each trait, as required by the MTC program.
Therefore, cows with missing records for any of the 9 index traits were deleted. In the
analysis of data set 2, the numbers of valid records decreased with an increase in parity.
To avoid possible bias, later parity records were included only if there were valid records
for the previous parities. In both data sets, all known parents and grandparents of cows
with first parity records and of sires of cows with records were included to construct the
relationship matrix among animals. The total numbers of animals included in each analysis
are also given in Table 2. For both data sets, two genetic groups were defined for animals
with unknown parents or animals of the first generation in the data set, one for males and
one for females.

Data sets 3 and 4, which included all valid records for cows born between 1983 and
2018, were analyzed by the multi-trait IAM. These models included fixed parity and HYS
effects, as defined previously, in addition to the random additive genetic and residual
effects. Records were pre-adjusted for birth and calving month and days open as described
previously [15,16]. The magnitudes of the residual and genetic variance components were
assumed to be known. A total of 92 groups for the milk production traits and 80 groups
for CS were defined, based on the sex of the animal with unknown parents, which parent
was unknown, and the birth year. In addition, separate groups were defined for sire of
cows of breeds other than Holstein. Although <2% of the cows were sired by bulls of other
breeds, these bulls were a significant fraction of the total number of bulls, and an even
larger fraction of the bulls with unknown parents. The genetic base of the evaluations for
all traits was set as the mean EBV of calves born in 2015.

The contribution of each of the nine traits included in the PD19 selection index (cj)
was computed as proposed by [22]:

cj =
abs(bjgj)

∑J
j=1 abs(bjgj)

(1)
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where bj = the index coefficient for trait j, gj = the genetic standard deviation for trait j, J = 9,
the total number of traits, and “abs” denotes “absolute value”. The values of bj were derived
from Table 1, and the values for gj were derived from the REML analysis of data set 1 for
cows born between 2008 and 2016.

Realized genetic gains for the nine index traits were estimated from data set 5 as the
linear regressions of the cows’ EBV for each trait on their birth dates. The vector of expected
genetic changes over 10 years of selection on PD19 (Φ) were computed using the following
equation [23]:

Φ = ibG/(b′Pb)0.5 (2)

where i = the selection intensity, b = the vector of breeding index coefficients for PD19,
G = the genetic variance matrix among the 9 traits, and P = the phenotypic variance matrix,
computed as the sum of the genetic and residual variance matrices. The G and P matrices
were derived from the REML analysis of data set 1 for cows born between 2008 and 2016.
The index coefficients for the Israeli breeding index are given in Table 1. The expected
economic gain for PD19, TEG, was computed as follows:

TEG = Φ′b (3)

with all terms as defined previously. The realized gain for PD19 was computed in the same
manner with Φ replaced by the vector of realized gains, as derived from the analysis of
data set 5. The selection intensity in equation [2] is a function of the selection intensities
along the four paths of selection and is only known approximately. Therefore, i was set to
3.02 so that the expected economic gain for PD19 should be equal to the realized gain.

2.3. Genomic Analysis

The genomic analysis included all Israeli Holstein bulls with genotypes born from 1991
with reliabilities >0.5 from the analyses of data sets 3 and 4. Of the 1749 Israeli Holstein
bulls genotyped, 1663 were born since 1991 and had genetic evaluations for protein with
reliabilities >0.5, and 1610 had genetic evaluations for CS. As genotyping of these bulls
was performed using several SNP chip platforms, we included only those markers that
were genotyped in >90% of the tested cohort. A total of 40,498 SNPs were retained. GWAS
files were prepared and formatted as described [24,25] using the plink software [26]. The
allele substitution effects and the nominal probabilities for the hypothesis of no effect
were computed using EMMAX software [27]. To account for the effects of relationships
among individuals, we generated a pseudo-relationship matrix based on the identity by
state matrix calculated using the emmax-kin-intel64 algorithm and the -v -s -d 10 flags.
The GWAS was computed using the EMMAX algorithm with the -v -d 10 -t flags, and
the relationship matrix was included in the analysis using the -k argument. Experiment-
wise probabilities accounting for multiple testing were computed based on the Bonferroni
correction. To assess the variance explained by all SNPs, we used the kinship matrix and
the bull phenotypes list and calculated the EMMAX software genomic REML that provides
pseudo-heritability estimates [27].

