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Abstract: Polyphenols are a diverse group of micronutrients from plant origin that may serve
as antioxidants and that contribute to human health in general. More specifically, many research
groups have investigated their protective effect against cardiovascular diseases in several animal
studies and human trials. Yet, because of the excessive processing of the polyphenol structure
by human cells and the residing intestinal microbial community, which results in a large
variability between the test subjects, the exact mechanisms of their protective effects are still
under investigation. To this end, simplified cell culture systems have been used to decrease the
inter-individual variability in mechanistic studies. In this review, we will discuss the different
cell culture models that have been used so far for polyphenol research in the context of
cardiovascular diseases. We will also review the current trends in cell culture research, including
co-culture methodologies. Finally, we will discuss the potential of these advanced models to
screen for cardiovascular effects of the large pool of bioactive polyphenols present in foods and
their metabolites.
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1. Introduction

The human body can be seen as an equilibrated society of human cells that communicate
internally and with each other through signaling pathways including cytokines, hormones and other
(circulating) structures. When food nutrients are ingested, they are converted and degraded by host
and microbial enzymes, thereby generating a pool of food-derived metabolites that may affect human
health. Therefore, nutrients can be seen as important circulating chemical structures that (i) can steer
intestinal crosstalk with other tissues in their native form (ii) can be transported through the intestinal
monolayer in an intact or modified chemical form and hence act as a “messenger molecule” to induce
effects in other tissues and (iii) may have an impact on intestinal permeability for other food nutrients
and/or microbial compounds towards the blood stream and may hence affect physiological processes
in other organs.

In this review, we will discuss how polyphenols, a diverse group of phenolic micronutrients
from plant origin, influence the inter-cellular cross-talk in the context of cardiovascular health. We
will briefly discuss the gastro-intestinal fate of polyphenols in general, and then focus on different
existing cell culture models and cellular assays that are generally used for mechanistic research and
screening of the impact of polyphenols and their associated chemical structures on cardiovascular
health. In addition, we will list possible “messenger molecules” that may be used as a biomarker
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to characterize these cross-talks. Finally, we will review the current trends in cell culture research
and evaluate which approach is the most promising for future polyphenol research in the context of
cardiovascular research.

2. Polyphenol Bioavailability and Bioactivity: A Complex Field of Research

2.1. Classification of Polyphenols and Their Dietary Sources

Polyphenols are divided into several classes according to the number of phenol rings that they
contain and to the structural elements that bind these rings to each other. The main groups of
polyphenols are flavonoids, phenolic acids, stilbenes, and lignans [1,2] (Figure 1).
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Figure 1. Classification of major classes of dietary biophenols.

Flavonoids are low molecular weight compounds, comprising of fifteen carbon atoms, arranged
in a C6–C3–C6 configuration. Essentially, the structure consists of two aromatic rings, joined by a
3-carbon bridge, usually in the form of a heterocyclic ring. Variations in the substitution patterns
of this heterocyclic ring result in six different subclasses, namely flavonols, flavones, flavanones,
flavanols, isoflavones and anthocyanidins [3]. Individual differences within each group arise from
the variation in number and arrangement of the hydroxyl groups and their extent of alkylation
and/or glycosylation [4,5]. Major flavonols include quercetin, myricetin and kaempferol, which are
abundantly present in onions, curly kale, leeks, broccoli, and blueberries. Flavones consist mainly
of glycosides of apigenin and luteolin and their important sources are parsley and celery. The main
flavanone aglycones are naringenin in grapefruit, hesperetin in oranges, and eriodictyol in lemons.
Flavanols exist both in monomer (catechins) and polymer (proanthocyanidins) forms. Catechin and
epicatechin are the main flavanols in fruits, chocolate, red wine, and tea. Soy and its processed
products are the main dietary sources of isoflavones, which contain three main molecules namely
genistein, daidzein, and glycitein. The most widespread anthocyanidins are cyanidin, delphinidin,
malvidin, pelargonidin, and peonidin, which are found abundantly in colored fruits including
blackberry, blueberry, strawberry, and cherry [6].

Phenolic acids consist of two subgroups of hydroxybenzoic and hydroxycinnamic acids.
Hydroxybenzoic acids include gallic, p-hydroxybenzoic, protocatechuic, vanillic, and syringic
acids having C6–C1 structure, whereas hydroxycinnamic acids are aromatic compounds with a
three-carbon side chain (C6–C3), with caffeic, ferulic, p-coumaric and sinapic acids being the most
common ones [3]. Hydroxybenzoic acids are found in high concentrations in blackberry, raspberry,
and tea, while blueberry and coffee are rich sources of hydroxycinnamic acids [7].
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Stilbenes contain two phenyl moieties connected by a two-carbon methylene bridge [5]. The
main representative of stilbenes is resveratrol, which exists in more than 70 plant species, including
grapes, berries, and peanuts [2].

Lignans are produced by oxidative dimerization of two phenylpropane units. Linseed,
containing secoisolariciresinol and low quantities of matairesinol, represents the main dietary
source [6,7].

2.2. Factors Affecting the Bioavailability of Polyphenols

Many polyphenols exhibit antioxidative, anticarcinogenic, antimicrobial, antiallergic,
antimutagenic, and anti-inflammatory activities [8]. In addition, the ability of polyphenols to
prevent complex metabolic diseases such as obesity and diabetes has been reviewed recently [9]. The
potential availability of polyphenols after digestion is important, as previous studies have stated that
if the bioavailability of a certain polyphenol is poor, it would have a limited effect on health [10].

The term “bioavailability” is defined as the fraction of an ingested nutrient or compound that
reaches the systemic circulation and the specific sites where it can exert its biological action [1].
Bioavailability is generally measured using in vivo assays (e.g., blood plasma of humans), so factors
such as inter and intra-individual variability, physiological state, dose, and presence of other
meal components play an important role [11]. In a critical appraisal, the main factors recognized
as affecting bioavailability in humans were discussed and gathered under four main categories:
factors related to the compound (chemical structure, molecular linkage, etc.), factors related to
the food/preparation (matrix characteristics, processing, etc.), factors related to the host (enzyme
activity, genetics, etc.) and external factors (food availability, different environmental factors such as
climate) [12].

