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Untargeted metabolomics 
and transcriptomics identified 
glutathione metabolism 
disturbance and PCS and TMAO 
as potential biomarkers for ER 
stress in lung
Zijing Wang1,6, Peng Ma1,6, Yisa Wang1,2, Biyu Hou1, Can Zhou3, He Tian4, Bowen Li5, 
Guanghou Shui4, Xiuying Yang1, Guifen Qiang1*, Chengqian Yin3* & Guanhua Du1*

Endoplasmic reticulum (ER) stress is a cellular state that results from the overload of unfolded/
misfolded protein in the ER that, if not resolved properly, can lead to cell death. Both acute lung 
infections and chronic lung diseases have been found related to ER stress. Yet no study has been 
presented integrating metabolomic and transcriptomic data from total lung in interpreting the 
pathogenic state of ER stress. Total mouse lungs were used to perform LC–MS and RNA sequencing 
in relevance to ER stress. Untargeted metabolomics revealed 16 metabolites of aberrant levels with 
statistical significance while transcriptomics revealed 1593 genes abnormally expressed. Enrichment 
results demonstrated the injury ER stress inflicted upon lung through the alteration of multiple critical 
pathways involving energy expenditure, signal transduction, and redox homeostasis. Ultimately, 
we have presented p-cresol sulfate (PCS) and trimethylamine N-oxide (TMAO) as two potential ER 
stress biomarkers. Glutathione metabolism stood out in both omics as a notably altered pathway 
that believed to take important roles in maintaining the redox homeostasis in the cells critical for the 
development and relief of ER stress, in consistence with the existing reports.
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UPR	� Unfolded protein response
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RNA-seq	� RNA sequencing
MEK5/ERK5	� Mitogen-activated protein kinase 5/extracellular signal-regulated kinase 5
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T/Tuni	� Tunicamycin (group)
SPF	� Specific pathogen free
TBP	� TATA box-binding protein
SDS-PAGE	� Sodium dodecyl sulfonate-polyacrylamide gel electrophoresis
HE	� Hematoxylin and eosin
TOF	� Time of flight
ESI	� Electrospray ionization
IDA	� Information dependent acquisition
GSEA	� Gene set enrichment analysis
PPI	� Protein–protein interactions
SEM	� Standard error of mean
i.p.	� Intraperitoneal (injection)
PCA	� Principal component analysis
MSEA	� Metabolite set enrichment analysis
SMPDB	� Database of pathway-associated metabolite sets
GO	� Gene ontology
BP	� Biological process
CC	� Cellular component
MF	� Molecular function
KEGG	� Kyoto encyclopedia of genes and genomes
NAFLD	� Non-alcoholic fatty liver disease
TCA​	� Tricarboxylic acid
TGF	� Transforming growth factor
ZAP	� Zeta-chain-associated protein
FDR	� False discovery rate
MAPK	� Mitogen-activated protein kinase
CKD	� Chronic kidney disease
TMAO	� Trimethylamine N-oxide
NSCLC	� Non-small cell lung cancer
GPCR	� G protein coupled receptor

Endoplasmic reticulum (ER) plays an important role in protein processing and is abundant in cells with active 
secretive functions. As the unfolded and misfolded protein build up in the lumen of ER, the cell can initiate 
unfolded protein response (UPR) that work to rectify the stress by increasing the protein folding capacity and 
inhibiting overall protein synthesis. If the stress is not relieved, however, the cell can then be guided onto apop-
totic pathways that eventually end in cell death. COVID-19 virus has been shown to cause1 or elevate2 ER stress 
in the course of disease, and a trusted therapy of respiratory infections, Lian Hua Qing Wen, has been proved 
to attenuate lung injury through inhibiting ER stress3. Apart from acute lung infections, chronic lung diseases 
such as asthma, pulmonary fibrosis and chronic obstructive pulmonary disease (COPD) had ER stress as a com-
mon feature4, and lung cancer, which is the leading death-causing cancer in both China5 and the United States6, 
has also been found to be related with ER stress through the changes of redox environment in the lumen4. A 
traditional Chinese medicine for cancer treatment, Rhizoma Arisaematis, has been shown to exert its cytotox-
icity effect in lung cancer A549 cell line by presumably the induction of ER stress by agglutinin isolated from 
the herb that led cells onto apoptosis and autophagy pathways7. The fundamental roles ER plays as well as the 
ubiquitous identification of ER stress in lung pathologies made ER stress a cellular target state worthy of study 
in lung diseases.