3. Results

First parity phenotypic annual means for CS for cows born from 1983 through 2018
and annual means of EBV for CS of cows born from 1981 through 2018 are given in Figure 1.
In correspondence with the results presented by [10], annual phenotypic means for CS
decreased from 55.6% for cows born in 1983 to 46.5% for cows born in 2018, while mean
EBV for CS increased from −1.9 for cow born in 1981 to −0.1 for cows born in 2018, the last
year with nearly complete data. As noted previously, the genetic base was set to the mean
of cows born in 2015. CS was added to the Israeli breeding index in 2000 (Table 1). Mean
annual EBV increased by 2.9% from 2000 to 2018.
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Figure 1. First parity phenotypic annual means for conception status, defined as the inverse of the
number of inseminations to conception in percent, for cows born since 1983, orange line; and annual
means of estimated breeding values (EBV) for conception status of cows born since 1981, black line.
The genetic base was set to cows born in 2015.

Annual genetic means for the EBV of the three milk production traits are given in
Figure 2. The slopes for fat and protein EBV were nearly linear during the entire period
from 1982 through 2018. The slope for milk is higher in the early years and declines
after 1992. This corresponds to the major changes in the breeding index in 1990 and 1991
(Table 1). Genetic gains were nearly equal for fat and protein, despite the fact that the index
coefficient for protein was more than double the coefficient for fat since 1991. This occurs
because both the heritability and genetic variance for fat are greater than for protein.

Figure 2. Annual estimated breeding values (EBV) means of cows born since 1982 for milk, black
line; fat, green line; and protein, red line. The genetic bases for all traits were set to cows born in 2015.
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Genetic parameters derived from the REML analysis of data set 1 are given in Table 3.
Heritabilities were generally highest for milk, followed by fat and protein. Heritability
for CS was between 0.04 and 0.05 for the three time periods. For all traits, heritabilities
increased or stayed the same for the later time periods, despite the “conventional wisdom”
that long-term selection should reduce heritability. Genetic correlations between the 3 milk
production traits and CS were all negative, and the absolute value was highest for the
correlation between CS and protein, between −0.37 and −0.38. Similar to the heritabilities,
genetic correlations did not decrease over time. Environmental correlations between the
three milk production traits and CS were very close to zero, despite previous studies that
indicate a negative phenotypic relationship between milk production traits and female
fertility [9].

Table 3. Genetic parameters derived from the REML analysis of data set 1. Heritabilities on the
diagonal in bold type. Genetic correlations above the diagonal and environmental correlations below
the diagonal.

Birth Years Traits Milk Fat Protein SCS CS Herd-Life Persistency DC SB

1988– Milk 0.47 0.41 0.71 0.13 −0.34 0.12 0.10 −0.04 0.00
1997 Fat 0.55 0.47 0.56 0.04 −0.25 0.17 0.05 0.10 0.09

Protein 0.84 0.63 0.41 0.17 −0.38 0.14 0.05 0.02 0.05
SCS −0.02 −0.02 0.02 0.23 −0.21 −0.33 −0.06 0.00 0.05
CS 0.01 −0.01 0.00 −0.01 0.04 0.41 0.13 −0.30 −0.28
HL 0.14 0.11 0.14 −0.09 0.12 0.10 0.29 −0.15 −0.13

Persistency 0.01 0.00 −0.01 −0.04 −0.02 0.08 0.18 −0.06 −0.03
Dystocia −0.03 −0.01 −0.03 −0.01 −0.04 0.03 0.01 0.04 0.91
Stillbirth −0.03 −0.02 −0.02 −0.01 −0.03 0.00 0.00 0.41 0.03