Polyphenols are highly diverse compounds with varying bioavailability. For instance, while soy
isoflavones are well absorbed through the gut barrier, proanthocyanidins in wine and cacao are hardly
absorbed. Similarly, quercetin glucosides from onions are more efficiently absorbed than quercetin
glycosides such as rutin present in tea or apple [13]. Therefore it is not possible to generalize the
outcomes obtained for one polyphenol to others.

2.3. Protective Effects of Polyphenols Against Cardiovascular Diseases

A number of epidemiological studies, clinical trials and animal experiments demonstrated that
polyphenols contribute to the prevention of various degenerative diseases, including cardiovascular
diseases [14]. Most of these studies have been carried out with food rich in polyphenols, in particular
wine, tea, soy and berries.

Many clinical studies showed that moderate consumption of red wine is associated with
reduced risk of cardiovascular diseases via reduction of oxidative stress [15,16], inflammatory
biomarkers of atherosclerosis [16–18], improving plasma lipid markers [19], improving insulin
resistance [20] and showing beneficial effects on endothelial function [21]. Animal models on mice
and hamsters also confirmed the protective effect of wine against cardiovascular risk [22,23]. A
strong inverse relationship between cardiovascular mortality and consumption of more than six
cups of green tea per day was reported in a Japanese study [24]. In another study performed in
the Netherlands, daily consumption of 3–6 cups of tea (mainly black tea) was associated with a
reduced risk of cardiovascular disease mortality [25]. Moreover, in a long-term animal study both
green and black teas were found to be effective in inhibiting atherosclerosis by increasing LDL/HDL
ratio’s, antioxidant status and fibrinolytic mechanisms [26]. Intake of soy isoflavones was found
to be protective against cardiovascular diseases by altering lipoprotein profiles in postmenopausal
women [27]. Furthermore, an atheroprotective effect of soy isoflavones was also shown in mice [28].
Finally, consumption of blueberries may also have a positive effect on markers of inflammation
and oxidative stress in overweight patients during childhood, and may hence protect against
cardiovascular diseases associated with obesity [16].
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2.4. Polyphenol Absorption and Biotransformation

Estimation is that only 5%–10% of the total intake of dietary polyphenols, mainly those with
monomeric and dimeric structures, may be directly absorbed in the small intestine, generally after
deconjugation reactions such as deglycosylation [13]. The remaining 90%–95% reach the colon
where they are further metabolized to compounds with different physiological significance by the
enzymatic action of the colonic bacteria [29]. In addition to metabolic changes in the gut lumen,
ingested polyphenols also undergo phase I and phase II transformations in the human body.
Phase I transformations consist of oxidation, reduction and hydrolysis, but these transformations
occur less frequently. Phase II biotransformations taking place in the liver and the intestine occur
more intensively. These phase II transformations consist of conjugation reactions where different
water-soluble metabolites are formed (methyl, glucuronic and sulfate derivatives) [30]. Therefore, the
polyphenols are generally present in plasma as glucuronide and sulfate derivatives.

Overall, polyphenols are known to be metabolized in the gut and the compounds initially
present in the food matrix are almost absent in the tissues. Hence, the relevance of the results
obtained in studies using polyphenol aglycons or specific glycosides is questionable. Chiva-Blanch
and Visioli (2012), as well as Forbes-Hernandez et al., (2015) question the relevance of the anti-oxidant
mechanism of polyphenols, and give an overview of microbiota-related factors that are involved in
the beneficial effects of polyphenols and their degradation products [31], and the molecular and
cellular mechanisms related with common chronic diseases [32]. In future studies, this condition
should be taken into account and the methodologies should be adopted accordingly.

3. Messenger Molecules in Cardiovascular Health Affected by Polyphenols

3.1. General Biomarkers of Cardiovascular Health

Cardiovascular diseases are the major death cause worldwide and are a class of diseases of the
hearth and blood vessels, including the arteries, veins and capillaries. Diseases of the cardiovascular
system include cardiac diseases, cerebrovascular diseases, and peripheral arterial diseases. Two
major causes of these diseases are identified as atherosclerosis and hypertension. General prevention
strategies include limited use of tobacco and alcohol, decreased psychosocial stress and, one of the
most important factors: a healthy diet, more specific, sufficient consumption of vegetables and fruits,
limited consumption of a (saturated) fat-rich/fiber-depleted diet, and salt reduction. To detect the
onset of cardiovascular diseases, general biomarkers such as serum cholesterol level are measured
in the blood plasma, yet, as cardiovascular diseases have a complex etiology, other circulating
structures and cytokines can be considered as potential biomarkers. Therefore, in this review, we
will focus mainly on potential biomarkers that are influenced by dietary factors. According to
the PASSCLAIM consensus on criteria published by the International Life Science Institute (ILSI)
in 2005, well established biomarkers for changes in the risk of cardiovascular diseases are LDL
cholesterol—the hallmark for cardiovascular diseases—and blood pressure. In fact, cholesterol (LDL,
HDL) is not considered as a biomarker as such, in which its presence or absence is reflecting injury
or damage, but it is an abundant and natural metabolite in blood, whose quantitative variation
reflects various metabolic states that are in turn reflective of cardiovascular diseases. In addition,
HDL, fasting triacylglycerol and homocystein are established as examples of markers sensitive to
dietary factors and are validated methodologically, but it is as yet not clear to which extent changes
in these markers reflect enhanced function and reduction of disease risk. Especially for haemostatic
function—which can be represented as a process in which endothelium, platelets and coagulation and
fibrinolytic factors are constant in interaction with each other—and oxidative damage, there is a need
to develop and validate markers of enhanced function and disease risk reduction that are sensitive
to dietary changes. More and more studies also indicate that the state of low-grade inflammation, as
induced by dietary factors such as a high fat diet, may influence cholesterol metabolism, and therefore
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C-reactive protein (CRP) and necrosis factor κB (NF-κB) have been used as potential biomarkers for
cardiovascular diseases.