Metabolomics and transcriptomics are two methods of profiling that have been frequently used to pro-
vide information regarding pathological phenotypes8 or for the aim of pathogenesis studies9, drug-target 
identification10, and biomarker recognition11 etc. Liquid chromatography–mass spectrometry (LC–MS), as a 
robust and informative tool in identifying and quantifying molecules in mixtures, could be used to get reliable 
data regarding the metabolites in tissues, making metabolic comparison between phenotypes possible. RNA 
sequencing (RNA-seq) on the other hand, provides the relative expression levels of genes that imply their roles 
in the target alterations (i.e., ER stress in this particular study). Cristea et al.12 have shown by transcriptomic 
profiling that MEK5/ERK5 kinase axis controls lipid metabolism in small-cell lung cancer. Nojima et al.13 revealed 
potential diagnostic biomarker candidates for lung fibrosis by metabolomic analysis of fibrotic mice in combina-
tion with public RNA-Seq human lung data. Through means of multi-omics (including RNA-seq), Suzuki et al.14 
identified a stress response module as a promising drug intervention target in lung cancer cells, and stressed the 
potential of multi-omics in developing anticancer drugs rationally and efficiently.

In the current study, we analyzed the effects of ER stress in the lung utilizing both transcriptomic and metabo-
lomic methods. After the induction of ER stress in C57BL/6J mice by intraperitoneal injection of tunicamycin, we 
performed untargeted metabolomic analysis (by LC–MS) in lung tissues to identify the differentially-regulated 
metabolites as well as reveal the enriched pathways in follow-up data interpretation. Transcriptomic analysis 
based on RNA-seq results was carried out in the same tissues to unravel the changes in gene expression and 
biological processes in response to ER stress. Results of both omics were then taken together in hope of finding 
molecules, pathways or biological processes playing central roles in ER stress. Collectively, we comprehensively 
evaluated the genetic and metabolic alteration in ER stressed lung samples aiming to shed light on the complex 
pathological mechanism as well as identify potential biomarkers of ER stress, which has been proven relative to 
multiple lung injury and diseases.
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Results
ER stress was successfully induced with lung injury.  Tunicamycin induces UPR by inhibiting protein 
glycosylation15 and thus has been widely used as an ER stressor16–18. To observe the effect of ER stress in lung, we 
injected tunicamycin intraperitoneally in mice. As a result, the average body weight of the mice in model group 
(T) decreased 0.85 g (3.6%, P = 0.043) during the 12 h of ER stress induction by tunicamycin while no signifi-
cant change in body weight was found in the control group (Fig. 1a), and the organ coefficient for lung was of 
no significant difference (Fig. 1b). More importantly, the presence of ER stress was indicated by elevation of ER 
stress-related marker genes and proteins (CHOP18,19 and GRP7820,21) detected in lung samples by qPCR as well 
as western blot (Fig. 1c–e). Besides, pathological changes were evident in the lung sections stained by HE. Focal 
destruction of lung tissue structure, alveolar epithelial hyperplasia and focal inflammatory cells infiltration could 
be seen near the bronchus in T group sections, while no pathological changes were identified in C group samples 
(Fig. 1f,g). Taken together, ER stress was successfully induced by tunicamycin with lung injury.

Untargeted metabolomics revealed aberrantly‑regulated metabolites and pathways.  Over-
all, 210 metabolites were identified in the 6 lung samples of each group. The results of principal component anal-
ysis (PCA) suggested good separation between groups (Fig. 2a). There were collectively 16 metabolites deemed 
abnormal according to our restrictions with the hypothesis test results (Fig.  2b), and were orderly listed in 
Table 1 according to their fold change values. P-cresol sulfate (PCS), phenol sulphate and 3-oxododecanoic acid 
were the abnormally up-regulated metabolites with average fold change of 8.4, 3.6 and 2.1 while the trimethyl-
amine N-oxide (TMAO) as well as 12 other metabolites were detected of lower levels in the T group tissue than 
normally expected (refer to the values in C group) (Fig. 2c–f, Table 1).

In order to further understand the in vivo metabolic alteration after 12 h of tunicamycin treatment, metabolite 
set enrichment analysis (MSEA) was carried out in reference to the database of pathway-associated metabolite 
sets (SMPDB). Out of the 51 metabolite sets with hits (metabolites with changes of statistical significance) no 
less than 2, glutathione metabolism was found to be the most significantly altered pathway (raw P = 0.049) rela-
tive to ER stress. There were 4 hit compounds (glycine, l-glutamic acid, l-alanine and oxidized glutathione) 
up-regulated in the pathway of glutathione metabolism and the fold enrichment for the whole pathway was 2.38. 
The top 20 metabolic pathways (Fig. 2g) were presented according to MSEA results, with detailed information 
shown in Supplementary Table S3.

RNA sequencing revealed multiple genes abnormally regulated.  Pearson correlation analysis 
(Fig. 3a) between samples as well as PCA plot (Fig. 3b) demonstrated good separation between the two data 
groups. 1593 genes were found up-regulated or down-regulated in the T group compared to C group as shown in 
the volcano plot with the colored dots (Fig. 3c). Top 20 aberrantly expressed genes were orderly listed in Table 2 
based on their padj values.

