
ONCOLOGY LETTERS  28:  531,  2024

Abstract. Liver cancer is the second leading cause of 
tumor‑related death worldwide, and a serious threat to 
lives and health. Circulating tumor cells (CTCs) facili‑
tate the progression of various cancers, including liver 
cancer. The relationship between CTC/circulating tumor 
microemboli‑related genes (CRGs) and the prognosis of 
liver cancer is unclear. The aim of the present study was to 
identify CTC/circulating tumour microemboli‑related genes 
(CRGs) in hepatocellular carcinoma and to investigate their 

clinical significance. Transcriptomic data from The Cancer 
Genome Atlas (International Cancer Genome Consortium 
(ICGC) and GSE117623 databases were combined, and 
differentially expressed CRGs were identified. These were 
subsequently analyzed via least absolute shrinkage and 
selection operator and multivariate Cox analyses, and a 
five‑gene risk signature was constructed. The signature 
was validated in the ICGC and GSE14520 dataset with 
survival analysis and receiver operating characteristic curve 
analysis. Immunocyte infiltration, tumor mutation burden 
(TMB), tumor immune dysfunction and exclusion (TIDE), 
and the somatic mutation rate were also compared between 
high‑ and low‑risk groups, based on the median predictive 
index, to further evaluate the immunotherapeutic value of 
the model. Molecular subtypes of liver cancer were char‑
acterized by the non‑negative matrix factorization method 
and potential therapeutic compounds were evaluated for 
different subtypes. Nomograms were utilized to predict 
the prognosis of patients, and the signature was compared 
with previous literature models. Additionally, the biological 
function of one of the CRGs, tumor protein p53 inducible 
protein 3 (TP53I3), in liver cancer was further explored 
through in vitro experiments. Analysis of the prognostic 
characteristics of the five CRGs led to the identification of 
two liver cancer subtypes. Patients in the low‑risk group 
had a longer survival compared with those in the high‑risk 
group, and patients in the latter group were associated with 
a higher TMB, immunocyte infiltration and somatic muta‑
tion rate, and lower TIDE scores. The prognostic profile was 
validated in the ICGC and GSE14520 datasets and exhibited 
a good predictive performance. In vitro analysis showed 
that the knockdown of TP53I3 suppressed liver cancer cell 
proliferation. In summary, CRGs were used to develop a new 
prognostic signature to predict the prognosis of patients with 
liver cancer. This signature may be used to assess the prog‑
nosis of patients and may provide new insights for clinical 
management strategies. In addition, TP53I3 is potentially 
a therapeutic target for liver cancer.
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Introduction

Primary liver cancer is among the six most widespread malig‑
nancies worldwide, and has the third highest mortality rate 
globally (1‑3). Liver cancer is closely associated with chronic 
liver disease in >90% of cases, and causes of cirrhosis are 
important risk factors for liver cancer. Alcohol consumption, 
diabetes, obesity‑induced non‑alcoholic steatohepatitis and 
hepatitis B and V viruses are all critical risk elements for 
liver cancer, in addition to biliary cirrhosis and hemochroma‑
tosis (4,5). Currently, the primary treatment options for liver 
cancer are radical resection or liver transplantation. However, 
for patients with advanced, recurrent liver cancer or those 
who are not suitable for surgery, the prognosis remains unsat‑
isfactory. Despite some advances in the diagnosis, treatment 
and management of liver cancer, its overall survival remains 
poor due to the high rates of relapse, vascular invasion or 
distant metastasis (6). Therefore, it is urgently necessary to 
explore effective and representative biomarkers and new 
predictive tools.

Circulating tumor cells (CTCs) are tumor cells that have 
been shed from a primary or metastatic lesion into the blood‑
stream, which are rare in healthy individuals (7‑9). CTCs exist 
as single cells or multicellular aggregates known as circu‑
lating tumour microemboli (CTMs) (10). Studies in mouse 
models have confirmed that CTMs are more metastatic than 
individual CTCs, with results suggesting that the injection 
of clusters of aggregated cancer cells significantly increases 
the formation of tumours compared to the injection of the 
same number of individual cancer cells into mice (11‑13). 
Heterotopic CTMs contain many helper cells, such as red 
blood cells, fibroblasts and immune cells, which contribute to 
the metastatic survival of CTMs, rather than just an aggrega‑
tion of individual cancer cells (14). As an essential component 
of liquid biopsy technology, CTCs play an essential role in 
the diagnosis and treatment of cancer, carrying heteroge‑
neous information about the primary tumor and serving as 
an effective biomarker and modeling tool. Researchers have 
found that CTCs serve a key role in the metastatic process of 
tumors. Therefore, the isolation and identification of CTCs 
with non‑invasive biopsy can be widely applied for the early 
diagnosis, real‑time efficacy monitoring and prognosis evalu‑
ation of tumors (12,15‑18). In general, it has been shown that 
higher levels of CTCs are associated with a worse outcome in 
patients with tumors. For example, in two studies of patients 
with liver cancer, the duration of survival was significantly 
shorter and associated with poor clinical features in the 
CTC‑positive cohort (19,20). Similarly, Sun et al (21) found 
that the risk of tumor recurrence increased in patients with 
liver cancer when the preoperative CTC count was ≥2/7.5 ml, 
particularly at a‑fetoprotein levels of ≤400  ng/ml. With 
advances in technology, and the genomic, transcriptomic 
and proteomic analysis of CTCs at the single‑cell level, as 
well as the refinement of CTC in vitro models, our under‑
standing of the critical role of CTCs in cancer has been 
improved (22,23). Nevertheless, the biological functions of 
CTCs in tumors at the molecular level have not been fully 
elucidated. Therefore, the present study aimed to identify the 
CTC/CTM‑related genes (CRGs) in liver cancer and explore 
their clinical significance.

In the present study, a comprehensive analysis of the tran‑
scriptomic data and clinical information of liver cancer in The 
Cancer Genome Atlas (TCGA) and the International Cancer 
Genome Consortium (ICGC) databases was performed. Analysis 
of these data in combination with mRNA data associated with 
liver cancer from the GSE117623 dataset led to the identifica‑
tion of 258 CRGs. Subsequently, a prognostic model and risk 
subgroups for patients with liver cancer were constructed based 
on five CRGs, and the associations between different subgroups 
of patients and immune markers such as immune infiltration, 
immune checkpoints and tumor mutation burden (TMB) were 
analyzed. Finally, the detection efficacy and clinical value of 
the model were evaluated, and chemotherapeutic agents with 
potential therapeutic value were screened.

Materials and methods

Data sources. The transcriptome profiles and the corre‑
sponding clinicopathological data of patients with liver cancer 
were obtained from TCGA database (https://portal.gdc.cancer.
gov/) as the training cohort. In addition, RNA‑sequencing 
(RNA‑seq) data and clinical trait information from patients 
with liver cancer were downloaded from the ICGC database 
(LIRI‑JP dataset; https://icgc.org/) and Gene Expression 
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/) for validation. 
Specifically, 12,518 CRGs in the GSE117623 dataset were 
downloaded from the GEO database (24). Transcriptomic and 
matched clinical data from the IMvigor210 cohort of patients 
treated with anti‑PD‑L1 were collected (research‑pub.gene.
com/IMvigor210CoreBiologies) to explore the value of model 
genes in assessing response to immunotherapy (25).