In the following sections, we will first discuss the role of the different organs on cardiovascular
health, which cell culture models have been used to model these organs with focus on those that have
been used for polyphenol research so far, and how structurally different plant polyphenols influence
cell behavior and cytokine expression in these models.

3.2. Signal Molecules Involved in the Regulation of Cardiovascular Health

Signal molecules involved in cardiovascular health are produced by key organs such as the
gastro-intestinal system, adipose tissue, endothelium, liver and immune cells. The state-of-the-art
about the effects of particular polyphenols on currently existing single cell culture models
representing these organs is summarized in Table 1.

Table 1. Impact of polyphenols on several cell line systems from intestinal, adipocyte, endothelial,
liver and immune cell origin.

Biomarkers Polyphenols Cell Types Ref.

INTESTINE

Transport GLUT4, C36, FATP4 Epigallocatechin Rat intestinal tissue [33]

Inflammatory
markers

NF-kB, TNF-α,
IL-1β, IL-6

Apple peel polyphenols, Black tea polyphenols,
Chrysin, Cinnamon polyphenols, Epicatechins,
Epigallocatechin-3-gallate, Genistein, Grape
seed polyphenols, Green tea polyphenols, Oak
polyphenols, Pomegranate polyphenols,
Resveratrol, Sugar cane polyphenols, Theaflavin

Caco-2/15, Caco-2,
SW480, IEC6, isolated
rat cells, HT-29

[34–42]

Cholesterol Cholesterol uptake Grape seed polyphenols, Red wine polyphenol,
chokeberry polyphenol Caco-2, HT29, HuTu80 [43,44]

ApoA-1, HDL Isoquercetin, Quercetin Caco-2 [45]

ADIPOSE TISSUE

Energy
storage Lipid staining

Blueberry polyphenols, Chlorogenic acid,
Cocoa polyphenols, Ellagic acid,
Epigallocatechin-3-gallate, Episesamin, Fisetin,
Hydroxytyrosol, Luteolin, Maysin, Oleuropein,
Resveratrol, Rutin

3T3-L1, 3T3-F442A,
SGBS, hASC (human
adipogenic stem cells)

[46–57]

GLUT-4, FASN4,
HSL, FAS

Daidzein, Ellagic acid, Fisetin, Hydroxytyrosol,
Naringenin, Oleuropein, Pycnogenol,
Resveratrol, Sakuranetin

3T3-L1, isolated human
adipocytes, hASC [46,48,57–62]

PPAR-γ, LPL, aP2

Apple polyphenols, Catechin, Chlorogenic acid,
Cocoa polyphenols, Curcumin,
Cyanidin-3-O-glucoside, Ellagic acid,
Episesamin, Fisetin, Genistein, Hydroxytyrosol,
Luteolin, Maysin, Oleuropein, Protocatechuic
acid, Quercetin, Resveratrol, Rutin, Sakuranetin

3T3-L1, primary human
adipocytes,
mesenchymal stem
cells, hASC

[46,48,50,52–54,
57,58,61,63–71]

HSL, ATGL Ellagic acid hASC [57]

Proliferation MAPK, p38, Erk,
JNK

Cocoa polyphenols, Curcumin,
Epigallocatechin-3-gallate, Episesamin, Green
tea polyphenols, Oligonol, Pycnogenol

3T3-L1, isoalted rat
adipocytes, primary
rat adipocytes

[52,53,62,66,72–
75]

Apoptosis caspases, PARP Epigallocatechin-3-gallate, Episesamin 3T3-L1 [52,56]

Differentiation

Blueberry polyphenols, Curcumin,
Cyanidine-3-O-glucoside,
Delphinidin-3-O-glucoside, Episesamin,
Genistein, Naringenin, Oleuropein,
Petunidin-3-O-glucoside

3T3-L1, 3T3-F442A,
mesenchymal stem cells [52,55,58,68,70]

Satiety
hormones

leptin, resistin,
adiponectin

Apple polyphenols, Catechin, Chlorogenic acid,
Cyanidin-3-O-glucoside, Gallic acid,
Protocatechuic acid, Resveratrol, Rutin

3T3-L1, isolated human
and mice adipocytes,
SGBS; mesenchymal
stem cells

[51,54,58,59,63,
65,66,76–80]

Inflammatory
markers TNF-α, IL-6, IL-1β Chlorogenic acid, Naringenin, Oligonol,

Quercetin, Resveratrol, Rutin

3T3-L1,
3T3-L1/RAW263
coculture, isolated
human and rat
adipocytes, human
primary adipocytes

[52,54,67,74,81–
83]
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Table 1. Cont.

Biomarkers Polyphenols Cell Types Ref.

ADIPOSE TISSUE

MCP-1 Naringenin, Quercetin, Resveratrol
primary human
adipocytes, 3T3-L1/
RAW263 coculture

[67,81]

Hypoxia VEGF Cinnamon polyphenols, Episesamin,
Resveratrol,

3T3-L1, isolated
adipose tissue [52,82,83]

C/EBPα Ellagic acid hASC [57]

ENDOTHELIUM

Transport GLUT-4, Akt Silibinin, Xanthohumol HUVEC [84]

Vasorelaxation NO, eNOS Red wine polyphenols, Resveratrol, Sinapic acid EaHy.926, HUVEC [85–87]

ACE Billberry anthocyanidins, Butein, Kaempferol
Oak polyphenols, Tannins, Tea polyphenols ACE-test, HUVEC [88–93]

ET-1 Quercetin Isolated human umbilial
chord veins [94]

Proliferation MAPK, p38, Erk,
JNK

Apigenin, Catechins, Cocoa procyanidins,
Genistein, Quercetin,

EC, VSMC,
HMEC, HUVEC [95–97]

Migration MMPs

Cyanidin, Delphinidin,
Epigallocatechin-3-gallate, Green tea
polyphenols, Hydroxytyrosol, Isoxanthohumol,
Malvidin, Oleuropein, Pelargonidin, Peonidin,
Petunidin, Quercetin,
Resveratrol, Xanthohumol