Pathways of interest found by enrichment analysis of RNA‑seq results.  Functional enrichment 
based on Gene Ontology (GO) database was carried out and pathways of significant variation in three sub-

Figure 1.   Successful induction of ER stress in lung of C57BL/6J mice. Abnormal weight loss (a) of T group was 
identified compared to C group, with no significant change in lung coefficient (b), elevated expression of marker 
proteins CHOP and GRP78 in T group was proven by qPCR (c,d) as well as western blot (e), pathological 
damages in T group at tissue level were revealed by HE staining of lung histologic sections [(f) C, (g) T]. All data 
were presented as mean ± SEM, n = 6. *P < 0.05. C Control, T Tunicamycin.
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divisions of biological process (BP), cellular component (CC), molecular function (MF) were identified (Fig. 4a). 
533 pathways (412 in BP, 80 in CC, 41 in MF) were considered to be statistically significant (padj < 0.05). Basic 
functions such as cell replication and movement (angiogenesis, cilium organization, growth factor binding, etc.), 
as well as energy expenditure (pathways such as respiratory chain that involve mitochondria) were all subject to 
the influence of tunicamycin-induced ER stress. 23 pathways were deemed significant in Kyoto Encyclopedia of 
Genes and Genomes22–24 (KEGG)-based enrichment (Fig. 4b) that included Huntington disease, non-alcoholic 
fatty liver disease (NAFLD), influenza A, and among others, glutathione metabolism in consistence with the 
results of untargeted metabolomics, signifying the disturbance of cellular redox homeostasis in state of ER stress. 
While in the functional enrichment based on Reactome database (Fig. 4c), 7 pathways came out as the signifi-
cantly influenced, including cellular respiratory pathways like electron transport, tricarboxylic acid (TCA) cycle, 
complex I biogenesis, as well as intraflagellar transport and cancer-related pathways (regarding transforming 
growth factor (TGF)-beta, zeta-chain-associated protein (ZAP)-70).

GSEA was utilized in reference to the three previously mentioned gene set databases in order to reveal path-
ways of interest without the input limitation of alteration significance. GSEA based on GO, KEGG and Reactome 
enrichment gave respectively 485 and 208, 19 and 19, 74 and 32 significantly enriched (at nominal P-value < 1%) 

Figure 2.   Untargeted metabolomics revealed aberrantly-regulated metabolites and pathways. PCA results (a) 
suggested good separation between data groups, volcano plot (b) presented aberrantly-regulated metabolites 
with padj < 0.05, fold change (T/C) > 2 or fold change reciprocal (reciprocal of fold change value) > 2, boxplots 
demonstrated the top 4 metabolites: PCS (c), phenol sulphate (d), TMAO (e), hippuric acid (f) with the most 
significant differences (fold change) between groups, top 20 enriched pathways (g) presented according to 
results of MSEA. All data were presented as mean ± SEM, n = 6. *P < 0.05; **P < 0.01; ***P < 0.001. C Control, T 
Tunicamycin.
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pathways in the two phenotypes (tunicamycin and control) and ultimately one gene set with false discovery 
rate (FDR) value less than 25% in the phenotype of control from KEGG-based enrichment: phototransduction 
(Fig. 4d,e). Yet this pathway was not found of notable significance in the enrichment results of metabolomics 
above.

Informative PPI networks built based on RNA‑seq results.  Protein–protein interactions were inte-
grated in the Cytoscape software in the form of PPI networks. According to MCODE scores calculated by the 
plugin, MCODE, multiple clusters (Supplementary Figs. S1–3) were selected from the whole PPI network. The 
top 10 nodes (Fig. 5a–d) from each of the three clusters selected as well as the whole network were presented 
with their degree values (Fig.  5a′–d′). The clustered nodes (proteins/genes) signified their close relationship, 
whether through direct interactions in forming of a bigger protein complex, or through the involvement in a 
consistent pathway or biological process. These nodes signified cellular respiration greatly altered in the state of 
ER stress, demonstrating its deleterious effect on cells.

Table 1.   16 metabolites deemed abnormal in metabolomics. Restrictions: padj < 0.05, fold change (T/C) > 2 or 
fold change reciprocal (reciprocal of fold change value) > 2. C Control, T Tunicamycin.