Identification of candidate genes. To acquire the differentially 
expressed genes (DEGs) associated with CTCs/CTMs, the 
limma R package (version 2.7, bioinf.wehi.edu.au/limma) was 
used to process the RNA‑seq data using a false discovery rate 
(FDR) <0.05 and |log2 (fold change)|>2 as the cutoff criteria. 
A Venn diagram was then constructed using a Venn webtool 
(http://bioinformatics.psb.ugent.be/webtools/Venn/) to illus‑
trate the intersection among TCGA‑DEGs, ICGC‑DEGs and 
genes from the GSE117623 dataset. These intersected genes 
were considered to be the CRGs.

Pathway enrichment and protein‑protein interaction 
(PPI) network analysis. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses were conducted to explore the functional roles and 
pathways associated with the CRGs using the clusterProfiler 
R package (version 3.19) (26). The cut‑offs were set as P<0.05 
and FDR <0.05. Gene set enrichment analysis (GSEA) was 
performed to investigate the common biological pathways (27) 
using cp.kegg.v7.1.symbols.gmt as a reference gene set with 
a threshold of P<0.05, to screen for key enriched pathways 
in different risk groups. In addition, interactions among the 
CRGs were illustrated by the construction of a PPI network 
using the STRING database (https://string‑db.org/), with an 
interaction score >0.7 being considered significant. Moreover, 
Cytoscape software was utilized to visually represent the 
PPI network. Specifically, the Cytoscape plug‑in Molecular 
Complex Detection (MCODE) (version 2.0.3) was utilized to 
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identify the highly interconnected modules of the PPI network 
with the following criteria: Degree cut‑off,  2; node score 
cut‑off, 0.2; k‑core, 2; and max. depth, 100 (28). In addition, 
another Cytoscape plug‑in, cytoHubba (version 0.1), was used 
to rank the nodes in the network according to their network 
functionality (29). The gene set variation analysis (GSVA) 
package (version 3.19) was used to explore the signaling 
pathways between high‑ and low‑risk groups (30).

Construction and validation of the risk prognostic model. 
Univariate Cox regression analysis was performed to deter‑
mine the prognostic CRGs and the CRGs associated with 
survival time, with P<0.01 considered to be statistically 
significant. Then, least absolute shrinkage and selection 
operator (LASSO) penalized Cox regression analysis was 
performed to further filter prognostic CRGs associated with 
the overall survival (OS) of patients with liver cancer (31). 
Subsequently, a risk signature was developed via stepwise 
multivariate Cox proportional hazards regression analysis. 
Prognostic gene signatures were constructed based on linear 
combinations of regression coefficients derived by multiplying 
the LASSO Cox regression model coefficients by their mRNA 
expression levels (32): Risk score=∑ (βmRNA x mRNA)n, 
where β represents the regression coefficient for the mRNA, 
mRNA represents the expression level of the mRNA, and n 
represents the specific gene. Receiver operating characteristic 
(ROC) curves and Kaplan‑Meier curves were constructed 
to evaluate the predictive performance of the prognostic 
model in TCGA cohort. pheatmap R package (version 1.0.12; 
cran.r‑project.org/web/packages/pheatmap/index.html) to plot 
images describing gene expression heatmaps, risk scores and 
OS for high and low risk groups. Data from the ICGC and 
GEO databases were used as external validation data to test 
the predictive capability of the model.

Identification of liver cancer subtypes. A non‑negative matrix 
factorization (NMF) clustering algorithm was utilized to 
analyze the five signature genes in the risk score model, and 
determine the subtypes of CRGs in liver cancer using the 
NMF R package (version 0.27) (33). Using conformal, scatter 
and silhouette features, the optimal number of clusters with 
n=2 was determined.

Establishing the predictive nomogram. Nomograms are widely 
used as a tools for the prognostic analysis of patients with 
tumors (34). A simplified liver cancer nomogram was constructed 
for each dataset based on the CRG model and its predictive 
performance was evaluated by plotting calibration curves.

Bioinformatics analysis of the prognostic signature. The 
association between the low‑ and high‑risk groups and 
clinical characteristics were explored using Chi‑square tests, 
and the results were displayed as a heatmap. In addition, 
the associations between the signature genes and immune 
cell infiltration were analyzed. Six algorithms, namely 
CIBERSORT‑ABS (35), TIMER (36) (https://cistrome.shin‑
yapps.io/timer/), QUANTISEQ (37), MCPCOUNTER (38), 
XCELL  (39) and EPIC  (40,41), were used to evaluate the 
differences in the immune microenvironment between the 
two risk groups. Tumor‑associated immune comprehensive 

score was assessed via ImmunoPhenoScore in R package 
IOBR (42) (version 0.99.9, https://github.com/IOBR/IOBR). 
Waterfall plots for the two risk groups were produced using 
the maftools (github.com/PoisonAlien/maftools) R package 
(version 3.19). Differences in the expression of major histo‑
compatibility complex (MHC) molecules, human leukocyte 
antigen (HLA) signature, chemokines and potential immune 
checkpoints were also compared between the two groups. 
To investigate the association between signature genes and 
immune subtypes, ‘Subtypes’ module of the TISIDB database 
(http://cis.hku.hk/TISIDB/index.php). Pearson correlation 
coefficients of the signature genes expression with the immune 
checkpoints (PD‑1, PD‑L1 and CTLA4) were calculated using 
R language to assess the correlation. In this study, the OCLR 
algorithm and the Primary Cell Biology Consortium (PCBC, 
https://progenitorcells.org/) stemness score model were used 
to calculate the mRNAsi of cells in the TCGA‑LIHC dataset 
and to assess the correlation between the stemness index and 
the risk score  (43). Pearson correlation coefficients of the 
signature genes expression with the immune checkpoints were 
calculated using the R language to assess the correlation.

Screening potential therapeutic small molecule drugs for 
liver cancer. To identify small molecule compounds that may 
be suitable for the treatment of liver cancer, the pRRophetic 
(genemed.uchicago.edu/~pgeeleher/pRRophetic/) R package 
(version 3.19) was used to calculate the half‑maximal inhibi‑
tory concentration (IC50) based on data from the Genomics of 
Drug Sensitivity in Cancer database (44).

Cell culture and transfection. HepG2 and MHCC97H 
human liver cancer cells (cat. nos.  CTCC‑001‑0014 and 
CTCC‑400‑0192, respectively) were obtained from the 
Meisen Chinese Tissue Culture Collections. The cell lines 
were authenticated by short tandem repeat testing. Both 
cell lines were cultivated in high‑glucose Dulbecco's modi‑
fied Eagle's medium (Gibco; Thermo Fisher Scientific, Inc.) 
supplemented with 10% fetal bovine serum (Gibco; Thermo 
Fisher Scientific, Inc.) at 37˚C in 5% CO2. Two small inter‑
fering RNA (siRNAs) targeting tumor protein p53 inducible 
protein 3 (TP53I3), namely si‑TP53I3‑1 and si‑TP53I3‑2, and 
an siRNA negative control were synthesized by and purchased 
from Sangon Biotech Co., Ltd. The sequences of siRNAs 
are listed in Table SI. Cell transfection was conducted in 
6‑well plates when cell confluence was 60‑70%, with a final 
siRNA concentration of 50 nM per well. Transfection of the 
liver cancer cells was performed using Lipofectamine® 2000 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) following 
the manufacturer's instructions. Transfection was performed 
for 6‑8 h at 37˚C in 5% CO2. The cells were harvested at 24 h 
post‑transfection for reverse transcription‑quantitative PCR 
(RT‑qPCR) analysis and at 48 h post‑transfection for western 
blot and in vitro functional assessment.