HUVEC, HMEC-1 [84,95,98,99]

Tubulus
formation

Hydroxytyrosol, Oleuropein, Quercetin,
Resveratrol Xanthohumol, HUVEC and HMEC-1 [95,98,100]

Inflammatory
markers NF-κB, TNF-α Catechins, Isoxanthohumol, Silibinin HUVEC, VSMC [84,95,96]

COX-2 Hydroxytyrosol, Oleuropein,
Quercetin, Resveratrol EC [98,101]

LIVER

Energy
metabolism

Ser9 and Ser641
glycogen synthase Epigallocatechin HepG2, isolated

rat hepatocytes [102,103]

fat storage

3-caffeoyl,4-dihydrocaffeoylquinic acid,
Blueberry anthocyanins, Curcumin, Cyanidin-3-
glucoside, Ellagic acid, Ginko bilonba
polyphenols, Quercetin, Resveratrol, Sechium
edule shoots polyphenols

HepG2, H4IIEC3, Huh7,
isolated rat hepatocytes [57,104–115]

CPT-1, ACC
Cyanidin-3-O-β-glucoside, Ginko biloba
polyphenols, Resveratrol, Sechium edule
shoots polyphenols

isolated rat
hepatocytes, HepG2

[107,110,111,
116–118]

AMPK, LXR, FAS,
PPAR-α, SREBP1c

3-caffeoyl,4-dihydrocaffeoylquinic acid,
Blackberry polyphenols, Cocoa polyphenols,
Curcumin, Cyanidin-3-O-β-glucoside,
Cyanidin chloride, Ellagic acid, Epicatechin,
Epigallocatechin-3-gallate, Ginko biloba
polyphenols, Mulberry anthocyanins,
Resveratrol, Sechium edule shoots polyphenols,
Sweet potato anthocyanins

HepG2, isolated rat
hepatocytes, Huh7

[57,103,104,107,
109–113,116–
125]

Akt/PI3K Epicatechin, Quercetin HepG2 [126,127]

GPAT1 Cyanidin-3-O-glucoside HepG2 [115,117]

Cholesterol
metabolism Cholesterol storage Grape seed polyphenols, Red wine polyphenols HepG2 [43]

ApoA1, ApoB100,
HDL, HMGCoR

Epigallocatechin, Epigallocatechin gallate,
Gallic acid, Quercetin, Red wine polyphenols,
Resveratrol, Sechium edule shoots polyphenols

HepG2 [45,107,128,
129]

Apoptosis
others (DNA
fragmentation, PI
staining)

Cyanidin-3-ol HepG2 [130]

Caspases
Black tea polyphenols,
Epigallocatechin-3-gallate, Quercetin,
Resveratrol, Solanum nigrum polyphenols

HepG2, HLE [106,126,131–
133]
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Table 1. Cont.

Biomarkers Polyphenols Cell Types Ref.

IMMUNE CELLS

Inflammatory
markers

MCP-1, NF-κB,
COX-2; TNF-α;
IκBα; IL-1α; IL-1β;
IL-6; IL-8; IL-10

Cacao polyphenols, Caffeic acid, Caffeoylquinic
acids, Curcumin, Cyanidin-3-O-β-glucoside,
Epicatechin, Gallic acid, Grape seed
proanthocyanidins, Hydroxytyrosol,
Naringenin chalcone, Oleuropein, Olive oil
polyphenols, Quince peel polyphenols,
Resveratrol, Rosmarinic acid

THP-1, RAW 264.7,
HMC-1, NR8383, U-937 [81,134–147]

Proliferation MAPK, p38, ERK1/2 Quince peel polyphenols, Resveratrol THP-1, HMC-1 [135,138,147]

Vasorelaxation eNOS, NO
Cacao polyphenols, Epicatechin,
Hydroxytyrosol, Naringenin chalcone,
Resveratrol

THP-1, RAW 264.7 [81,134,135,
140]

Apoptosis PI3K, Akt Quince peel polyphenols, Resveratrol THP-1 [135,147]

Migration MMPs Olive oil polyphenols THP-1 [141]

Energy
metabolism PPAR-γ; LXR-α Cyanidin-3-O-β-glucoside THP-1 [136]

3.2.1. The Gastro-Intestinal Tract

The gastro-intestinal tract is a complex system consisting of stomach, small intestine and
large intestine. At cellular level, strong local differences exist in morphology and function of
the digestive cells. The gut epithelium consists of (i) enterocytes involved in the production of
digestive enzymes and the active transport of food compounds; (ii) mucin secreting goblet cells;
(iii) entero-endocrine cells involved in the production of gut hormones involved in hunger and
satiety; and (iv) different types of cells involved in immune response regulation (such as M-cells
of follicle-associated epithelium in Peyers patches), and transport of antigens (such as dendritic
cells which are in contact with T-cells from mesenteric lymphoid nodes) [148]. Therefore, the gut
epithelium can be considered as a key organ in the inter-organ cross-talk in metabolic homeostasis
for the following reasons: (i) it is the first barrier that nutrients have to cross before entering into
the blood stream; (ii) it is involved in hormones that have an impact on energy intake, and (iii) it is
considered as the main immunity-regulating organ in the body as 70% of the immune cells are located
in the gastro-intestinal tract. The gut cells contain transporters for glucose (glucose transporter 4
(GLUT4)) and fat (cluster of differentiation (CD36), fatty acid transporter protein 4 (FATP4)), as well
as enzymes involved in lipoprotein assembly (microsomal triglyceride transfer protein (MTP)). In
addition, they secrete cytokines involved in inflammatory processes such as tumor necrosis factor
α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and use the NF-κB pathway to regulate
inflammation and proliferation.

