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INTRODUCTION

Together with recent advances in artificial intelligence (AI), 
current deep learning methods, especially convolutional neu-
ral networks, have proven to match or even surpass humans in 
several specific radiological tasks.1 The application and verifica-
tion of deep learning in medicine have been primarily led by the 
radiology community, because of the relatively large and stan-
dardized body of data, to some extent, that is available in this 
field. Digital Imaging and Communications in Medicine (DI-
COM) is an internationally standardized file format for the col-
lection, storage, and transmission of medical imaging data.2 One 
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of the most important features of the DICOM standard is that it 
simultaneously contains imaging data showing the captured 
picture and metadata or a header describing it. The DICOM 
standard has successfully standardized the basic format of 
data across the medical imaging industry to improve the in-
teroperability of medical systems.

To date, however, a lack of sufficient available imaging data 
for patients from diverse geographic areas has been the single 
most critical challenge in the development of accurate AI with 
generalizability.1 To prepare medical imaging data for ma-
chine learning, radiology data need to be properly de-identi-
fied, accessed, queried, and integrated with ground-truth or 
electronic phenotypes.3 In many instances, these procedures are 
semi-automated or manual processes, because key information 
required to identify relevant images is usually missing, incorrect, 
or non-standardized in the metadata of DICOM files.4 Gueld, et 
al.5 found that the DICOM tag “Body Part Examined” (0018,0015) 
was incorrectly annotated in 15% of cases. Although there is a 
DICOM attribute called “Series Description” (0008,103E), this 
description is free text and is hardly standardized even within 
single institutions.6 Hence, it is usually challenging to query DI-
COM files of interest for a specific patient cohort because of a 
lack of standardization in DICOM metadata, which in turn hin-
ders reproducible science in radiology.7

Here, we propose a standardized schema, the Radiology 
Common Data Model (R-CDM), for essential DICOM metada-
ta. The R-CDM was designed as a radiology module for the Ob-
servational Medical Outcomes Partnership (OMOP)-CDM to 
incorporate radiology data with standardized clinical data and 
electronic phenotypes.8 R-CDM holds the potential to facilitate 
the preparation of scalable image datasets for machine learn-
ing across various institutions, which is of paramount impor-
tance for the development of robust AI for radiology.

MATERIALS AND METHODS

In order to standardize medical imaging data with the stan-
dardized data model based on OMOP-CDM, four tasks were 
performed as shown in Supplementary Fig. 1 (only online). 
First, 41.7 TB of deidentified data were transferred from the 
Ajou University Hospital, a Korean tertiary teaching hospital, 
to secure large-scale medical imaging data for research pur-
poses. Second, we standardized the terms in the field of radi-
ology using the RadLex glossary.9 Logical Observation Identifi-
ers Names and Codes (LOINC) was used to map the radiology 
protocol terminology of RadLex to the OMOP-vocabulary used 
by the Observational Health Data Sciences and Informatics 
(OHDSI) community as an international standard. Third, two 
tables in the R-CDM were designed to contain medical imag-
ing data in a standardized structure and were developed as an 
extension model of the OMOP-CDM for seamless connection 
with clinical data. Last, metadata and imaging data from DI-

COM, an international standard file format for storing medical 
imaging data, were used in the process of standardizing medi-
cal imaging data. 

As a proof of concept, we converted the radiology data of Ajou 
University Hospital into the R-CDM. Moreover, a desired pa-
tient cohort was designed using standardized clinical data of 
OMOP-CDM, and specific types of images were extracted from 
the patient cohort through linkage with the R-CDM.10 Lastly, an 
R-CDM database viewer was applied in order to confirm the 
characteristics of the standardized medical image database. This 
study was approved by the Institutional Review Board at Ajou 
University Hospital of Republic of Korea (IRB approval num-
ber: AJIRB-MED-MDB-20-088).