Western blot analysis. Cells were lysed on ice with RIPA 
buffer (Wuhan Boster Biological Technology, Ltd.) containing 
protease inhibitor cocktail (MedChemExpress) for 20 min. 
The protein contents of the cell lysates were quantified using a 
BCA protein assay kit (Beyotime Institute of Biotechnology). 
Then, 30 µg protein/lane was separated by 10% SDS‑PAGE 
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(Boster Biological Technology) and transferred to PVDF 
membranes (EMD Millipore). The membranes were blocked 
with 5% defatted milk at room temperature for 2 h, then incu‑
bated with anti‑TP53I3 (#14828‑1‑AP; 1:1,000; Proteintech 
Group, Inc.) and anti‑ACTB (#AC006; 1:3,000; ABclonal 
Biotech Co., Ltd.). primary antibodies at 4˚C for 12‑16 h, 
followed by HRP‑conjugated Affinipure goat anti‑rabbit IgG 
(H+L) (SA00001‑2; 1:5,000; Proteintech) secondary antibodies 
at room temperature for 2 h, and the signal was detected using 
Pierce® ECL Western Blotting Substrate (Thermo Fisher 
Scientific, Inc.). Finally, the bands were detected and analyzed 
using ChemiDoc™ XRS+ with Image Lab™ software 
(version 6.0, Bio‑Rad Laboratories, Inc.).

RT‑qPCR. Total RNA was extracted from cells using FreeZol 
reagent (Vazyme Biotech Co., Ltd.) and synthesized into 
cDNA using PrimeScript™ RT Master Mix (Takara Bio, Inc.), 
according to the manufacturer's instructions. qPCR was then 
carried out using the CFX96 Real‑Time PCR System (Bio‑Rad 
Laboratories, Inc.) with the SYBR Green PCR kit (Thermo 
Fisher Scientific, Inc.) according to the standard protocol. The 
thermocycling conditions used were as follows: 95˚C for 30 sec 
pre‑cycling, and then 40 cycles of 95˚C for 10 sec and 60˚C for 
30 sec. The primer pairs were synthesized by Sangon Biotech 
Co., Ltd. and their sequences are presented in Table SII. The 
relative expression of TP53I3 was calculated using the formula 
2‑ΔΔCq with GAPDH as the reference gene (34).

Cell proliferation assay. Cell Counting Kit 8 (CCK‑8) assay 
(ABclonal Biotech Co., Ltd.) was utilized to assess the prolif‑
eration ability of the cells. Cells (3,000/well) were plated in 
a 96‑well plate and incubated overnight at 37˚C to allow adhe‑
sion. At 24, 48 and 74 h, 100 µl 10% CCK‑8 solution was added 
to each well and the cells were cultured in a cell incubator for 
2 h, after which absorbance was measured at 450 nm using 
a microplate reader (Thermo Fisher Scientific, Inc.).

Colony formation assay. Cells were seeded into 6‑well 
plates at a concentration of 1,000  cells/well. The cells 
were cultured at 37˚C with 5% CO2 in fresh medium and 
allowed to grow for 14 days. The colonies were then fixed 
for 15 min at room temperature in 4% paraformaldehyde 
(Wuhan Servicebio Technology Co., Ltd.), and stained 
with crystal violet (0.5% wt./vol.) at room temperature for 
15 min. Finally photographs of the plates were taken and 
the colonies were quantified using an inverted microscope 
(Guangzhou Micro‑shot Technology Co., Ltd.). The number 
of colonies was counted manually. Each independently 
counted colony refers to a cell cluster of ≥50 cells. The 
experiment was repeated three times.

5‑Ethynyl‑2'‑deoxyuridine (EdU) detection. The BeyoClick™ 
EdU‑555 Cell Proliferation Kit (Beyotime Institute of 
Biotechnology) was employed to investigate the proliferation 
rate of the human liver cancer cells according to the manufac‑
turer's protocols. Briefly, after incubation with 1X EdU (10 µM) 
solution for 2 h at 37˚C, cells were fixed with paraformaldehyde 
(4%) for 30 min at room temperature, then permeabilized with 
0.3% Triton X‑100 for 15 min and finally stained with Hoechst 
33342 and 4',6‑diamidino‑2‑phenylindole in the absence of 

light for 30 min at room temperature. Finally, the cells were 
imaged by fluorescence microscopy.

Statistical analysis. Bioinformatics analysis and mapping were 
accomplished using R software. Survival rates were compared 
using Kaplan‑Meier analysis with the calculation of P‑values 
using log‑rank tests, or the 2‑stage test in the plot with late‑stage 
crossover (cran.r‑project.org/web/packages/TSHRC/TSHRC.
pdf). In addition, the Chi‑square test was used for comparisons 
between categorical variables, and unpaired Student's t‑test 
was utilized to evaluate the discrepancies between the two risk 
groups. Correlations between variables were assessed using 
Spearman's correlation test. The cell groups were compared 
by one‑way ANOVA followed by Dunnett's post hoc tests. For 
each statistical analysis, P<0.05 was considered to indicate 
a statistically significant result.

Results

Differentially expressed CRGs. The liver cancer (liver 
hepatocellular carcinoma) gene expression profiles were 
downloaded from TCGA and ICGC portals and 1,622 and 
628 DEGs, respectively, were screened out using the limma 
R package. The DEGs from TCGA and ICGC databases are 
shown as volcano plots in Fig. 1A and B, respectively. A Venn 
diagram was then constructed to filter out the differentially 
expressed CRGs (Fig.  1C). The intersection of the DEGs 
from TCGA and ICGC databases with the 12,518 CRGs from 
GSE117623 yielded a total of 258 differentially expressed 
CRGs (Table SIII).

PPI network construction. To investigate the interrelationship 
of the differentially expressed CRGs and identify hub genes, a 
PPI network was constructed and module analysis performed 
to determine co‑expression networks. Firstly, the 258 differ‑
entially expressed CRGs were uploaded to the STRING 
database, and the minimum required interaction score was 
set to 0.7, which indicates a strong interaction between the 
CRGs. The STRING interactions were then analyzed using 
Cytoscape and the resulting co‑expression network, which 
contained 155 nodes and 2,731 edges, is shown in Fig. 2A. In 
addition, modules with >50 genes were identified using the 
MCODE plug‑in and 10 hub genes in that module, namely 
topoisomerase IIa, cyclin B2, cell division cycle associated 8 
(CDCA8), BIRC5, aurora kinase B, cyclin B1, BUB1 mitotic 
checkpoint serine/threonine kinase (BUB1), BUB1B, kinesin 
family member 20A and TTK protein kinase, were charac‑
terized using the cytoHubba plug‑in (Fig. 2B). This included 
57 nodes and 1,497 edges. These potential hub genes may be 
instrumental in the biological progression of liver cancer.