Metabolite P-value padj Fold change Fold reciprocal

p-Cresol sulfate 0.0068 0.0122 8.45 0.12

Phenol sulphate 0.0001 0.0011 3.62 0.28

3-Oxododecanoic acid 0.0235 0.0269 2.06 0.49

N-Acetylvaline 0.0005 0.0022 0.50 2.01

Alpha-Linolenic acid 0.0467 0.0467 0.49 2.02

d-Phenyllactic acid 0.0106 0.0141 0.49 2.02

sn2 LysoPC(18:1) 0.0117 0.0144 0.49 2.02

l-Aspartic acid 0.0003 0.0016 0.48 2.08

4-Pyridoxic acid 0.0002 0.0015 0.48 2.10

LysoPC(20:4) 0.0385 0.0410 0.47 2.11

5-methoxy-L-tryptophan 0.0068 0.0122 0.47 2.14

LysoPC(18:2) 0.0087 0.0126 0.38 2.64

sn2 LysoPC(18:2) 0.0079 0.0126 0.37 2.71

LysoPE(16:1) 0.0031 0.0072 0.33 3.00

Hippuric acid 0.0020 0.0063 0.19 5.31

Trimethylamine N-oxide 0.0024 0.0063 0.16 6.10

Figure 3.   RNA-seq revealed 1593 genes abnormally regulated. Pearson correlation analysis (a) and PCA results 
(b) suggested good separation between the two data groups, volcano plot (c) signified aberrantly-regulated 
genes with padj < 0.05, fold change (T/C) > 2 or fold change reciprocal (reciprocal of fold change value) > 2. C 
Control, T Tunicamycin.
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Combination of the two omics revealed pathways influenced by ER stress.  Significantly varied 
metabolites and genes were submitted in running joint-pathway analysis in Metaboanalyst. Out of the 324 bio-
logical processes identified (Fig. 6a), 221 and 229 pathways had P-value < 0.05 and FDR < 25% respectively. The 
top three pathways based on the calculation of P-value were pathways in cancer (Fig. 6b), herpes simplex virus 
1 infection (Fig. 6c) and mitogen-activated protein kinase (MAPK) signaling pathway (Fig. 6d). The pathway of 
glutathione metabolism, found prominent in both omics, was also significantly enriched (P = 0.04, FDR = 0.06) 
in the integrative analysis and the impact value was 3.12. On the other hand, however, the variation of pho-
totransduction pathway was found of no statistical significance in this analysis, with a P-value of 0.47 and an 
FDR of 0.63.

Discussion
In the present study, data from both metabolomics and transcriptomics methods were analyzed independently 
and further integrated. Through these aberrantly-regulated metabolites and genes, we could identify pathways 
or biological processes altered in the target phenotype, ER stress, thereby unveil the effects it had on lung and 
provide insights into this cellular state.

PCS, phenol sulphate and 3-oxododecanoic acid accumulated in the lung of ER stress mouse models, yet 
more metabolites (13, compared to 3 up-regulated) were detected of lower amount than expected, including 
TMAO. This could indicate the overall elevation of metabolic and anabolic processes inside the body trying to 
cope with ER stress.

As a uremic toxin, PCS was originally produced by microbes in the gut, the elevation of which in urine has 
been found associated with worsening outcomes in chronic kidney disease (CKD) patients by fastening the 
progression of disease as well as increasing cardiovascular burden25. In serum samples, PCS has already been 
identified of significantly lower level in community-acquired pneumonia26 and obesity (with unexpected higher 
level in urine samples)27. High oxidative stress caused by exposure to air pollution has been demonstrated by 
Surya Narayan et al.28 to increase urinary PCS in human, this may relate the possible lung damage with PCS 
elevation detected in this particular study. In an investigation of protozoan-infection-caused acute myocarditis, 
Núria et al.29 have identified PCS as a potential biomarker for the disease by global metabolomic profiling. All in 
all, though PCS has been found most relative to kidney-related diseases like uremia, kidney failure and CKD (with 
reference to PubChem), the alarming fold change of 8.45 of this metabolite surely signified prominent changes 
in the ER-stressed lung, and therefore pose great potential in making PCS a biomarker of ER stress in lung.

Echoing with the lowered level (fold change: 6×) found in the present study, TMAO has long been referred 
as a chemical chaperone that stabilizes protein conformation against denaturation and even serves to correct 
folding/trafficking defects of certain protein relative to cystic fibrosis at cellular level30, but later proved thera-
peutically futile as the indices was too narrow in preclinical mouse models31. Hu et al.32 have identified TMAO 
as a potential serum biomarker by 1H NMR for prediction of non-small cell lung cancer (NSCLC) and evaluating 
the efficacy of microwave ablation, a preferred treatment of NSCLC. While in a study presented by Klupczynska 

Table 2.   Top 20 genes up-regulated or down-regulated in the RNA-seq results. Restrictions: padj < 0.05, fold 
change (T/C) > 2 or fold change reciprocal (reciprocal of fold change value) > 2, records of 0 average FPKM in 
either group were removed, top 20 selected based on P-values. C Control, T Tunicamycin.