1998– Milk 0.49 0.40 0.77 0.14 −0.30 0.03 0.21 −0.05 −0.02
2007 Fat 0.56 0.46 0.55 0.04 −0.22 0.05 0.04 0.00 −0.01

Protein 0.87 0.65 0.41 0.16 −0.37 −0.01 0.12 −0.03 −0.05
SCS 0.01 −0.02 0.03 0.25 −0.21 −0.26 −0.05 0.00 0.04
CS 0.01 −0.02 0.00 0.00 0.05 0.66 0.12 −0.17 −0.25
HL 0.12 0.09 0.11 −0.08 0.15 0.13 0.37 −0.19 −0.24

Persistency 0.05 0.00 0.01 −0.04 0.00 0.08 0.19 −0.05 −0.09
Dystocia −0.04 −0.03 −0.03 −0.01 −0.04 0.03 0.01 0.04 0.89
Stillbirth −0.03 −0.03 −0.03 −0.01 −0.03 0.00 0.01 0.36 0.02

2008– Milk 0.51 0.45 0.85 0.19 −0.31 0.09 0.23 −0.07 0.00
2016 Fat 0.58 0.50 0.61 0.08 −0.26 0.09 0.08 0.00 0.04

Protein 0.90 0.68 0.45 0.20 −0.38 0.06 0.12 −0.06 0.05
SCS 0.03 −0.01 0.04 0.25 −0.26 −0.25 −0.05 0.05 0.05
CS −0.01 −0.04 −0.03 0.00 0.05 0.53 0.05 −0.25 −0.20
HL 0.12 0.09 0.11 −0.06 0.14 0.13 0.40 −0.19 −0.19

Persistency 0.05 0.01 0.01 −0.04 −0.02 0.09 0.22 0.00 −0.02
Dystocia −0.03 −0.02 −0.03 −0.01 −0.04 0.03 0.01 0.04 0.73
Stillbirth −0.03 −0.02 −0.03 −0.01 −0.02 −0.01 0.01 0.29 0.02

Genetic parameters for protein and CS ± standard errors in the first three parities as
derived from the REML analysis of data set 2 are given in Table 4. Since this data set was
analyzed by the AIREMLf90 program, approximate standard errors were computed. All
standard errors of the heritabilities and genetic and environmental correlations were <0.05.
First parity heritabilities for protein and CS was nearly equal to the first parity heritabilities
in Table 3 for the most recent time period. For both traits, heritabilities decreased with
increase in parity, but proportionally less for CS. Genetic correlations among parities were
all <0.65 for protein, and >0.89 for CS. All genetic correlations between protein and CS
were negative, but the absolute value of −0.34 was highest for the first parity. This absolute
value is slightly lower than the absolute value of −0.38 in the analysis of data set 1, but
not significantly different. The absolute values of genetic correlations between protein
and CS decrease with the increase of parity to −0.12 for the third parity. Environmental
correlations between protein and CS for the three parities were positive, but all were <0.07,
as compared to nearly zero in data set 1.
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Table 4. Genetic parameters for protein and conception status ± standard errors in the first 3 parities.
Heritabilities on the diagonal. Genetic correlations above the diagonal and environmental correlations
below the diagonal.