GO and KEGG enrichment analyses. To explore the biological 
categories and biological processes associated with the differ‑
entially expressed CRGs, GO and KEGG enrichment analyses 
were conducted using R software, and the enrichment results 
are shown in bubble charts (Fig. 2C and D). The GO enrich‑
ment analysis revealed that the differentially expressed CRGs 
were principally concentrated in the biological process terms 
‘nuclear division’, ‘organelle fission’, ‘chromosome segrega‑
tion’ and ‘mitotic nuclear division’. In addition, the main 
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cellular component terms included ‘chromosomal region’, 
‘chromosome, centromeric region’, ‘spindle’ and ‘kinetochore’. 
Moreover, the molecular function terms associated with the 
CRGs were ‘tubulin binding’, ‘microtubule‑binding’, ‘ATPase 
activity’ and ‘motor activity’ (Fig. 2C). Regarding the KEGG 
analysis, the primary terms are shown in Fig.  2D, which 
reveals that the differentially expressed CRGs were particu‑
larly enriched in ‘cell cycle’, ‘microRNAs in cancer’, ‘p53 
signaling pathway’ and ‘cellular senescence’.

Construction of a prognostic model and validation of the model 
in the ICGC cohort. Univariate Cox regression analysis demon‑
strated that 88 CRGs were strongly associated with survival in 
patients with liver cancer (P<0.01), all of which were prognostic 
risk factors (Fig.  3A). Then, the 88 CRGs were regression 
penalized using LASSO Cox regression to exclude relatively 
insignificant parameters (Fig. 3B and C). Stepwise multivariate 

Cox regression was subsequently employed to construct a 
predictive signature for patients with liver cancer in TCGA 
cohort (Fig. 3D). The five genes in the signature were CDCA8, 
TP53I3, hepatitis A virus cellular receptor 1 (HAVCR1), 
MYCN proto‑oncogene (MYCN) and thioredoxin reductase 
1 (TXNRD1). The formula for risk score calculation was as 
follows: Risk score=(0.0826 x expression level of CDCA8) + 
(0.0112 x expression level of TP53I3) + (0.0824 x expression 
level of MYCN) + (0.0376 x expression level of HAVCR1) + 
(0.0120 x expression level of TXNRD1) (Table SIV). Patients 
in TCGA cohort were classified into high‑ and low‑risk groups 
using the median predictive index as the cut‑off point. As 
Fig. 4A shows, the low‑risk group was significantly associated 
with improved survival (P<0.05). To evaluate the predictive 
ability of this prognostic signature, an ROC analysis of the risk 
score was conducted. The area under the curve (AUC) values 
predicted from the ROC curves for 1‑, 3‑ and 5‑year OS were 

Figure 1. Identification of CRGs. Volcano plots of the differentially expressed genes in (A) TCGA and (B) ICGC datasets. (C) Venn diagram showing the 
intersection of the TCGA, ICGC and GSE117623 datasets, from which a total of 258 CRGs were identified. CRGs, circulating tumor cell/circulating tumor 
microemboli‑related genes; TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; FDR, false discovery rate; FC, fold change.
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0.804, 0.736 and 0.707, respectively (Fig. 4B). In Fig. 4C, the 
upper panel shows the expression heat map of the five prog‑
nostic model genes in the high‑ and low subgroups, the middle 
panel reveals that the risk of patients with liver cancer increases 
as risk score increases, and the lower panel demonstrates the 
poor OS of the patients in the high‑risk group compared with 
those in the low‑risk group. To validate the predictive power of 
the signature, the same formula was used to analyze the risk 
score of each patient in the ICGC dataset, for independent 
external validation. The Kaplan‑Meier curves also displayed a 
poor prognosis of patients in the high‑risk group in this dataset 
(P<0.05; Fig. 4D). In addition, the ROC curve showed the strong 
predictive ability of the risk‑score signature for prognosis, with 
AUCs for the prediction of 1‑, 3‑ and 5‑year OS of 0.714, 0.730 
and 0.726, respectively (Fig. 4E). Also, the expression of the five 
CRGs and the mortality of the patients increased as the risk 
scores increased (Fig. 4F).

Independent prognostic role of the gene signature. To investigate 
whether the CTC/CTM‑associated 5‑gene signature could be 
an independent prognostic factor for patients with liver cancer, 
the prognostic value of this signature was compared with that 
of several clinicopathological factors, including age, sex, grade 
and American Joint Committee on Cancer (AJCC) stage in 

both cohorts using univariate and multivariate Cox regression 
analyses. For TCGA cohort, 365 valid patients were included, 182 
in the high‑risk group and 183 in the low‑risk group. Univariate 
Cox analysis indicated that risk score [P<0.001; hazard ratio 
(HR), 1.258; 95% confidence interval (95% CI), 1.183‑1.338)], 
AJCC stage (P<0.001; HR, 1.658; 95% CI, 1.340‑2.053) and T 
status (P<0.001; HR, 1.633; 95% CI, 1.332‑2.003) were candidate 
factors. Further multivariate Cox regression analysis emphasized 
that risk score was an independent risk factor for patients with liver 
cancer (P<0.001; HR, 1.227; 95%CI, 1.142‑1.318) (Fig. 4G). For 
the ICGC cohort, 229 patients were included, 59 in the high‑risk 
group and 170 in the low‑risk group. Univariate Cox regression 
analysis demonstrated that sex (P=0.033; HR, 0.505; 95% CI, 
0.270‑0.946), risk score (P=0.010; HR, 1.076; 95% CI, 1.017‑1.137) 
and tumor stage (P<0.001; HR, 2.252; 95% CI, 1.543‑3.287) were 
potential risk factors. Multivariate Cox regression analysis also 
indicated that sex (P=0.004; HR, 0.389; 95% CI, 0.204‑0.740), 
risk score (P=0.030; HR, 1.070; 95% CI, 1.006‑1.138 and tumor 
stage (P<0.001; HR, 2.330; 95% CI, 1.601‑3.391) were indepen‑
dent predictors for patients in the ICGC cohort (Fig. 4H). In 
conclusion, these findings indicated that the 5‑CRG risk signature 
was closely associated with the clinical characteristics of patients 
with liver cancer, had a fine predictive capacity and has potential 
as a prognostic indicator for these patients.