Gene name P-value padj Fold change Fold reciprocal

Galnt15 5.2E−06 6.2E−05 6.86 0.15

Adam3 6.2E−06 6.2E−05 2.07 0.48

Fam181a 1.5E−05 1.0E−04 0.14 7.00

S100g 2.1E−05 1.1E−04 0.27 3.74

Cth 3.7E−05 1.5E−04 2.45 0.41

Dnase1l3 5.7E−05 1.6E−04 0.47 2.11

Kcnn4 6.0E−05 1.6E−04 0.34 2.98

Dmkn 6.4E−05 1.6E−04 0.29 3.45

Gm35394 7.0E−05 1.6E−04 12.78 0.08

Vipr2 7.9E−05 1.6E−04 3.97 0.25

Slc6a9 9.2E−05 1.6E−04 4.11 0.24

Sesn2 1.0E−04 1.6E−04 2.04 0.49

Pebp1 1.1E−04 1.6E−04 0.50 2.00

Tbx4 1.1E−04 1.6E−04 2.07 0.48

Rpl31-ps13 1.4E−04 1.6E−04 0.35 2.88

Fam229b 1.5E−04 1.6E−04 0.41 2.44

Ak1 1.5E−04 1.6E−04 0.33 3.06

Igkv13-85 1.6E−04 1.6E−04 0.04 25.11

Serpina9 1.6E−04 1.6E−04 0.13 7.95

Rpl27-ps3 1.6E−04 1.6E−04 0.47 2.14
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et al.33, TMAO was found to have the highest specificity in discrimination between NSCLC and control samples 
in the 36 features with statistical significance identified in the serum metabolomics. Similar to PCS, TMAO was 
proven the downstream product of intestinal microbiota metabolism34 and found positively associated with 
mortality in COPD patients with levels affected also by comorbidities and age35. The relation between TMAO and 
lung diseases has already been noticed and studied. Possibility it had as a biomarker for ER stress is preliminarily 
demonstrated in our data, but still require further investigation on its specificity comprising other pathologies.

Figure 4.   Multiple pathways aberrantly-regulated revealed by enrichment analyses. Functional enrichment 
results based on GO (a), KEGG (b) and Reactome (c) database were presented as dot bubble graphs (pathways 
with ascending significance from top to bottom), GSEA results revealed phototransduction pathway as the most 
prominently enriched process, up-regulated in response to ER stress: enrichment plot (d) profiling the running 
enrichment score (ES) and positions of gene set members on the rank ordered list, along with the heatmap (e) 
showing expression levels of the probed genes involved in the pathway of phototransduction. C/CTRL: Control, 
T/TUNI: Tunicamycin. The concealed part of the pathways’ names in (a): signal transducer activity, downstream 
of receptor; ATP-dependent microtubule motor activity, minus-end-directed; oxidoreductase activity, acting on 
a heme group of donors, oxygen as acceptor; signal transducer, downstream of receptor, with serine/threonine 
kinase activity; oxidoreductase activity, acting on peroxide as acceptor (from top to bottom); in (c): TCA cycle 
and respiratory electron transport; respiratory electron transport, ATP synthesis by chemiosmotic coupling, and 
heat production by uncoupling proteins.
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No relative reference regarding lung diseases has presented phenol sulphate (found up-regulated with fold 
change of 3.62) as disease-signifying marker. In fact, few, if any at all, relation has been made linking this com-
pound with human diseases, possibly due to the large fluctuation in normal-functioning human body as one 
bioavailability study described its metabolic generation from food polyphenols36. Hippuric acid, on the other 
hand, is very much like TMAO in its dietary origin and relation to microbiota37, and its synthesis has been 
applied clinically as a measurement of liver’s detoxication ability. Its down-regulation (fold change of 5.31) in 
ER stress phenotype therefore suggested the lowering in hepatic functions and consequently linked liver dam-
age with ER stress.

GSEA results identified phototransduction as the most significantly enriched pathway, including the elevation 
of genes Cnga1, Grk1, Calm1 etc. (Supplementary Table S1) in the T group, indicating the pathway’s susceptibility 
to ER stress. Yu et al.38 have also found up-regulated genes enriched in this pathway, in the investigation of lung 
adenocarcinoma prognosis, revealing the link between phototransduction pathway and pneumopathy. Based 
on the independent enrichment results of both omics, glutathione metabolism was consistently identified as 
the pathway of interest. Indeed, Janssen-Heininger et al.4 have described glutathione biochemistry prominently 
associated with ER stress in chronic lung diseases due to the crucial roles of glutathione, as well as its related 
enzymes and small molecules, play in maintaining the redox homeostasis in cells. It has already been demon-
strated by Zhang et al.39 that glutathione plays an important role in maintaining the redox homeostasis of ER. 
In consistence with the existing knowledge, the significance glutathione metabolism exhibits in ER stress has 
been verified in the present study including the detected elevation of glycine, l-glutamic acid, l-alanine, and 
oxidized glutathione by the metabolomic methods as well as the 2 up-regulated and 28 down-regulated genes 

Figure 5.   Protein–protein interactions were integrated in the Cytoscape software in the form of PPI networks. 
Central nodes (proteins with top 10 MCC values calculated by cytoHubba in each of the four clusters: (a–d) 
with degree values shown in (a′–d′), four clusters from which the central nodes were selected included top 3 PPI 
network clusters presented by MCODE analysis as well as the whole PPI network.
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(Supplementary Table S2) with statistically significant variations. Integration of both omics, on the other hand, 
suggested cancer, infections and multiple signal transduction pathways being influenced by ER stress, demon-
strating the close relationship between this particular cellular stress with multiple lung-relating diseases and 
pointing to future directions in delving this pathogenetic state.