Protein 1 Protein 2 Protein 3 CS 1 CS 2 CS 3

Protein 1 0.446 ± 0.006 0.842 ± 0.007 0.684 ± 0.013 −0.338 ± 0.027 −0.294 ± 0.030 −0.305 ± 0.036
Protein 2 0.392 ± 0.005 0.316 ± 0.006 0.954 ± 0.004 −0.163 ± 0.032 −0.193 ± 0.033 −0.237 ± 0.039
Protein 3 0.274 ± 0.006 0.434 ± 0.004 0.250 ± 0.007 −0.008 ± 0.034 −0.049 ± 0.037 −0.121 ± 0.043

CS 1 0.053 ± 0.004 0.059 ± 0.004 0.088 ± 0.004 0.054 ± 0.003 0.959 ± 0.011 0.895 ± 0.022
CS 2 −0.029 ± 0.005 0.044 ± 0.005 0.063 ± 0.004 0.052 ± 0.003 0.047 ± 0.003 0.992 ± 0.020
CS 3 −0.020 ± 0.006 −0.016 ± 0.004 0.061 ± 0.005 0.038 ± 0.004 0.062 ± 0.004 0.048 ± 0.004

Genetic and environmental variance components from the analysis of data set 1 for
cows born from 2008–2016 are given in Table 5. These values are similar to previous
analyses of the Israeli dairy cattle population [28].

Table 5. Genetic and environmental variance components from the analysis of data set 1 for cows
born from 2008–2016.

Variance
Component Milk Fat Protein SCS CS Herd-Life Persistency DC SB

Genetic Milk 1,104,690.4 18,187.0 24,365.4 109.7 −2604.3 20,562.9 1428.5 −397.7 13.7
Fat 18,187.0 1491.4 641.0 1.7 −78.9 789.7 17.7 −0.2 4.3

Protein 24,365.4 641.0 752.4 3.0 −82.3 385.9 18.8 −8.8 3.9
SCS 109.7 1.7 3.0 0.3 −1.1 −29.5 −0.2 0.1 0.1
CS −2604.3 −78.9 −82.3 −1.1 62.1 917.6 2.4 −10.3 −4.7

Herd-life 20,562.9 789.7 385.9 −29.5 917.6 48,508.9 521.4 −215.0 −122.3
Persistency 1428.5 17.7 18.8 −0.2 2.4 521.4 34.7 −0.1 −0.3

Dystocia −397.7 −0.2 −8.8 0.1 −10.3 −215.0 −0.1 27.0 11.2
Stillbirth 13.7 4.3 3.9 0.1 −4.7 −122.3 −0.3 11.2 8.8

Environ- Milk 1,072,573.5 28,444.7 29,929.6 −67.7 2086.5 89,681.7 −481.4 −767.6 −885.6
mental Fat 28,444.7 1488.6 872.9 −2.2 2.8 2376.4 −10.0 −26.5 −26.7

Protein 29,929.6 872.9 911.2 −1.3 43.1 2455.3 −14.3 −22.8 −26.5
SCS −67.7 −2.2 −1.3 0.9 1.1 −13.4 −0.4 −0.3 −0.2
CS 2086.5 2.8 43.1 1.1 1101.3 2098.0 −10.3 −24.7 −11.8

Herd-life 89,681.7 2376.4 2455.3 −13.4 2098.0 332,822.6 158.0 704.8 29.6
Persistency −481.4 −10.0 −14.3 −0.4 −10.3 158.0 123.2 4.3 3.2

Dystocia −767.6 −26.5 −22.8 −0.3 −24.7 704.8 4.3 669.1 149.5
Stillbirth −885.6 −26.7 −26.5 −0.2 −11.8 29.6 3.2 149.5 423.0