Figure 2. Protein‑protein interaction networks and functional annotation of the CRGs. (A) Interaction network comprising 155 genes, with an interaction score 
>0.7 set as significant. Yellow represents module 1, with >50 genes by the Molecular Complex Detection algorithm. (B) In module 1, blue represents the top 
10 hub genes calculated by cytoHubba. Functional annotation of these differentially expressed CRGs based on (C) Gene Ontology enrichment analysis and 
(D) Kyoto Encyclopedia of Genes and Genomes analysis. CRGs, circulating tumor cell/circulating tumor microemboli‑related genes; p.adjust, adjusted P‑value.
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Figure 3. Establishment of CRG signature. (A) Univariate Cox regression analysis identified 88 prognosis‑related CRGs. LASSO Cox regression analysis 
excluded relatively insignificant parameters. (B) Plot of partial likelihood deviance vs. log(l) for the LASSO regression model. (C) Plot of coefficients vs. log(l) 
for the LASSO regression model. (D) Five signature genes were identified by multivariate Cox regression. **P<0.01 and ***P<0.001. CRG, circulating tumor 
cell/circulating tumor microemboli‑related gene; LASSO, least absolute shrinkage and selection operator; AIC, Akaike information criterion.
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Validation of the signature in the GEO cohort. To further 
verify the predictive power of the prognostic signature, the 
GSE14520 dataset was analyzed. In this dataset, 221 valid 
patients were included, with 100 in the high‑risk group and 
121 in the low‑risk group. As the results in Fig. 5A illustrate, 

patients in the low‑risk group had improved survival outcomes 
compared with those in the high‑risk group (P<0.05). In the 
GEO cohort, the AUC for 5‑year OS was 0.684 (Fig. 5B). 
The expression of model genes, risk score distribution and 
survival status for each patient in this validation cohort are 

Figure 4. Predictive efficiency validation of the prognosis signature. (A) OS curves of patients in the low‑ and high‑risk groups in TGCA cohort (analyzed 
using the 2‑stage test). (B) ROC curves for 1‑, 3‑ and 5‑year survival in TCGA cohort. (C) Distribution pattern of the expression of model genes (upper), risk 
score delamination (middle) and survival state (lower) in the TGCA cohort. (D) OS analysis, (E) time‑dependent ROC analysis and (F) distribution pattern of 
expression of model genes (upper), risk score delamination (middle) and survival state (lower) in the ICGC cohort. (G and H) Univariate analysis (upper) and 
multivariate (lower) analysis of prognostic factors for OS in the (G) TCGA and (H) ICGC cohorts. OS, overall survival; TCGA, The Cancer Genome Atlas; 
ROC, receiver operating characteristic; ICGC, International Cancer Genome Consortium; AUC, area under the curve.
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shown in Fig.  5C. Following univariate Cox regression 
analysis (Fig.  5D), the results of independent prognostic 
analysis revealed that risk score (P<0.001; HR=1.280; 95% CI, 
1.145‑1.432), as well as AJCC stage (P<0.001; HR, 2.017; 95% 
CI, 1.518‑2.681) (Fig. 5E) were independent risk factors in this 
cohort. These findings indicate that the prognostic model is 
promising as a predictive signature.

Identification of CTC/CTM‑related molecular subtypes. 
Patients were clustered into different subtypes based on the 
expression levels of the five prognostic signature genes using 
the NMF algorithm. To ensure the robustness of the clustering 
results, the coefficient of correlation was used to determine the 
optimal number of clusters, and when the number of clusters 

was 2, clear boundaries were observed for both subtypes. This 
indicated the stable and reliable clustering of the liver cancer 
samples (Fig. 6A). The OS of patients in cluster 1 (C1) was 
significantly improved compared with that of C2 (P=0.002; 
Fig. 6B). Most immune checkpoints were upregulated in the 
C2 group compared with the C1 group (Fig. 6C). In addition, 
it was also found that the level of immune infiltration in the 
tumor microenvironment was also distinct in the two groups, 
with immune score, stromal score and ESTIMATE score of the 
C1 group being significantly lower than those of the C2 group 
(P<0.05; Fig. 6D). This suggests that C1 molecular subtype 
tends to present ‘cold tumors’, whereas the C2 molecular 
subtype tends to present ‘hot tumors’. It was also noted that the 
level of neutrophil infiltration was higher in the C1 group than 

Figure 5. Validation of the signature in the GEO cohort GSE14520. (A) OS curves of patients in the low‑ and high‑risk groups. (B) Receiver operating char‑
acteristic curves of patients with liver cancer at 1, 3 and 5 years. (C) Expression pattern of model genes (upper), risk score delamination (middle) and survival 
state in the cohort. (D) Univariate and (E) multivariate analysis of prognostic factors for OS in the GEO cohort. GEO, Gene Expression Omnibus; OS, overall 
survival; AUC, area under the curve.
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in the C2 group, whereas the levels of monocytic lineage and 
fibroblast infiltration were lower in the C1 group than in the C2 
group (P<0.05; Fig. 6E).

Identification of potentially therapeutic small molecule 
drugs. The sensitivity of the high‑ and low‑risk groups to 
various chemotherapeutic agents was compared to evaluate 
drugs for potential use in liver cancer. The findings indicate 

that the low‑risk group was associated with a higher IC50 for 
chemotherapeutic compounds including ABT.888 (veliparib), 
AS601245 (an ATP‑competitive JNK inhibitor), AG.014699 
(rucaparib), A.443654 (a pan‑Akt inhibitor), ATRA (tretinoin) 
and AUY922 (luminespib). By contrast, axitinib, A.770041 
(an LCK inhibitor), AZD.0530 (saracatinib), AMG.706 
(motesanib), AKT.inhibitor.VIII and AICAR (acadesine) had 
a higher IC50 in the high‑risk group, indicating that patients 

Figure 6. Construction of molecular subtypes of liver cancer. (A) Consensus map of liver cancer via the NMF algorithm. (B) Kaplan‑Meier survival curve for 
overall survival of the C1 and C2 patient subgroups. (C) Expression of immune checkpoints between patients with type C1 and C2 cancers. (D) Comparison of 
tumor purity, immune score, stromal score, and ESTIMATE score between the two NMF types. (E) Enrichment scores of neutrophils, monocytic lineage and 
fibroblasts between type C1 and C2 patients. *P<0.05, **P<0.01 and ***P<0.001. NMF, non‑negative matrix factorization.
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in the low‑risk group may benefit more from treatment with 
these compounds (P<0.05; Fig. 7). The sensitivity of the two 
liver cancer subtypes to various chemotherapeutic drugs was 
also evaluated. The results suggested that patients with the 
C1 subtype might be more sensitive to metformin, lapatinib, 
elesclomol, docetaxel, camptothecin, bosutinib, axitinib and 
vinblastine, while patients in group C2 would likely benefit by 
treatment with cisplatin, bortezomib, bleomycin, bicalutamide, 
mitomycin C, imatinib, etoposide and gemcitabine (Fig. S1).

Pathway analysis by GSEA and GSVA. To further explore 
the molecular mechanism associated with the signature genes 
and the prognostic module, GSEA was performed in TCGA 
liver cancer cohort. Fig. 8A‑E reveals the KEGG pathways of 
the five signature genes, namely CDCA8, HAVCR1, MYCN, 
TP53I3 and TXNRD1, showing the five most upregulated and 
downregulated pathways for each gene. The signature genes 
are mainly concentrated in KEGG pathways including ‘cell 
cycle’, ‘p53 signaling pathway’, ‘complement and coagulation 
cascades’ and ‘drug metabolism cytochrome p450’. In addi‑
tion, GSEA was used to compare the high‑ and low‑risk groups 
based on the risk scores. The KEGG pathways enriched in the 
high and low risk groups are shown in Fig. 8F.