The analysis of PPI revealed much of the influence on the lung by ER stress at molecular and cellular level. 
For the start, the top 10 nodes selected from the whole PPI network were all members involved in mitochondrial 
respiratory chain with no exception, and they almost overlap with the top 10 nodes from the top 1 PPI network 
cluster suggested by MCODE. This indicated both the significance and the great extent to which the cellular 
respiratory process was altered in ER stress. NADH:ubiquinone oxidoreductase (Ndufa5, Ndufa4, Ndufs6), ATP 
synthase (Atp5j2, Atp5h) and ubiquinol-cytochrome c reductase (Uqcr11) are potential targets identified in these 
two clusters that could be utilized in detection and remediation of ER stress. The two follow-up PPI network 
clusters concerned respectively the cell cycle and cancer, as well as G protein coupled receptor (GPCR) and G 
protein. Like the respiratory pathway pointed out by the first cluster, replication pathways and signal transduc-
tion processes are of fundamental importance in maintaining the normal functioning of cells. Cyclin (Ccnb2), 
ubiquitin conjugating enzyme (Ube2c) and RAD51 recombinase (Rad51) as well as coagulation factor II thrombin 
receptor (F2r), thromboxane A2 receptor (Tbxa2r) and tachykinin receptor 1 (Tacr1) are few examples of the 
suggested protein targets with potential in helping against the disease-related condition of ER stress. It should be 
noted that these targets demand further investigation on their distinguishing ability, sensitivity and availability 
etc. in the subsequent pursuit of mature therapy or disease screening methods based on ER stress.

The main limitation of the current study is the lack of systematic investigation concerning the selected 
markers. To further confirm the potential of the markers, more evidence and evaluations should be collected 
and conducted aiming to reveal the interconnections of these small molecules with the metabolic pathways and 

Figure 6.   Integrative analysis of metabolomics and transcriptomics revealed pathways significantly varied. 
Overview (a) of the pathways was presented, and the most significantly altered pathways (pathways with lowest 
P-values) were pathways in cancer (b, − log10(p) = 71.2, impact = 1.85), herpes simplex virus 1 infection (c, 
− log10(p) = 53.3, impact = 1.72) and MAPK signaling pathway (d, − log10(p) = 51.5, impact = 2.72).
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specific roles they play in the pathological state of ER stress, but these involve extensive amount of work that 
is beyond the aim of our study. In the content above, discussion was presented based on the combination of 
our findings via omic methods and references related to respective small molecules. For the first time, we have 
shed light on this elusive and disease-associated cellular state of ER stress through methods of metabolomics 
and transcriptomics, revealing informative molecular alterations as well as presenting potential markers for this 
cellular state, proposing inspirational interpretations in discussions.

The awareness of prominent roles ER stress plays in lung diseases is growing, yet the complexity and cen-
trality of ER in cells add much difficulty to molecular investigations. By means of metabolomics, we could read 
the metabolite signature and relate the underlying molecular perturbations to genetic alterations, which was 
as well obtained through transcriptomics in the present study. Disturbance of glutathione metabolism and the 
identification of two potential biomarkers, PCS and TMAO, were the two major findings in our study. Integra-
tion of metabolome and transcriptome provided reliable insights into the molecular variation of ER stress. The 
highlighted molecules and pathways here contain great potential yet to be uncovered.

Methods
Chemicals and antibodies.  Tunicamycin was obtained from Aladdin (T101151-1mg). Phosphate buff-
ered saline (PBS), dimethylsulphoxide (DMSO) and glucose were supplied respectively by Servicebio (G4202-
500ML, China), Aladdin (D2650-100ML, China) and SCR/shhushi (63005518, China). The antibodies used 
in western blot were purchased from companies: anti-β-actin (mouse Ab, 30101ES60, YEASEN, China), anti-
CHOP (rabbit Ab, 15204-1-ap, Proteintech, US; CCAAT/enhancer binding protein (C/EBP) homologous pro-
tein), and anti-GRP78 (rabbit Ab, 11587-1-ap, Proteintech, US; glucose-regulated protein 78).