Caco-2 cells are probably the most studied cell culture to investigate the transport kinetics of food
compounds by an intestinal monolayer. The Caco-2 model is a continuous cell line that is derived
from a colon adenocarcinoma, and has the useful property that it spontaneously differentiates upon
confluency towards a polarized epithelium of well-developed enterocyte-like cells with microvilli.
Differentiation markers also include the development of tight junctions, and the expression of specific
digestive hydrolases such as alkaline phosphatase, aminopeptidase N and A, sucrase, isomaltase,
dipeptidyl peptidase IV, and endopeptidase. Transport proteins, enzyme receptors, ion channels, and
lipid molecules are also situated on the apical part [149–151]. The housekeeping functions, which
are responsible for the maintenance of the intra- and extracellular environment, are situated in the
basolateral part of the cells [152]. The HT-29 cell line is a cell line from colorectal origin with epithelial
morphology, and has been used as a model for absorption, secretion and transport by intestinal cells.
Under standard culture conditions, these cells grow as a non-polarized, undifferentiated monolayer.
Yet, altering culture conditions or treating the cells with different inducers, results in a differentiated
and polarized morphology, characterized by a redistribution of membrane antigens and development
of an apical brush-border membrane [153]. Other human intestinal cell lines are less popular for the
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simulation of the human intestinal epithelium, such as the SW480 cell line, which is mainly used in
unravelling cancer-related mechanisms, and the HuTu80 cell line, a model for duodenal cells.

The Caco-2 cell line has extensively been used to model transport of dozens of structurally
different polyphenols [154]. One major characteristic is the cells potential to perform phase II
transformations including glucuronidation, sulfation, and acetylation of the aglycon polyphenol.
Intestinal cell lines have been used to investigate the impact of polyphenols on glucose and lipid
transporters, cholesterol metabolism, and immune response. Epigallocatechin had a strong influence
on nutrient transporters. Wine polyphenols as well as quercitin and isoquercitin have been shown
to modulate cholesterol metabolism, whereas a wider range of polyphenols was able to modulate
inflammatory markers (Table 1).

3.2.2. The Adipose Tissue

In the past, the adipose tissue was considered as a fat depot tissue spread throughout the
body, storing the left-overs of the energy that were taken in, and releasing energy when required.
Nowadays, the adipose tissue is widely recognized as a fully operational organ, with a complex
endocrine signaling potential that not only regulates fat storage and release, but also satiety and even
immune response and angiogenesis. Lipid metabolism is directly related to circulating cholesterol,
triglyceride and fatty acid levels, and therefore the fat tissue, as well as the liver, are considered as
significant players in cardiovascular diseases. The size of the fat tissue is determined by the size
of the fat cells and the cell number. The adipocyte number is the result of the balance between
cell proliferation (mediated by mitogen-activated protein kinase (MAPK) pathways), apoptosis
(regulated by caspases, poly ADP ribose proliferator (PARP)), and differentiation (marked by the
expression of lipid and glucose uptake enzymes, as well as secretion of adipokines). Insulin, secreted
by the β-cells in the pancreas, is the major hormone controlling glucose and lipid metabolism. It
activates the insulin receptor tyrosine kinase (IR), and results in recruitment of insulin receptor
substrates (IRS-1), which can also be activated upon binding of the growth factor insulin growth
factor-1 (IGF-1) to its receptor. IRS-1 is transmitting the signal to three intracellular pathways of
the MAPK family, more specific extracellular signal regulated kinase (ERK), p38 kinase and c-Jun
N-terminal kinase (JNK). Activation of these pathways results in adipocyte proliferation and protein
synthesis. IRS-1 is also transmitting the signal to Akt, the key molecule in insulin sensitive tissues, via
activation of phosphatidylinositol 3-kinase (PI3K). Akt stimulation results in glucose uptake through
GLUT 1 and GLUT4, decreased lipolysis and increased lipogenesis [155]. Adipocytes store energy
originating from triglycerides, fatty acids and glucose, which is converted to triglycerides through
de novo lipogenesis. Briefly, glucose is taken up into the adipocyte through insulin-mediated GLUT4,
converted to pyruvate, and transported into the mitochondria where it is converted to malonyl CoA.
Cytosolic fatty acid synthase (FASN) is involved in the stepwise elongation of malonyl CoA to fatty
acids. In a state of negative energy balance, adipocytes release fatty acids to provide energy to the
peripheral tissues (lipolysis). Lipases such as hormone-sensitive lipase (HSL) play a major role in
this process. Also peroxisome proliferator-activated receptor γ (PPARγ), a nuclear transcription
factor that induces lipoprotein lipase (LPL) and adipocyte protein 2 (aP2), is strongly involved
in fatty acid storage and glucose metabolism [156]. Fully differentiated adipocytes express leptin,
adiponectin and resistin, which are hormones with a major impact on hunger and satiety. In addition,
adiponectin [157,158], resistin [159], and apelin [160] have been considered the key molecules that
make the link between the “twin epidemics” obesity and diabetes, and are also involved in the
pathology of cardiovascular diseases [161].

Finally, a chronic low-grade inflammation of the adipose tissue may also contribute to the
development of cardiovascular diseases [162]. Inflammation generally results in increased insulin
resistance, as well as in macrophage infiltration mediated by macrophage attraction factors (MCP-1).
The low-grade inflammatory tone (marked by increased TNF-α, IL-1β and IL-6 secretion) has been
partially attributed to increased circulating lipopolysaccharide (LPS) levels, which is the result of
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enhanced permeability of the intestine for microbial compounds, and to hypoxic conditions generated
by the increased size of the adipocytes. Hypoxic conditions result in the expression of vascular
endothelial growth factor (VEGF), which is one of the key molecules triggering the angiogenesis
process. Collaboration between the fat cells and vascular system is indispensable to develop a fully
functional adipose tissue.

Adipose tissue research has mostly been performed with isolated primary adipocytes, or
immortalized murine 3T3-L1 cells due to the lack of a continuous human white adipose tissue
cell line. Human cell lines that have been used to investigate adipocyte differentiation are the
Simpson-Golabi-Behmel Syndrome (SGBS) cell line [163], the brown adipocyte cell line PAZ6 [164],
the TAH9 cell line derived from white adipose tissue but with low differentiation potential [165] and
human liposarcoma cell lines (LiSa-2, LS 14, LS857 and LS707) [166,167]. Recently, primary adipocytes
became commercially available through the American Type Culture Collection (ATCC). Therefore,
nowadays, more options are available to investigate human adipocytes.