GSVA was also utilized to analyze the differences in 
biological behavior between the high‑ and low‑risk groups. 
The results demonstrated that pathways associated with tumor 
progression, such as ‘cell cycle’, ‘DNA replication’, ‘RNA 
degradation’, ‘mTOR signaling pathway’ and ‘P53 signaling 
pathway’, were mainly concentrated in the high‑risk group. By 

contrast, metabolism‑related pathways, including ‘fatty acid 
metabolism’, ‘propanoate metabolism’, ‘butanoate metabo‑
lism’ and ‘tyrosine metabolism’, were mainly present in the 
low‑risk group of patients (Fig. 8G).

Differentiation of immune infiltration between the two risk 
subgroups. In view of the important role of immune check‑
points in tumor immunotherapy, the differential expression 
of immune checkpoint genes was analyzed between risk 
subgroups. The results revealed that common immune 
checkpoint genes, including cytotoxic T‑lymphocyte associ‑
ated protein 4 (CTLA4), CD274, programmed cell death 1, 
and T‑cell immunoreceptor with Ig and ITIM domains were 
upregulated in the high‑risk group compared with the low‑risk 
group (P<0.05; Fig. 9A). This suggests that the poor prognosis 
of high‑risk patients with liver cancer may at least partially 
be attributed to an immunosuppressive microenvironment. 
Chemokines and their receptors are necessary for the targeted 
migration of immune cells and the initiation and execution 
of the immune response (45,46). Therefore, the differential 
expression of chemokines and their receptors was analyzed 
in the two risk subgroups, which revealed higher levels of 
expression for the majority of these chemokines and recep‑
tors in patients in the high‑risk group (P<0.05; Fig. 9B and C). 
An association between risk score and HLA‑associated gene 
expression was also observed. As shown in Fig. 9D, the abun‑
dance of HLA‑related genes was higher in patients at high risk 
than those in the low‑risk group (P<0.05). The results of algo‑
rithms were visualized using heat maps, including assessment 

Figure 7. IC50 analysis of cytotoxic chemotherapeutic agents in high‑ and low‑risk liver cancer groups. IC50, half‑maximal inhibitory concentration.
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of immune cell infiltration in the two risk subgroups, and the 
results suggest that the high‑risk group has more abundant 
immune cell infiltration (Fig. 9E). In addition, further explora‑
tion of the association between risk score and immune pathway 
activity revealed that cytolytic activity, type I IFN response 
and type II IFN response scores were higher in the low‑risk 
group, and conversely, the MHC class I score was higher in the 
high‑risk group (P<0.05; Fig. 10F). These results demonstrate 
that patients in the high‑risk group are more likely to benefit 
from immunotherapy.

Clinicopathological parameter correlation analysis. To inves‑
tigate the prognostic value of the CRG signature in patients 
with different clinical features, a heat map was drawn to reveal 
whether there was a potential association with clinicopatho‑
logical features in the high‑ and low‑risk subgroups (Fig. 10A). 
The expression levels of CDCA8 and TXNRD1 were higher in 
the high‑risk group than in the low‑risk group. In addition, the 
results revealed that the high‑risk score was closely associated 
with a higher T stage (P<0.001), higher grade (P<0.001), higher 
tumor stage (P<0.001) and poor patient survival status (P<0.001).

Figure 8. GSEA of signature genes and risk groups and pathways identified by GSVA. GSEA analysis for (A) cell division cycle associated 8, (B) hepatitis A 
virus cellular receptor 1, (C) MYCN proto‑oncogene, (D) tumor protein p53 inducible protein 3 and (E) thioredoxin reductase 1. (F) GSEA analysis between 
low‑ and high‑risk groups in The Cancer Genome Atlas cohort. Each analysis includes five upregulated and five downregulated pathways. (G) Heatmap 
illustrating the different biological pathways of the GSVA. GSEA, gene set enrichment analysis; GSVA, gene set variation analysis.
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Analysis of the immunological value of the CRG signature. 
Since TMB and tumor immune dysfunction and exclusion 
(TIDE) are good indicators of the response to immunotherapy, 

sample scores were calculated for each patient with liver cancer 
and variability between the high‑ and low‑risk subgroups was 
assessed. The results revealed that the high‑risk group had 

Figure 9. Immune checkpoints, chemokines, chemokine receptors, HLA‑related molecules and immune infiltration for different risk stratifications. Differential 
expression of (A) immune checkpoint genes, (B) chemokines, (C) chemokine receptors and (D) HLA‑related molecules between the low‑ and high‑risk groups. 
(E) Correlation of risk scores and immune cell infiltration was analyzed through multiple immune infiltration algorithms. *P<0.05, **P<0.01 and ***P<0.001. 
HLA, human leukocyte antigen.
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Figure 10. Analysis of the clinical utility of the CRG signature and comparison of TIDE, TMB, stem cell content, the frequency of mutations and immune 
signaling pathways between the high‑ and low‑risk groups. (A) Heatmap showing the correlation of the prognostic signature with clinicopathological char‑
acteristics and five signature genes. (B and C) Boxplots showing the difference in (B) TIDE and (C) TMB between the low‑ and high‑risk CRG groups. 
(D) Correlation between RNAss and the risk score. (E) Mutation rate analysis of the two risk groups. (F) Comparison of scores for immune‑related path‑
ways between the high‑ and low‑risk groups. *P<0.05 and ***P<0.001. CRG, circulating tumor cell/circulating tumor microemboli‑related gene; TIDE, tumor 
immune dysfunction and exclusion; TMB, tumor mutation burden; RNAss, RNA stemness score; fustat, follow‑up status; HAVCR1, hepatitis A virus cellular 
receptor 1; CDCA8, cell division cycle associated 8; TXNRD1, thioredoxin reductase 1; TP53I3, tumor protein p53 inducible protein 3; MYCN, MYCN 
proto‑oncogene; ns, not significant.
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a higher TMB and lower TIDE index, which further demon‑
strates that patients in the high‑risk group should be more 
responsive to immunotherapy (P<0.05; Fig. 10B and C). The 
mRNA expression‑based stemness score revealed a positive 
correlation between liver cancer tumor stemness and the risk 
score, indicating that tumors in the high‑risk group are more 
likely to undergo malignant progression and thus lose their 
differentiated phenotype (P<0.05; Fig. 10D). In addition, the 
maftools R package was used to visualize the differences in 
somatic mutation distribution between the high‑ and low‑risk 
groups. The results demonstrated that the high‑risk group had 
a higher mutation frequency compared with the low‑risk group 
(91.38 vs. 77.84%, respectively). The most mutated gene in the 
low‑risk group was catenin b1 (23%) and the most mutated 
gene in the high‑risk group was TP53 (43%) (Fig. 10E).