Genetic standard deviations (SD), fraction of the Israeli breeding index, PD19 as
computed by equation [1], the expected genetic trends, as computed by equation [2], and
realized genetic trends, as computed by the regression of EBV on the cows’ birth dates for
cows born from 2008 through 2016, are given in Table 6. The genetic SD and the genetic
and phenotypic variances in equation [2] were derived from the genetic and environmental
variances in Table 5. The difference between the realized and expected trends, divided
by the genetic SD of each trait, is also given. For the traits in which negative values
are economically favorable, the sign of realized-expected is reversed so that a positive
value indicates that the realized genetic gain in the desired direction was greater than
the expected gain. Realized trends were greater than expected for SCS, CS and herd-life,
with the largest difference for herd-life. This is not too surprising, since natural selection
also favors increased herd-life and fertility, and lower mastitis. Farmers also prefer high
fertility bulls. In addition, the expected trends were based only on first parity records,
while the realized trends were based on all parities up to the fifth. As shown in Table 4,
heritabilities decreased with an increase in parity proportionately more for protein, as
compared to CS, and genetic correlations among parities were higher for CS. Both factors
should result in increased realized genetic gain for CS, as compared to protein. The absolute
values of the discrepancy between the realized and expected genetic trends were lowest for
protein, the trait with the largest fraction of the index, and the highest for milk. The large
discrepancy for milk is probably due to the fact that farmers prefer bulls with high fat and
protein concentrations, even though the concentration traits are not included in the index.
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Production quotas are in fluid milk, while payment is for fat and protein. Thus, farmers
can increase total income using high concentration bulls.

Table 6. Genetic standard deviations; fraction of the Israeli breeding index, PD19; the expected and
realized genetic gains (± standard errors) for cows born from 2008 through 2016.

Genetic Fraction Genetic Trends X

Trait SD of Index 2 Expected Realized Genetic SD

Milk (kg) 1051 0 1073.4 699.4 ± 3.5 −0.36
Fat (kg) 38.6 0.252 46.5 40.0 ± 0.1 −0.17

Protein (kg) 27.4 0.358 33.9 32.5 ± 0.1 −0.05
SCS 1 0.55 0.108 −0.12 −0.194 ± 0.002 0.13

CS (%) 7.9 0.135 0.3 1.91 ± 0.02 0.2
Herd-life (days) 220 0.087 152.1 209.1 ± 0.6 0.26
Persistency (%) 5.9 0.039 2.4 1.00 ± 0.02 −0.24
Dystocia (%) 1 5.2 0.01 −1.39 −0.800 ± 0.014 −0.11
Stillbirth (%) 1 3 0.012 −0.34 0.233 ± 0.009 −0.19

PD19 - 100 1300.5 1300.7± 3.34
1 Negative values are economically favorable. 2 Computed based on equation [1].

The EMMAX G-REML results for CS and protein were 0.63 and 0.87. That is, the
cumulative effects of all the markers explained 63% and 87% of the variance among the
sire evaluations for these traits. After the Bonferroni correction for multiple comparisons,
none of the markers for CS were significant at the 5% experiment-wise level, and only three
markers met this criterion for protein.

The scatter plot of the allele substitution effects of 31,744 SNPs with minor allele
frequencies (MAF) >0.10 on protein as a function of their effects on CS is given in Figure 3.
As can be seen on the level of all markers, there was virtually no relationship between the
marker effects on the two traits. The coefficient of determination was <10−4. The scatter
plot of the 10 markers with the lowest probability values for protein as a function of the
effects of these markers on CS is given in Figure 4. For these markers the coefficient of
determination was 0.01, that is a correlation of ~0.1, and the slope was not significantly
different from zero. Thus, the overall genetic correlation between these traits was not
reflected by the substitution effects of the individual markers.

Figure 3. Allele substitution effects on kg protein of all SNPs with minor allele frequencies >10%,
as a function of their substitution effects on female fertility, defined as the inverse of the number of
inseminations to conception in percent.
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Figure 4. Allele substitution effects of the 10 markers with the lowest probability values for protein
as a function of the effects of these markers on female fertility, defined as the inverse of the number of
inseminations to conception in percent.