A wide set of structurally different polyphenols are affecting pathways involved in energy
storage, proliferation as well as apoptosis, differentiation, satiety hormones, inflammatory
markers, and hypoxia. In particular, polyphenols present in grapes (e.g., resveratrol), vegetable
oils (e.g., oleuropein, hydroxytyrosol, episesamin), tea (e.g., epigallocatechin) and berries
(e.g., anthocyanins) are shown to play an effective role in inhibiting adipogenesis and cell
proliferation (Table 1). These results demonstrated that several polyphenols might be evaluated as
novel potential complementary treatments for associated cardiovascular diseases.

3.2.3. The Endothelium

The endothelium is a thin layer of cells that lines the interior surface of blood vessels
and lymphatic vessels. Vascular endothelial cells line the entire circulatory system, and have
distinct functions including (i) a barrier function; (ii) blood clotting; (iii) hormone trafficking;
(iv) inflammation regulation; (v) angiogenesis; and (vi) vasoconstriction and -dilatation.

Endothelial cells are a selective barrier (mediated by junction proteins such as vascular
endothelial cadherin (VE-cadherin)) that contain fatty acids and glucose transporters (GLUT4,
CD36) for the transport of nutrients, the latter are activated through protein kinase B (Akt).
Endothelial dysfunction is a key event in the early stage of atherosclerosis and is often found
in patients with coronary heart disease, type II diabetes, hypertension and hypercholesterolemia.
Endothelial dysfunction is marked by increased reactive oxygen species (ROS) production and
decreased nitric oxide (NO) production (result of activation of sirtuins (SIRT) and reduction of
endothelial nitric oxide synthase (eNOS)). NO is involved in vasorelaxation, and may hence be a
target to treat hypertension. Other molecular targets for vasodilatation are (i) proteins involved in
the rennin-angiotensin-aldosterone system, such as angiotensin converting enzyme (ACE) and its
receptors, that are involved in the regulation of blood pressure and water balances and (ii) endothelins
(ET-1), which are proteins upregulated in response to hypoxia, oxidized LDL, pro-inflammatory
cytokines, and bacterial toxins, and have an impact on blood pressure [168].

Angiogenesis is the process of new blood vessel formation characterized by an increased
proliferation, migration, differentiation, and tubule formation of the endothelial cells. Proliferation is
regulated by the MAPK-pathway. Matrix metalloproteinases (MMPs) are involved in the degradation
of the extracellular matrix to allow endothelial cells to migrate in the tissue. VEGF, produced by the
adipose tissue, is the main attraction factor for endothelial cell migration.

The low-grade inflammatory tone in metabolic syndrome patients has an impact on the
endothelium, which is characterized by increased expression of transcription factors (NF-κB),
enzymes (cyclo-oxygenase 2 (COX-2)) and cytokines (TNF-α, ICAM-1, MCP-1) involved in the
inflammation process.

Unlike other cell types, for the endothelial cells, the increase in extracellular glucose levels is
not accompanied by a decrease in the rate of transmembrane transport. This property makes the
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endothelial cells very sensitive towards hyperglycemia induced dysfunction, such as irreversible
arterial stiffness caused by continuous glucose exposure [169].

Until now, most studies used primary HUVEC cells as a model for human endothelium. The
HUV-EC-C cell line is similar to primary HUVEC cell lines, but these cells can be cultivated until
50 to 60 doubling times, which is at least ten times more than primary HUVEC cells. These cells
are widely used to investigate the effect of drugs and nutrients on wound healing, angiogenesis
(consisting of cell migration, differentiation and tubule formation), the production of NO, ROS,
and monocyte/leukocyte attraction factors such as vascular cell adhesion molecule 1 (VCAM-1) and
ICAM-1 and the expression and activity of ACE. Endothelial cells can be investigated as such, or
challenged with cytokines such as TNF-α, IL-1β, and VEGF to mimic the inflammatory and hypoxic
signaling in cardiovascular disease.

Other cell types that have been used to study vascular effects are primary microvascular
retinal endothelial cells (HMREC), and immortalized human microvascular endothelial cells
(HMEC-1) [170]. The HMEC-1 cell line has a cobblestone morphology when grown in monolayer
culture, expresses and secretes von Willebrand's Factor involved in coagulation, take up acetylated
low-density lipoprotein, and rapidly form tubes when cultured on matrigel. They express cell-surface
molecules typically associated with endothelial cells, including CD31 and CD36, and cell adhesion
molecules such as ICAM-1 and CD44.

The ISO-HAS cell line has been established from tumor tissue of a human hemangiosarcoma,
and has a life span of more than 100 passages [171]. This cell line has a cobble-stone morphology
at confluency, contact-inhibited growth, active uptake of acetylated LDL and CD31 expression.
Yet, because of the lack of the von Willebrand factor and tube-formation activity, as well as their
high tumor-forming capacity in mice indicate that this is a malignant and poorly differentiated cell
line. The EA.hy926 is a human somatic cell hybrid continuous cell line with endothelial properties.
Compared to HMEC cells, this cell line is less capable of tube formation and has significant differences
in expression profiles [172]. The EA.hy926 cell line has been used to investigate hyperglycemia
induced stiffness and blood pressure mechanisms [87,169].

These cell systems have been used to investigate the impact of a wide variety of polyphenols
on nutrient transport, vasorelaxation, cell proliferation, tubulus formation, and inflammatory
responses. Plant polyphenols including tea, cacao and bilberry polyphenols are shown to inhibit
angiogenesis through regulation of multiple signaling pathways. Moreover, studies pointed out that
resveratrol stimulate nitric oxide production, whereas tannins and sinapic acid exert antihypertensive
effects (Table 1). Overall, studies indicated polyphenols as modulators of endothelium through
different mechanisms.