Acquisition of medical imaging data for 
standardization into R-CDM
The randomly sampled medical imaging data (41.7 TB; 87203226 
images from 2801360 cases), about 10% of the whole dataset, 
from Ajou University Hospital were approved for usage in re-
search purposes. First, two processes were undertaken: dei-
dentification of the data and transfer into a dedicated server. 
Although the data were not exported beyond the firewall, we 
tried to avoid ethical problems with infringement of personal 
information through the deidentification process. Moreover, 
the data-transfer process was designed to not overburden net-
works of the Picture Archiving and Communication System 
server. Thus, the overall data-transfer process was conducted 
under the supervision of the information management team 
of Ajou University Hospital, a third party that was not related 
to the study. An honest blocker deidentified the transferred 
data to minimize the risk of personal information infringement. 
To deidentify the DICOM files of Ajou University Hospital, 
metadata that contained personal information were chosen. 
Deidentification was achieved by deleting 12 items of metadata 
containing personal information, such as the patient’s name, 
sex, date of birth, and location of image recording.

Subsequently, we analyzed the modality composition of the 
41.7 TB image database for research purposes. Fig. 1 depicts 
the counts of imaging occurrences and images by modality. X-
ray images with modality values of “CR” and “DX” accounted 
for 1661414 of the cases (i.e., 59.3% of all 2801360 cases). Ultra-
sonography (291155 cases, 10.4%) and computed tomogra-
phy (CT) (259775 cases, 9.3%) scans were assessed. Among all 
87203226 images, 55184910 (63.3%) were CT scans, followed 
by 14164055 images (16.2%) of magnetic resonance imaging 
(MRI). X-ray images, which occupied an overwhelming major-
ity of occurrences among all imaging modalities, accounted for 
only 2509684 images (2.9%). This is because, unlike CT or MRI, 
in which dozens to hundreds of images are created in a single 
procedure, in X-ray, the number of images created in a single 
imaging procedure is remarkably small.
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Designing a standard structure for R-CDM
We designed a standardized structure for the R-CDM consisting 
of two tables linked to each other: the Radiology Occurrence ta-
ble and the Radiology Image table. To help with understanding 
the concepts of each table, consider the following example of a 
patient who underwent brain CT because of a head injury: brain 
CT imaging without a contrast agent is usually performed for 
this type of patient, and approximately 40 images are created 
by the imaging procedure. In this situation, information explain-
ing the imaging of brain CT itself, such as the date and time of 
the image acquisition and the type of imaging device used for 
the imaging, is systematically organized in the Radiology Oc-
currence table. In addition, information describing each of the 
40 images generated by one brain CT scan, such as the file path, 
resolution, and contrast agent administration status of each im-
age, is summarized in the Radiology Image table. Tables 1 and 2 
summarize the type, character format, and specific content of 
each table.

This R-CDM structure is manufactured in a form that is very 

convenient with the Fast Healthcare Interoperability Resourc-
es (FHIR) of Health Level Seven International (HL7), so it is ex-
pected that interoperability of standardized image data will 
be greatly improved in the future. HL7 FHIR stores DICOM 
metadata in three tables. FHIR’s Imaging Study and Series ta-
bles are compatible with R-CDM’s Radiology Occurrence ta-
ble, and FHIR’s Instance table is compatible with the Radiology 
Image table. 

Internationally standardized terminology system for 
the R-CDM
We adopted the LOINC/RadLex vocabulary as the standard ter-
minology of the R-CDM for the following reasons: First, RadLex, 
which was developed by the Radiological Society of North 
America (RSNA; one of the world’s most authoritative groups in 
the field of radiology), is a glossary that is used for unifying 
terms in the medical imaging field. The RadLex playbook is the 
most comprehensive glossary in the field, covering more than 
75000 terms.11 Furthermore, RSNA collaborated with Regen-
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Fig. 1. Occurrence and image count according to modality. CR, computed radiography; US, ultrasound; CT, computed tomography; DX, digital radiog-
raphy; ES, endoscopy; RF, radio fluoroscopy; MR, magnetic resonance; BM, bone densitometry (X-ray); FS, fundoscopy; NM, nuclear medicine; PT, 
positron emission tomography; OT, other; XA, X-ray angiography.