4. Discussion

“Cow conception rate” in the US dairy cattle population is defined as the percentage
of inseminated cows that become pregnant at each service, and “daughter pregnancy rate”
is defined as the percentage of nonpregnant cows that become pregnant during each 21-day
period [29]. Heritabilities for the daughter pregnancy rate and cow conception rate were
estimated at 0.04 and 0.02 in 2014, and the genetic correlation between the two traits was
estimated as 0.87. Genetic correlations with protein production were −0.18 and −0.15 [30],
but details of the analysis model were not given. CS is apparently closer to the cow
conception rate and has similar heritability. The number of services, pregnancy/conception
to first service, and pregnancy within a given period were included among the fertility
traits considered in the meta-analysis of [11]. Mean heritabilities for these traits among the
studies analyzed ranged from 0.02 to 0.03. Thus, heritability of CS in the current study
is at the high end for traits that estimate the probability of cow conception. The mean of
genetic correlations of protein production with the three traits considered by [11] were
0.35, −0.37 and −0.17. Thus, correlations of protein with number of services (which was
positive, because a high value indicates low fertility) and pregnancy/conception to first
service were very similar to the correlation between protein and CS in first parity, despite
the fact that CS should be less biased by the culling of cows with low production [13,14].

There is an apparent contradiction between the major phenotypic reduction in CS
over the last 30 years, and the fact that the environmental correlations between CS and the
milk production traits were all very low. It should be noted, however, that the HYS effect
was considered fixed in the variance component analyses. Thus, changes in management
factors detrimental to fertility would be excluded from the environmental correlations.

The genetic trend for CS in the Israeli Holstein population became positive in 2001,
the year after this trait was included in the Israeli breeding index. Genetic trends in the
UK and Ireland for calving interval were negative until 2004 and then positive since then,
corresponding to the changes in the selection indices of these countries [11]. Genetic
evaluations for the DPR of US Holsteins first became available to the industry in 2003. The
genetic trend for DPR was negative until 2009 and has since been positive [31]. Thus, it
is clear from the results for all four countries that positive selection for female fertility is
possible without a major decrease in selection for production traits.

In the current study, changes in heritability and genetic correlations were investigated
for close to 30 years, or approximately six generations. In long-term selection experiments,
the selection response usually ends after 20 to 30 generations [32], although, in some
cases, a significant response has continued for over 100 generations [33]. Despite these
considerations, the analysis of several studies indicates that heritability of lactation milk
yield in dairy cattle has risen from ~25% in the 1950s to ~35% in the past decade, although
this may be largely due to improved management [34]. To the best of our knowledge, this is
the first study that attempted to estimate changes in heritabilities and genetic correlations
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over time for economic traits in dairy cattle in a specific population. The slight increase in
heritabilities corresponds to the results of [34]. Thus, as noted previously by [3], there is no
reason to assume that these traits are approaching a selection plateau.

Current methods applied for genomic evaluation in nearly all populations are based
on the evaluation of bull EBV separately for each trait [4]. These methods cannot be readily
adapted to multi-trait genomic evaluation. The method of [35] is based on the analysis of
the phenotypic records with the inclusion of the genomic relationship matrix, as derived
from the marker genotypes. It should be theoretically possible to apply this method to
multi-trait genomic evaluation. Results of the GWAS demonstrate that the overall negative
genetic correlation between protein production and female fertility is not reflected in the
effects of the individual markers.

5. Conclusions

Annual means for CS decreased from 55.6 for cows born in 1983 to 46.5 for cows born
in 2018, while mean estimated breeding values increased from −1.9 for cows born in 1981
to −0.1 for cows born in 2018. Heritability for CS increased from 0.04 to 0.05 from the first
through the third time periods. For all traits, heritabilities increased or stayed the same
for the later time periods. The first parity genetic correlation between conception status
and protein was −0.38. Environmental correlations between CS and the milk production
traits were all close to zero. Heritabilities decreased with an increase in parity for protein
but remained the same for CS. Realized trends were greater than expected for cows born
from 2008 through 2016 for SCS, CS and herd-life, and were lower than expected for the
production traits. No correlation was found for the effects on protein and conception status
of the 31,744 SNPs with minor allele frequency >0.1 included in the GWAS analysis, or
for the 10 markers with the lowest probability values for the substitution effect on protein.
Thus, there is no apparent reason to change the current procedures that compute genomic
evaluations separately for each trait.
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