Correlation analysis of risk signature genes and immune 
checkpoints. Immune checkpoints have an important role in 
immune regulation, and immune checkpoint inhibitors are 
used in cancer therapy. Therefore, the associations between 
the signature genes and the expression of immune checkpoint 
genes, namely programmed cell death protein 1 (PD‑1), 
programmed death‑ligand 1 (PD‑L1) and CTLA4, were 
investigated. The results in Fig. 11A indicate that the expres‑
sion of CDCA8 was positively correlated with that of the 
three immune checkpoints, PD‑1 (R=0.3; P=4.9x10‑9), PD‑L1 
(R=0.32; P=3.8x10‑10) and CTLA4 (R=0.32; P=3.9x10‑10). 
In addition, the expression of HAVCR1 was positively 
correlated with CTLA4 expression (R=0.32; P=1.3x10‑10). 
TISIDB portal was used to analyze the expression of signa‑
ture genes in different immune subtypes, specifically: C1, 
wound healing; C2, IFN‑g dominant; C3, inflammatory; C4, 
lymphocyte depleted; C5, immunologically quiet; and C6, 
TGF‑b dominant (47). The results indicated that the roles of 
these five genes differ among the different immune subtypes, 
with CACA8, MYCN and TXNRD1 being differentially 
expressed among the immune subtypes. Specifically, the 
TISIDB analysis revealed that CDCA8 was highly expressed 
in the C1 and C2 types, MYCN was highly expressed in the 
C1 type, and TXNRD1 was mainly expressed in the C2 and 
C4 types (Fig. 11B). In addition, the IMvigor dataset was used 
to predict the responsiveness of the five signature genes to 
atelelizumab treatment. Notably, consistent with the previous 
findings, the analysis suggested that patients with high 
expression of CDCA8 and TXNRD1 may obtain improved 
treatment outcomes (Fig. 11C). The correlations between 
tumor immune infiltration by CD4+ T cells, CD8+ T cells, B 
cells, neutrophils, macrophages and dendritic cells, and the 
expression of the five signature genes were also investigated 
(Fig. S2). In this analysis, correlation coefficients >0.3 and 
P<0.05 were considered as distinctive; partial.cor denotes 
partial correlation, indicating the correlation of gene expres‑
sion with immune cell infiltration in the TIMER database. 
The results show that CDCA8 expression is positively corre‑
lated with the infiltration of six types of immune cells: B 
cells (partial.cor, 0.441; P=9.08x10‑18), CD8+ T cells (partial.
cor, 0.303; P=1.03x10‑8), CD4+ T cells (partial.cor, 0.359; 
P=6.74x10‑12), macrophages (partial.cor, 0.439; P=1.70x10‑17), 
neutrophils (partial.cor, 0.368; P=1.63x10‑12) and dendritic 
cells (partial.cor, 0.465; P=1.22x10‑19). Similarly, HAVCR1 

expression was found to be positively correlated with the 
infiltration of B cells (partial.cor, 0.302; P=1.14x10‑8), macro‑
phages (partial.cor, 0.302; P=1.34x10‑8), neutrophils (partial.
cor, 0.392; P=4.00x10‑14) and dendritic cells (partial.cor, 
0.317; P=2.18x10‑9), and TXNRD1 expression was positively 
associated with neutrophil infiltration (partial.cor, 0.322; 
P=8.67x10‑10).

Comparison of the CRG signature with external prognostic 
models. To better assess the predictive efficacy of the CRG 
prognostic model, the risk signature was compared with six 
published liver cancer prognostic models. The signature of 
Du et al (48) was a m6A‑based gene signature; the signature 
of Fu and Song (49) was a pyroptosis‑related gene signature; 
the signature of Guo et al (50) was a signature containing nine 
genes; Lei et al (51) devised a starvation‑based nine‑mRNA 
signature; Tian  et al  (52) proposed a five‑gene prognostic 
signature for liver cancer; and the signature of Zheng et al (53) 
comprised five pyroptosis‑related genes. When the accuracy 
of these models and the current model were compared, it 
was found that the C‑index and restricted mean survival of 
the CRG signature were higher than those of the other six 
models, which indicates that the present model is optimal 
(Fig. 12A and B). Additionally, the AUCs of the CRG model 
for 1‑, 3‑ and 5‑year OS were 0.807, 0.711 and 0.667, respec‑
tively, which were higher than those of the other signatures, 
which validates the previous results (Fig. 12C).

Establishment and validation of a predictive nomogram. 
To forecast the survivability of patients with liver cancer, 
a nomogram including factors such as age, sex, stage and risk 
score was created to predict probability of OS at 1, 3, and 
5 years in the TCGA cohort. In addition, calibration plots were 
constructed to evaluate the predictive power of the nomogram 
(Fig. 12D). Similarly, two nomograms were also constructed 
for the ICGC and GSE14520 cohorts (Fig. S3). These all indi‑
cate the good predictive power of the model.

Downregulation of TP53I3 inhibits liver cancer cell prolif‑
eration. Among the five signature genes, CDCA8, MYCN, 
HAVCR1 and TXNRD1 have previously been demonstrated 
to have a biological regulatory function in liver cancer 
(vide infra), but TP53I3 has been poorly studied in liver cancer. 
Therefore, the role of TP53I3 in liver cancer cells was evalu‑
ated using cellular experiments. TP53I3 was knocked down 
in HepG2 and MHCC97H cells using siRNA, and the trans‑
fection efficiency was verified by western blot analysis and 
RT‑qPCR (Fig. 13A and B). To explore the impact of TP53I3 
on the proliferation of liver cancer cells in vitro, CCK‑8, EdU 
and colony formation analyses were performed. The results 
showed that the proliferation ability and colony formation of 
the liver cancer cells was significantly suppressed after TP53I3 
depletion (P<0.05; Fig. 13C‑E), which indicates that TP53I3 
promotes the proliferation of liver cancer cells.

Discussion

Liver cancer remains a significant challenge to human health, 
with high rates of incidence and recurrence, even after surgical 
resection. Numerous studies have demonstrated that CTCs are 
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tightly associated with the metastasis, epithelial‑mesenchymal 
transition and recurrence of malignant tumors, including liver 
cancer (54‑58). Therefore, it is critical to screen molecules 
associated with CTCs to identify biomarkers for the predic‑
tion of liver cancer. In the present study, a reliable prognostic 

signature based on CRGs was constructed and its clinical 
application in patients with liver cancer was explored. The 
results showed that the CRG prognostic model accurately 
predicted the prognosis and immunotherapy sensitivity of 
patients with liver cancer.

Figure 11. Correlation analysis of five CRGs and immunity markers. (A) Correlation between CRGs and the immune checkpoints PD‑1, PD‑L1 and CTLA4. 
(B) Analysis of the role of the five CRGs in different immune subtypes. (C) Expression levels of the five CRGs in the IMvigor210 cohort. CRGs, circulating 
tumor cell/circulating tumor microemboli‑related genes; PD‑1, programmed cell death protein 1; PD‑L1, programmed death‑ligand 1; CTLA4, cytotoxic 
T‑lymphocyte associated protein 4; CDCA8, cell division cycle associated 8; HAVCR1, hepatitis A virus cellular receptor 1; MYCN, MYCN proto‑oncogene; 
TP53I3, tumor protein p53 inducible protein 3; TXNRD1, thioredoxin reductase 1; LIHC, liver hepatocellular carcinoma; exp, expression; CPM, counts per 
million reads.
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In the present study, 258 CRGs were identified by system‑
atically analyzing the DEGs in TCGA and ICGC databases 
and the CTC expression profiles of liver cancer. These genes 
were then screened to construct a five‑CRG signature in the 
TCGA cohort. Kaplan‑Meier survival and ROC analyses were 
performed to confirm the prognostic value of the signature, and 

the results were validated in ICGC and GEO cohorts. Univariate 
and multifactorial Cox analyses further confirmed that the risk 
signature was able to serve as an independent prognostic factor. 
In addition, nomograms for all three cohorts showed the good 
predictive power of the model. The genes in the prognostic signa‑
ture were CDCA8, HAVCR1, TP53I3, MYCN and TXNRD1, 