Table 1. Structure of Radiology Occurrence Table and Detailed Description of Each Row

Field Required Type Description
radiology_occurrence_id (PK) Yes Integer Unique ID for each image shooting, acting as the primary key of the Radiology study table
person_id (FK) Yes Integer Foreign key that identifies the person who took the image
radiology_occurrence_date No Date Date when the study was taken
radiology_occurrence_datetime No Datetime Date and time when the study was taken
modality No Varchar (10) Value which represents DICOM file type
manufacturer No Varchar (50) Manufacturing company of imaging equipment that carried out image shooting
protocol_concept_id No Integer Value indicating the type of the study
protocol_source_value No Varchar (255) Additional source values describing the study
count_of_series No Integer Count of series generated per imaging study
count_of_images No Integer Count of instances (images) generated per imaging study
radiology_note No Varchar (Max) Recognition findings described by radiology specialists
DICOM, Digital Imaging and Communications in Medicine.
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strief and launched a LOINC/RSNA playbook that combines 
the radiology protocol terminologies of the RadLex playbook 
and LOINC.6 Second, the LOINC/RSNA playbook has been 
demonstrated to cover most of the CT terminology across 40 
health information exchange sites in the US.12 Third, the LOINC/
RadLex vocabulary has already been incorporated into the 
OMOP vocabulary, with LOINC being one of the standard vo-
cabularies in OMOP-CDM.13

Fig. 2 shows how the terminologies in the field of radiology 
were mapped from RadLex to OMOP vocabulary. The figure de-
scribes the whole process used to map the protocol of brain CT 
with a contrast agent to the standard OMOP vocabulary. First, 
“CT head W contrast IV” with the RadLex ID of “RPID24” in the 
RadLex glossary was identified. Through the LOINC/RSNA 
playbook, the LOINC code “24727-0” corresponding to “RPID24” 
was queried. Finally, the OMOP concept ID “3002086” linked 
to the LOINC code “24727-0” was searched through the OMOP 
vocabulary system.14 Overall, we created a mapping table for 
5753 protocol terminologies in RadLex and shared it on GitHub 

(https://github.com/ABMI/Radiology-CDM).

R-CDM conversion through the DICOM metadata 
Extract, Transform, and Load process
We identified 16 essential elements from DICOM metadata that 
contained necessary information to query medical imaging 
data for machine learning.3 Through an appropriate extract, 
transform, and load (ETL) process using the values recorded in 
the metadata, meaningful information was converted into the 
format of the R-CDM and loaded into the database. Fig. 3 com-
prises a diagram showing a part of the ETL process of DICOM 
metadata. The medical record number in the “Patient ID” DI-
COM metadata was replaced with “person_id” of OMOP-CDM 
through deidentification and incorporation into the OMOP-
CDM standardized clinical database. Various types of metada-
ta were used to form the “protocol_concept_id” column of the 
Radiology Occurrence table. Because essential medical infor-
mation was distributed in several metadata, it was necessary to 
collect and map them to a single OMOP vocabulary. Further-

Table 2. Structure of Radiology Image Table and Detailed Description of Each Row

Field Required Type Description
radiology_image_id (PK) Yes Integer Unique ID of each image, acting as the primary key of the Radiology image table
radiology_occurrence_id (FK) Yes Integer Unique ID for each image shooting, acting as the primary key of the Radiology study table
radiology_series_id Yes Integer Unique ID of each series
file_path Yes Varchar (255) File path of each image files
body_part_source_value No Varchar (20) Value indicating the photographed body part
laterality_concept_id No Varchar (20) Image shooting direction (anatomical plane)
series_type_concept_id No Varchar (20) Value indicating the type of the series
series_type_source_value No Varchar (20) Additional source values describing the series
series_total_number No Integer Number of images constituting each series
series_serial_number No Integer Order of images within each series
image_resolution_rows No Integer Image resolution (number of horizontal pixels)
image_resolution_columns No Integer Image resolution (number of vertical pixels)
CT_slice_thickness No Float Thickness of CT image slide

Fig. 2. Mapping process of the RadLex terminology to the Observational Medical Outcomes Partnership (OMOP) vocabulary.

https://github.com/ABMI/Radiology-CDM
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more, metadata, such as “SOP Instance UID”, “Slice Thickness,” 
or “Image Resolution Rows,” were entered in a one-to-one cor-
respondence to the appropriate column of Radiology Image ta-
ble. Values of “SOP Instance UID” were converted for deidenti-
fication before being loaded into the “image_id” column.