Tissue processing.  Eight-week-old male C57BL/6J mice (around 22g) were purchased from Beijing Huafu-
kang Bioscience Co. Ltd. (Beijing, China), grouped [six per group, two groups: C (control) and T (tunicamy-
cin)] and housed in SPF (specific pathogen free) environment (temperature: 22–25 °C, humidity: 60–70%) with 
12 h-light/dark cycle and free access to standard rodent pellet food and water. All experimental animals were 
kept and operated in accordance with the guidelines of the experimental Animal Ethics Committee of the Insti-
tute of Materia Medica, Chinese Academy of Medical Sciences. The institutional committee of Animal Ethics in 
Institute of Materia Medica has approved our experimental protocols. After adaptive feeding for one week, the 
mice were weighed and injected with tunicamycin (2.5 mg/kg, dissolved in DMSO and diluted with PBS con-
taining 100 mM glucose) or vehicle (PBS with DMSO and glucose) intraperitoneally (i.p.). 12 h after injection, 
they were anesthetized and sacrificed. Lung tissues were quickly excised, weighed and parted (partially frozen in 
liquid nitrogen, partially immersed in formalin for pathological sections).

RNA extraction and real‑time PCR.  Total RNA extracted using Direct-zol RNA MiniPrep (Zymo 
Research, U.S.) from 12 lung samples were reversely transcribed to cDNA using cDNA reverse transcription kit 
(Takara, Japan) and loaded onto quantitative real-time PCR (qPCR, run in triplicates) with TB green (Takara, 
Japan) and primers (Table 3) synthesized by Beijing AuGCT Biotech Co. Ltd. (Beijing, China). Relative expres-
sion levels of genes were quantified using CFX96 real-timesystem (Bio-Rad, Singapore) and normalized in refer-
ence to TATA box-binding protein (TBP) expression.

Western blot.  Western blot was carried out with lung tissue lysates: sodium dodecyl sulfonate-polyacryla-
mide gel electrophoresis (SDS-PAGE) and blotting were performed as previously described40. Briefly, the lung 
tissues were lysed in RIPA buffer with protease inhibitor cocktail (CWBIO, China). Equal amount of protein was 
subjected to SDS-PAGE and immunoblotted with antibodies. Multiple exposures were used to ascertain signal 
linearity.

HE staining.  Lung tissues that were immersed in formalin were sectioned, stained by hematoxylin and eosin 
(HE) and photographed using Nikon instruments (ECLIPSE Ti with DIGITAL SIGHT DS-U3).

Metabolomics analysis.  Metabolites were extracted from 6 lung samples each group with accordance to 
the earlier-described method41. ACQUITY UPLC HSS T3 1.8 μm, 2.1 × 100 mm columns (Waters, Dublin, Ire-
land) were used in the HPLC tandem system of Agilent 1290 II (Agilent Technologies, Germany) and 5600 
Triple TOF Plus (AB Sciex, Singapore) as described earlier42. Applied mode was electrospray ionization (ESI ±) 

Table 3.   Primer sequences used in qPCR. F referred to forward primer, while R referred to reverse primer.

Primer name Primer sequence (5′–3′)

mChop-F CCA​CCA​CAC​CTG​AAA​GCA​GAA​

mChop-R AGG​TGA​AAG​GCA​GGG​ACT​CA

mGrp78-F TTC​AGC​CAA​TTA​TCA​GCA​AAC​TCT​

mGrp78-R TTT​TCT​GAT​GTA​TCC​TCT​TCA​CCA​GT

mTbp-F ACC​CTT​CAC​CAA​TGA​CTC​CTATG​

mTbp-R ATG​ATG​ACT​GCA​GCA​AAT​CGC​



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14680  | https://doi.org/10.1038/s41598-021-92779-8