3.2.4. The Liver

The liver is a gland, which is composed of liver lobule units containing 80% (v/v) functional
parenchymal cells, also called hepatocytes. The other non-parenchymal cells consist of hepatic
stellate cells, sinusoidal endothelial cells, and phagocytic cells. The liver has a profound impact
on energy metabolism, as it contains the major stock of glycogen in our body which is mediated
through glycogen synthases, and is strongly involved in lipid metabolism by regulating lipogenesis
as well as fatty acid oxidation, and cholesterol metabolism. Glycerol-3-phosphate acyltransferases
(GPAT) catalyze the initial step in glycerolipid synthesis, and sterol regulatory element binding
protein (SREBP-1c), which is induced by insulin, regulates genes required for glucose metabolism
and fatty acid and lipid production. Hepatic lipogenesis is similar to adipocyte lipogenesis and
involves therefore similar key enzymes such as AMP-activated protein kinase (AMPK), SREBP-1,
acetyl-CoA carboxylation (ACC), HMG-CoA reductase (HMGCR), fatty acid synthase (FAS) and
PPARα [173]. ACC catalyzes the carboxylation of acetyl-CoA to malonyl-CoA, but also controls
fatty acid oxidation by means of the ability of malonyl-CoA to inhibit carnitine palmitoyltransferase
I (CPT-1), the rate-limiting step in fatty acid uptake and oxidation by mitochondria. PPAR-α is a
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nuclear receptor that promotes uptake, utilization, and catabolism of fatty acids by upregulation
of genes involved in fatty acid transport, fatty acid binding and activation, and peroxisomal and
mitochondrial fatty acid β-oxidation.

Besides their role in lipogenesis, ACC and HMGCR are involved in cholesterol production in
the hepatocytes. This cholesterol, together with triglycerides, are embedded in lipoproteins, mainly
APO-100 [174], APO-C and APO-E, to form VLDL that, after lipoprotein lipase action, delivers the
triglycerides to the adipose tissue and becomes LDL. This LDL is considered as “bad cholesterol”,
as the excess of LDL is absorbed by macrophages which may form an atherosclerotic plaque in the
blood vessel. Cholesterol is recycled in the body after binding of LDL and HDL, consisting of mainly
APO-A1, to lipoprotein receptors in the hepatocytes.

The HepG2 cell line is by far the most studied hepatic cell line [175]. It is a continuous cell line
derived from a hepatocellular carcinoma, grows as a monolayer of epithelium and in aggregates, are
polarized cells and secrete many plasma proteins including transferrin, fibrinogen, plasminogen and
albumin. It has a high predictive value for biotransformation processes by the liver [175]. HepG2
cells have been cultivated in single cell culture systems, as well as in co-culture with other cell lines
such as the Caco-2 cell line, and in 3D conformation with enhanced cell structure and functional
properties [176].

Based on Table 1, it can be seen that especially lipid and cholesterol metabolism in hepatocytes
is strongly influenced by a wide variety of polyphenols. Particularly, flavonoids including quercetin,
resveratrol, epicatechin and cyanidin, and phenolic acids including ellagic and gallic acid are shown
to regulate lipid and cholesterol metabolism. Eventually, polyphenols have potential to heal liver
disorders related to cardiovascular diseases.

3.2.5. The Immune System

The immune system is a system of biological structures and processes within an organism
that protects against diseases and can be modified by diet, pharmacologic agents, environmental
pollutants, and naturally occurring food substances, such as polyphenols [177]. Immunomodulatory
signals such as IL-1β, IL-6, IL-8, IL-10, NF-κB, and TNFα, can be produced by most of the
tissues in the body—as discussed before—and they are also expressed in specific white blood
cells, such as macrophages, mast cells, neutrophils, T cells and B cells [178]. Atherosclerosis,
the major cause of cardiovascular disease (CVD), is a chronic inflammatory condition whereby
immune competent white blood cells are infiltrated in atherosclerotic plaques where they produce
mainly pro-inflammatory cytokines [179]. In those lesions, oxidized LDL and dead cells cause
inflammation and immune stimulation. The antioxidant capacity of polyphenols can therefore
modulate the immune system in various ways, mainly through the inhibition of enzymes related
to inflammation such as cyclooxygenase (COX) [136–139] and key regulatory transcription factors
including peroxisome proliferator-activated receptors (PPAR) [136] and nitric oxide synthase
(NOS) [81].

The THP-1 cell line is the most commonly used cell line to study immune response. It is
a human-derived monocytic cell line derived from an acute monocytic leukemia patient. After
treatment with phorbol esters, THP-1 cells differentiate into macrophage-like cells. Compared to
other human myeloid cell lines, such as U937 cells, differentiated THP-1 cells behave more like
native monocyte-derived macrophages. Therefore, the THP-1 cell line is a suitable model for
studying the mechanisms involved in macrophage differentiation, and for exploring the regulation of
macrophage-specific genes [180]. The RAW 264.7 is a murine cell line with similar properties, and the
NR8383 cell line is an alveolar cell line with macrophage-like properties from rat origin. The HMC-1
cell line is a mast cell line of human origin.

Several polyphenols have been shown to stimulate immune responses in these cell lines, as well
as factors affecting vasorelaxation, proliferation and apoptosis, cell migration and energy metabolism.
It has been shown that resveratrol, grape seed procyanidins, quince peel polyphenols, naringenin
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chalcone, epicatechin, caffeic acid, curcumin and cyanidin-3-O-β-glucoside inhibit the inflammatory
cytokines (Table 1).

3.2.6. Overall Effect

From Table 1, it can be concluded that polyphenols modulate intestine, adipose tissue,
endothelium, liver and immune system through various different metabolisms and consequently
contribute to the prevention of cardiovascular diseases. Most of these studies have been carried out
on resveratrol, catechins, and anthocyanins. Resveratrol affects these target tissues mostly through
modification of energy metabolism and inhibition of inflammatory markers. Similarly, the impact
of catechins on these tissues was also largely based on the regulation of energy metabolism. In
addition, catechins are shown to have significant effects on cell proliferation. Furthermore, several
anthocyanins may regulate the energy metabolism. In particular, they are shown to have significant
effects on the liver. Overall, although the exact behavior by which polyphenols produce their effects
is not fully understood, it has been demonstrated that they have the potential to improve diseases
related to cardiovascular health.