Interworking of the R-CDM and OMOP-CDM
The R-CDM, which is an extension model of the OMOP-CDM, 
enables the efficient progress of research by linking patient clini-
cal data to medical imaging data. OMOP-CDM and R-CDM are 
connected by a common column called person_id, and Fig. 4 
shows how the two models are connected. Researchers can eas-
ily build a desired patient cohort by utilizing a standardized 
phenotyping platform called ATLAS from the OMOP-CDM 
database.15 The imaging data of interest with specific modality, 
procedure, and series can be easily retrieved from the R-CDM, 
which is incorporated into the OMOP-CDM.

As a proof of concept, we attempted to show that the efficien-
cy of the data extraction process can be maximized by combin-
ing R-CDM and OMOP-CDM. We extracted an axial view pre-
contrast image from primarily acquired brain CT scans of a 
patient group who visited the emergency room because of ce-
rebral hemorrhage. Supplementary Fig. 2 (only online) depicts 
the process used for setting a specific patient cohort and ex-
tracting only the desired type of image within that cohort us-
ing four OMOP-CDM tables and two R-CDM tables. The date 
of admission to the emergency room of Ajou University Hos-

pital for cerebral hemorrhage was designated as the index 
date. Only patients who had been enrolled into the database 
for at least 2 months before the index date were included in the 
analysis to avoid left censoring. Using patient data from Ajou 
University Hospital spanning 30 years (from 1998 to 2018) stan-
dardized with the OMOP-CDM, the size of the patient cohort 
was 4685 individuals. Axial view pre-contrast brain CT images 
acquired on the day of the emergency room visit for the previ-
ously set patient group could be extracted from the R-CDM 
converted database. For the data retrieval process, OMOP vo-
cabulary “3004287,” which means brain CT, was searched in the 
protocol_concept_id column of the Radiology Occurrence ta-
ble. Subsequently, “28833” and “10579,” which mean “pre-con-
trast” and “axial plane,” respectively, were searched in the series_
type and anatomical_plane columns of the Radiology Image 
table.

Development of the R-CDM database viewer
R-CDM database viewer is a tool that visualizes the main char-
acteristics of a standardized medical image database. Using 
the R-CDM database viewer, researchers can obtain informa-
tion about what kind of data the database consists of and when 
the data was captured. Furthermore, researchers can identify 
the distribution of certain data types of interest in the database. 
Since the application was developed in the form of a web ap-
plication to maximize user convenience, the system can be used 
in any terminal or connection environment.

Fig. 3. Metadata extract, transform, and load process.
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RESULTS

Results of R-CDM conversion via the DICOM 
metadata ETL process
Through the ETL process using metadata from DICOM files, 
41.7 TB of deidentified medical imaging data were standard-
ized to the structure and terminology system of R-CDM. In-
formation from 2801360 cases was loaded onto the Radiology 
Occurrence table, and information from 87203226 DICOM files 
was loaded onto the Radiology Image table. Through sophisti-
cated ETL work using DICOM metadata, most of the columns 
constituting the R-CDM could be filled with valid values. The 
conversion results are summarized in Tables 3 and 4. Informa-
tion pertaining to the dates of recording, replaced patient ID, 
types of imaging devices, manufacturers of the imaging device, 
and image resolution could be filled with valid values, with a 
probability of more than 99.97%. The “CT_slice_thickness” 
column only contained 81.51% of valid values, as only CT imag-
es can have a significant value in the column. To determine the 
value of the “protocol_concept_id” column, it was necessary to 
collect meaningful information from several attributes of DI-
COM metadata and refine them into standardized terms. De-
tailed information on the image, such as the direction of pho-
tography or contrast agent administration status, could not be 
extracted from the metadata.

Data extraction process by combining R-CDM and 
OMOP-CDM
Using the imaging data that were available for research purpos-
es, 445 cases and 18275 axial view pre-contrast images could be 
extracted from the cohort of 4685 patients. Moreover, we ex-
tracted images from more detailed patient cohorts. Additional 
conditions were applied to the cohort to design a group of pa-
tients with a good prognosis with a hospitalization period of 
less than 15 days and a patient group with a poor prognosis who 
died within a period of 30 days or more and 2 months of admis-
sion. Finally, 8136 axial view pre-contrast brain CT images from 
198 cases and 4970 images from 121 cases were extracted, re-
spectively.