Figure 12. Verification of the superiority of the CRG signature compared with six previously reported signatures. (A) C‑index and (B) RMS curves for the seven 
risk signatures. (C) Receiver operating characteristic curves and AUCs for 1‑, 3‑ and 5‑year survival predication by the seven signatures. (D) Nomogram and 
calibration curves for prediction of the 1‑, 3‑, and 5‑year survival of patients with liver cancer in The Cancer Genome Atlas cohort. CRG, circulating tumor 
cell/circulating tumor microemboli‑related gene; RMS, restricted mean survival; HR, hazard ratio; AUC, area under the curve; OS, overall survival.
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all of which have the potential to be used as liver cancer prog‑
nostic risk genes. Previous studies have demonstrated the ability 
of CDCA8 to promote cancer cell proliferation and migration 

in several tumors, including esophageal squamous cell carci‑
noma (59), thyroid cancer (60), malignant glioma and cutaneous 
melanoma (61). In addition, Jeon et al (62) demonstrated that 

Figure 13. Silencing TP53I3 inhibits the proliferation of liver cancer cells in vitro. (A) Western blotting and (B) reverse transcription‑quantitative polymerase 
chain reaction analyses showed that TP53I3 was stably knocked down in HepG2 and MHCC97H cells. (C) Cell Counting Kit‑8, (D) EdU (scale bar, 50 µm) 
and (E) colony formation assays were performed to analyze the proliferation and colony formation of the liver cancer cells after TP53I3 knockdown. Data are 
presented as the mean ± SD; n=3. **P<0.01 and ***P<0.001 vs. siNC. TP53I3, tumor protein p53 inducible protein 3; si, small interfering RNA; siNC, negative 
control siRNA; OD, optical density; EdU, 5‑ethynyl‑2'‑deoxyuridine.
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silencing CDCA8 effectively suppressed liver cancer growth and 
stemness, implying that CDCA8 may be a CTC‑related gene. 
HAVCR1 is highly expressed in a variety of tumors, including 
colorectal cancer, non‑small‑cell lung cancer, clear cell renal cell 
carcinoma and liver cancer, and is an independent prognostic 
factor (63‑66). Moreover, Ye et al (66) found that T‑cell immu‑
noglobulin mucin‑1+ (HAVCR1+) regulatory B cell infiltration 
was significantly higher in liver tumor tissues compared with 
paraneoplastic tissues in patients with liver cancer and promoted 
the immune escape of liver cancer cells, implying that it could 
be used as an immune therapeutic target. TP53I3, also known 
as p53‑inducible gene 3, is involved in the apoptosis process 
and DNA damage response. Previous studies have revealed that 
TP53I3 promotes the invasion and metastasis of lung cancer 
cells and that silencing TP53I3 increases the chemosensitivity of 
non‑small cell lung cancer cells to docetaxel (67,68). Notably, the 
present study also demonstrated that the knockdown of TP53I3 
inhibited the proliferation ability of liver cancer cells in cellular 
experiments. These findings may indicate a novel strategy for 
the treatment of liver cancer. Qin et al (69,70) highlighted that 
MYCN, a member of the MYC proto‑oncogene family, may 
be a stem cell‑like marker for liver cancer and is potentially a 
therapeutic target of acyclic retinoid for liver cancer. TXNRD1 
is an antioxidant enzyme that has been reported to be overex‑
pressed in liver cancer. Lee et al (71) observed that the inhibition 
of TXNRD1 suppressed liver cancer cell proliferation, promoted 
apoptosis and induced oxidative stress, suggesting that it could 
be used as a therapeutic target for liver cancer. In conclusion, 
these previous studies suggest that the five signature genes have 
an important role in the development of liver cancer and may 
have potential as therapeutic targets.

As indicated by KEGG analysis, CRGs may promote the 
development, metastasis and recurrence of liver cancer via the 
cell cycle and p53 signaling pathway. GSEA analysis of the five 
signature genes and the high‑risk group in the prognostic model 
identified various oncogenesis‑associated features, including 
the terms ‘cell cycle’, ‘p53 signaling pathway’, ‘WNT signaling 
pathway’ and ‘DNA replication’. In addition, GSVA results 
showed that tumor progression‑related pathways, such as ‘cell 
cycle’, ‘DNA replication’, ‘mTOR signaling pathway’ and ‘P53 
signaling pathway’, were mainly concentrated in the high‑risk 
group, which was generally consistent with the GSEA results. 
On the basis of this, a number of potential therapeutic agents 
were also evaluated, with veliparib (72), ATRA (73,74) and 
AUY922 (75) exhibiting high drug sensitivity in the high‑risk 
group, suggesting that these agents are likely to be therapeutic 
candidates.

Immunotherapy is playing an increasingly important 
role in liver cancer. Therefore, the relevance of the present 
model to immune infiltration and immunotherapy was also 
analyzed in the present study. Immune cell infiltration analysis 
demonstrated that CDCA8 and HAVCR1 correlated with the 
infiltration abundance of several immune cells, including B 
cells, CD8+ T cells, macrophages, neutrophils and dendritic 
cells. In addition, immune checkpoint expression, TMB 
scores and immune cell infiltration levels were strongly asso‑
ciated with patients in the high‑risk subgroup. The analysis 
of somatic mutation rates also indicated that patients in the 
high‑risk group had an elevated frequency of mutations and 
greater occurrence of TP53 mutations. It has been proposed 

that TIDE scores may be used by oncologists to assist in the 
selection of suitable patients for immune checkpoint inhibition 
therapy (76). Consistent with this, the present study found that 
patients in the high‑risk group had lower TIDE scores, while 
those in the low‑risk group had higher TIDE scores, indicating 
that the high‑risk patients may benefit more from immuno‑
therapy. All these findings confirm that the present model has 
good risk stratification capabilities and is suitable for selecting 
the patients who may benefit from immunotherapy.

Notably, this five‑risk gene signature was also used to 
identify liver cancer subgroups C1 and C2, of which C2 as 
a high‑risk subgroup showed a worse prognosis. Compared 
with group C1, group C2 had a higher immune checkpoint 
expression and higher stromal, immune and ESTIMATE 
scores for each sample, which also suggested that patients 
in group C2 were more suitable for immunotherapy. More 
importantly, several chemotherapeutic agents to which C2 
patients should be sensitive were also identified. These were 
cisplatin  (77), bortezomib  (78), bleomycin, bicalutamide, 
mitomycin C, imatinib, etoposide and gemcitabine (79), which 
could improve the prognosis of patients in the C2 group. In 
conclusion, the findings of this analysis are helpful, but future 
studies are necessary to verify this.

However, the study has some limitations. For example, the 
regulatory role of these five CRGs in liver cancer were not 
further investigated experimentally. Other external validation 
of the model is lacking and must to be conducted in clinical 
samples in the future. In addition, chemotherapy were not 
analyzed. Therefore, additional studies and more evidence are 
required to refine the present model in the future.
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