www.nature.com/scientificreports/

with condition values listed below: curtain gas = 35, cation mode ion spray voltage = 5500 V, anion mode ion 
spray voltage = − 4500 V, temperature = 450 °C, ion source gas 1 = 50, ion source gas 2 = 50. Modes of TOF (time 
of flight) full scan and IDA (information dependent acquisition) were utilized in data collection (impact energy: 
30 ± 15  eV). Internal standard molecules include: l-Phenylalanine-D8, l-Tryptophan-D8, l-Isoleucine-D10, 
l-Asparagine-13C4, l-Methionine-D3, l-Valine-D8, l-Proline-D7, l-Alanine-D7, dl-Serine-D3, dl-Glutamic 
acid-D5, l-Aspartic acid-D3, l-Arginine-D7, l-Glutamine-D5, l-Lysine-D9, l-Histidine-D5, Taurine-D2, 
Betaine-D11, Urea-(13C,15N2), l-lactate-13C3, Trimethylamine N-oxide-D9, Choline-D13, Malic acid-D3, Cit-
ric acid-D4, Succinic acid-d4, Fumaric acid-D4, Hypoxanthine-D3, Xanthine-15N2, Thymidine (13C10,15N2), 
Inosine-15N4, Cytidine-13C5, Uridine-D2, Methylsuccinic acid-D6, Benzoic acid-D5, Creatine-D3, Creatinine-
D3, Glutaric acid-D4, Glycine-D2, Kynurenic acid-D5, l-Citrulline-D4, l-Threonine-(13C4,15N), l-Tyrosine-
D7, P-cresol sulfate-D7, Sarcosine-D3, Trans-4-hydroxy-l-proline-D3 and Uric acid-(13C; 15N3). MarkerView 
1.3 (AB Sciex, Concord, ON, Canada) was used to retrieve raw data and PeakView 2.2 (AB Sciex, Concord, ON, 
Canada) was used to align data with standard chemicals and databases (HMDB, METLIN) in recognizing and 
ascribing metabolites, and analyzing the data in the same time. After evaluating the data using PCA, the up-reg-
ulated and down-regulated metabolites were selected based on padj values and fold change (T/C) or fold change 
reciprocal (C/T, reciprocal of fold change value). The threshold employed was padj < 0.05 and fold change > 2 
(or fold change reciprocal < 0.5) and the top 4 metabolites were presented with boxplots. Enrichment analysis, 
metabolite set enrichment analysis (MSEA), was carried out to view the significant alteration in pathways. The 
input data were filtered by hypothesis test (Mann–Whitney-U, P < 0.05) and rid of metabolites without HMDB 
ID. The reference database was pathway-associated metabolite sets (SMPDB) and the calibration method was 
hypergeometric test in over-representation analysis (ORA). The top 20 enriched metabolic pathways were then 
presented and the significantly enriched pathway was further discussed later in discussion section.

Transcriptomics analysis.  Total RNA was extracted from liquid nitrogen-frozen lung tissues and tested 
for its integrity using RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, 
USA) before library preparation (via next generation sequencing) for transcriptome sequencing. Library quality 
was assessed by the Agilent Bioanalyzer 2100 system. RNA-seq was carried out based on Illumina NovaSeq 6000 
platform, and sequenced reads were mapped utilizing HISAT2 v2.0.5 while the quantification of gene expression 
was made by featureCounts (1.5.0-p3). Pearson correlation analysis and PCA were done to evaluate the correla-
tion of samples between groups. Differential expression analysis was carried out in DESeq2 (1.20.0) and vol-
cano plot was made to visualize the differentially expressed genes. The threshold used in identifying aberrantly 
regulated genes was padj < 0.05 and fold change > 2 (or fold change reciprocal < 0.5). Enrichment analyses of 
differentially expressed genes were carried out using clusterProfiler (3.4.4). GO, KEGG and Reactome were the 3 
databases referred, with different emphasis on gene functions, systematic pathways and biological reactions. Top 
30, 20 and 20 pathways enriched were then presented in dot bubble graphs. Conventional enrichment analysis 
based on hypergeometric distribution relies on significantly up-regulated or down-regulated genes and has risk 
of leaving out biologically important genes without significant alteration in expression. Gene set enrichment 
analysis (GSEA), on the other hand, detect changes in the expression of gene sets rather than individual genes, 
these subtle changes in expression can thus be included. Local GSEA tool (http://​www.​broad​insti​tute.​org/​gsea/​
index.​jsp) was used to do gene set enrichment analysis for the determination of the significance a predefined 
gene set can present in consistence with the difference between two biological states or phenotypes. Among the 
pathways from the forementioned 3 databases, the significantly enriched pathway was selected and presented. 
Based on STRING database, protein–protein interactions (PPI) were analyzed by software Cytoscape. PPI net-
work clusters were established and influential proteins (genes) were identified.

Statistical analysis, graphics and joint‑pathway analysis.  All data were expressed as mean ± SEM 
(standard error of mean). Student’s t-test compared the mean values and statistical graphics were constructed 
by GraphPad Prism 8 software (GraphPad Software Inc., CA, USA). For the selection of differentially expressed 
genes and metabolites, P-values were calculated by t-test and adjusted by calculating padj using the FDR (false 
discovery rate, BH method) calculation by online platform (http://​www.​bioin​forma​tics.​com.​cn/), padj < 0.05 
was considered statistically significant. All PCA graphs were made on Orange Data Mining software and vol-
cano graphs on bioinformatics platform (http://​www.​bioin​forma​tics.​com.​cn/). Significantly varied metabolites 
and genes were submitted in running joint-pathway analysis in Metaboanalyst (https://​www.​metab​oanal​yst.​ca/), 
relevant graphs were exported from this online tool. Joint-pathway analysis is an integrated metabolic pathway 
analysis conducted by mapping significant genes together with significant metabolites to metabolic pathways for 
functional enrichment analysis. By integrating evidence based on changes in both gene expression and metabo-
lite levels, one is more likely to pinpoint the pathways involved in the underlying biological processes, in our 
case, the ER stress.

ARRIVE guidelines statement.  We confirm that the study was reported in accordance with ARRIVE 
guidelines (https://​arriv​eguid​elines.​org).

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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