R-CDM Database viewer
Fig. 5 is the main page of the R-CDM DB viewer, along with a 

Table 3. Results of the ETL Process Using DICOM Metadata in the Radi-
ology Occurrence Table

Field
Unmapped 

case
Mapped 

case
Mapping 
accuracy

radiology_occurrence _id 0 2801360 100
person_id 0 2801360 100
radiology_occurrence_date 22 2801338   99.99
radiology_occurrence _datetime 85 2801275   99.99
modality 0 2801360 100
manufacturer 1930 2799430   99.93
protocol_concept_id 782968 2018392   72.05
protocol_source_value 782968 2018392   72.05
count_of_series 0 2801360 100
count_of_images 0 2801360 100
radiology_note
ETL, extract, transform, and load; DICOM, Digital Imaging and Communications 
in Medicine.

Table 4. Results of the ETL Process Using DICOM Metadata in the Radi-
ology Image Table

Field
Unmapped 

case
Mapped 

case
Mapping 
accuracy

radiology_image_id 0 87336478 100
radiology_occurrence_id 0 87336478 100
radiology_series_id 0 87336478 100
file_path 0 87336478 100
body_part_source_value 7765143 79571335   91.11
laterality_source_value
series_type_source_value
series_total_number 0 87336478 100
series_serial_number 0 87336478 100
image_resolution_rows 29964 87306514   99.97
image_resolution_columns 29964 87306514   99.97
CT_slice_thickness 16149733 71186745   81.51
ETL, extract, transform, and load; DICOM, Digital Imaging and Communications 
in Medicine.

Fig. 4. Interworking of R-CDM and OMOP-CDM. R-CDM, Radiology 
Common Data Model; OMOP-CDM, Observational Medical Outcomes 
Partnership CDM.



S80

Radiology Common Data Model (R-CDM)

https://doi.org/10.3349/ymj.2022.63.S74

brief explanation of R-CDM and how to use the R-CDM DB 
viewer. After a simple login process, a user can see a page that 
visualizes the main features of the R-CDM database (Fig. 6). 
Barplot and pie charts on the left show the distribution of im-
age data by shooting year and modality. On the right, there is a 
table that lists the most frequently included protocols in the R-
CDM DB and a table that indicates the count of combinations 
of metadata. Users can easily determine what kind of image 
data is included the most in the database and the distribution 
of the desired data using the search function.

DISCUSSION

We identified the limitations of the DICOM international stan-
dard and developed a new standardization method to overcome 
them. We designed the standardized structure and terminolo-
gy system of R-CDM and applied a deep learning image classi-
fier to improve the quality of the converted data. As a proof of 

concept, 41.7 TB including 87203226 images obtained for the 
purpose of the study were converted into the R-CDM. Among 
them, 10813807 brain CT images were accurately classified by 
the deep learning image classifier. Furthermore, we showed 
that, through a combination of the R-CDM and OMOP-CDM, 
studies that link clinical data with imaging data can be conduct-
ed efficiently.

Despite the increasing number of publications about ma-
chine learning in radiology, the development and implemen-
tation of a standardized infrastructure for the large-scale re-
trieval of medical images has been a very daunting challenge. 
Basu, et al.4 described the challenges associated with the de-
velopment of The Cancer Imaging Archive, which faces fun-
damental difficulties with retrospectively harmonizing imag-
ing and non-imaging data for cancer research from multiple 
institutions, including the inevitable extensive review of DICOM 
headers. Although content-based image retrieval has been ex-
tensively researched over the past decades, it has provided few 
valid large-scale retrieval systems to date.16-18 Recently, Pizarro, 

Fig. 5. Main page of the Radiology Common Data Model (R-CDM) database viewer.
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et al.19 proposed a deep learning algorithm to automatically 
categorize the series of brain MRI using images, while Gauriau, 
et al.6 developed an algorithm for a similar task using DICOM 
metadata. The ultimate goal of these efforts was to build infra-
structure for the large-scale retrieval of medical images to pre-
pare datasets for machine learning.

The reproducibility of this new technique in the medical 
field is associated with unique challenges and obstacles, which 
should be carefully considered in the context of its validity, safe-
ty, and effectiveness.20 These challenges can mainly be overcome 
by the development of standards and methods for data cura-
tion, distribution, sharing, and management.21 OHDSI is an in-
ternational collaborative community of researchers that main-
tains the OMOP-CDM. A standardized framework to generate 
and evaluate machine learning models has been implemented 
across the distributed research network of CDM databases.22 
As a response to the current coronavirus disease 2019 (COV-
ID-19) pandemic, the OHDSI built distributed COVID-19 co-
horts, evaluated a proposed algorithm to identify vulnerable 
patients, and developed a more reliable and reproducible al-
gorithm for the same task using heterogeneous but standard-
ized databases across the world.23-25 As the proposed R-CDM 
is fully compatible with the clinical data of the OMOP-CDM, 
the implementation of the R-CDM can facilitate the develop-
ment and evaluation of AI for radiology using standardized 
electronic phenotyping via collaborative and reproducible re-
search.26

The use of the CDM approach, which is a federated stan-
dardized data network, to standardize medical imaging data af-
forded several advantages: mainly bringing the algorithm to the 
data, rather than data to the algorithm.27 As data owners can 
host, build, and evaluate their own algorithm or externally de-

velop an algorithm on their data inside their firewall, a lower 
level of concern exists regarding privacy, governing, and intel-
lectual property issues, compared with a conventional approach 
with aggregation of data.27 Moreover, there have been proposals 
for the integration of genomic or oncology data into the CDM.28,29 
The implementation of standardized data infrastructure com-
bining imaging biomarkers with genomic and clinical pheno-
type information based on standardized data may facilitate 
precision medical research.26

Our proposal of the integration of electronic structured clini-
cal data with radiology images had several limitations. Radiol-
ogy Common Data Elements were not included in our proposal, 
which standardizes reading data recorded by radiology special-
ists, an essential piece in the development of AI.30 The extrac-
tion, standardization, and integration of radiology notes into the 
R-CDM, which can be supported by previous natural language 
processing, should be investigated in a future study.31,32 Another 
vital piece of the imaging data for machine learning would be 
annotation on images. The previously proposed standards, 
such as the Annotation and Image Markup, should be consid-
ered in a future study.33 Second, the radiology protocol termi-
nology alone in the LOINC/RSNA playbook has been mapped 
to the OMOP-vocabulary to date. However, the RadLex play-
book itself includes a much greater number of concepts, in ad-
dition to the protocol terminologies. For instance, “10579,” in-
dicating the direction of photography, and “28833,” indicating 
the administration status of a contrast agent, are terminologies 
that are not included in the LOINC/RSNA playbook; therefore, 
they are not currently mapped to the OMOP vocabulary. To 
construct a complete standard terminology system for the R-
CDM, it is necessary to create a mapping table that maps other 
types of radiology terminologies to the OMOP vocabulary. 

Fig. 6. Analysis results on the visualization page of the Radiology Common Data Model database viewer.
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Third, we applied the proposed system to the radiology data of 
a single center. The interoperability of the system should be fur-
ther validated in future research.

In conclusion, the R-CDM was developed to standardize the 
structure and terminology of incomplete and unstandardized 
medical imaging data. As a proof of concept, an ETL process 
was performed on the metadata of Ajou University Hospital DI-
COM files in accordance with the terminology and structure of 
R-CDM. Furthermore, through linkage of R-CDM and OMOP-
CDM, it was possible to efficiently link medical imaging data 
with clinical data. We hope that R-CDM will contribute to the 
development of deep learning in medical imaging by enabling 
the securement of large-scale medical imaging data from mul-
tinational institutions in the OHDSI community and by linking 
clinical data with the OMOP-CDM and medical imaging data. 
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Supplementary Fig. 1. Diagram summarizing the concepts that were required for the 
standardization of medical image data using R-CDM. LOINC, Logical Observation 
Identifiers Names and Codes; R-CDM, Radiology Common Data Model; OMOP-CDM, 
Observational Medical Outcomes Partnership CDM; DICOM, Digital Imaging and 
Communications in Medicine.



Supplementary Fig. 2. Process used for retrieving pre-contrast axial view images of brain CT acquired on the day of emergency room visitation 
through the linkage between the OMOP-CDM and R-CDM. CT, computed tomography; R-CDM, Radiology Common Data Model; OMOP-CDM, Obser-
vational Medical Outcomes Partnership CDM.