One major concern for the use of cell cultures for the study of biomarkers triggered by
polyphenols is the cancer-related origin of many commercially available cell cultures as many
polyphenols selectively induce apoptosis in cancer cells by deregulation of the cell cycle, and are
therefore considered as potential anticancer agents [181]. Polyphenols can act as either antioxidant or
prooxidant, depending on the dose, cell type and cell culture conditions. In general, most bioactive
actions are related to the reactive oxygen species (ROS) scavenging potential of the polyphenols,
including cardiovascular effects such as hypertension [182]. In contrast, their anticancer effect has
been shown to be mediated through their prooxidant properties, as cancer cells have higher and more
persistent oxidative stress levels compared to normal cells, which makes them more sensitive towards
the extra ROS levels generated by pro-oxidants. In a recent study by Sak [181], the cytotoxicity,
expressed as IC50 values, of flavonoids on more than 150 cell lines from bladder, blood, bone, breast,
colon, liver, lung, melanoma, mouth, esophagus, ovary, pancreas, prostate, stomach and uterus
origin, was reviewed. It was concluded that the toxicity effect was highly variable and dependent
on flavonoid type, dose, cell line origin, and expression of estrogen receptors.

Besides the origin of the cells, one may also question whether the observed changes in
biomarkers/cytokines in response to the polyphenol are considered to be beneficial or adverse. This
is hard to assess, because this is strongly dependent on (i) the concentration of the added compound,
(ii) the duration of incubation; (iii) the intensity of the cellular response in terms of amount of
“marker” that is produced and (iii) the pathways that are affected by the “marker”, which is on
itself also dependent on the amount of “marker” that is produced. So far, the relevant dose that
needs to be added to a cell is still under discussion, and also the mode-of-action of the polyphenols,
of which “anti-oxidant” activity is an example, is not fully understood. Besides that, only few
proteomics, transcriptomics and metabolomics studies have been performed to have a full picture
of the mechanisms. Therefore, although cell models provide a useful tool to perform mechanistic
research, they should always be compared with in vivo data or primary cells.

4. Current Cell Culture Research: Trends and Potential Application for Polyphenol Research

The past five years, cell culture research has evolved towards the development of more complex
models, to obtain more relevant models that allow investigation of inter-cell signaling and cytokine
expression. The Transwellr system, a static double well system separated by a filter membrane and
generally used for transport experiments, and the collagen-embedded cell setup, are widely applied
for indirect contact co-cultivation of multiple cell types. Nowadays, research groups and companies
focus on the cultivation of one or more cell types on carriers and scaffolds containing extracellular
matrix compounds to allow spatial organization and enhanced differentiation of the cells [183]. In
some specific setups, low shear stress conditions are applied on cells adhered to carriers in rotating
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wall vessels, which may result in the differentiation of one cell line to multiple phenotypes (for
instance HT-29 colonic cell line to the enterocyte and mucin producing phenotype). In other setups,
dynamic conditions are applied to allow longer viability of the cells. In general, cell morphology and
metabolism in these more advanced setups are now characterized and validated with tissue samples,
and a first attempt to investigate the effects of highly characterized drugs was made. Yet, they are not
widely applied for screening purposes of (digested) nutrients because of the specific expertise that
is required.

As illustrated by Table 2, co-culture models of intestinal cell lines (mainly the Caco-2 cell line)
with other intestinal cell lines, liver, endothelial, adipocyte, neuronal, fibroblast and a variety of
immune cells have been developed. Co-cultures of the Caco-2 and the intestinal HT29-MTX cell line
has been used to investigate the impact mucins on the bioavailability of curcumin nanoparticles [184].
Especially co-cultures of intestinal cell lines with immune cells became very popular for the
investigation of the effect of pathogens, probiotics, lipopolysaccharides, and a limited amount of
environmental and food contaminants on intestinal behavior and general health (Table 2). Less
literature is available about co-cultures of intestinal cells with endothelial cells and only recently, the
first publication about co-culture of intestinal with brown adipose tissue cell lines has appeared [185].
A co-culture model of differentiated Caco-2 cells with primary HUVEC and HMEC-1 cells has
been published in the context of ICAM-1 and VCAM-1 expression through a NF-κB-mediated
mechanism [186]. In a publication of Zgouras et al., (2003) [187], undifferentiated Caco-2 cells were
combined with HUVEC cells to investigate the effect of butyrate on tumor-derived angiogenesis.
Only few of these systems have been used for the investigation of the impact of polyphenols on
the cross-talk between intestinal and endothelial cell types in the context of cardiovascular diseases.
In a publication of Kuntz et al., (2015) [188], a mixture of Caco-2 cells with mucus secreting HT29-B6
cells was co-cultured with HUVEC cells, and it was shown that addition of an anthocyanin-rich grape
extract had a beneficial effect on inflammation inhibition in the context of atherosclerosis, as measured
by ICAM-1, VCAM-1, IL-6, IL-8 and E-selectin levels. Similarly, in another study the beneficial effect
of resveratrol on NO production, oxidative stress and production of VEGF, ICAM-1 and IL-8 in a
co-culture system of Caco-2 cells with the EA.hy92 6 cell line was demonstrated (unpublished data).

Table 2. Co-culture models.

Intestinal
Cell Lines Co-Cultured Cell (Line) Experimental Setup Application Ref.

Intestine Caco-2,
Caco-2BBE HT-29, HT-29-MTX, M-cells Direct contact

Iron bioavailbaility,
breast milk effects,
nanoparticle uptake,
curcumin bioavailability

[184,189–193]

Liver Caco-2;
Caco-2-TC7 HepG2, HepaRG, murine 3A

Transwell and
continuous perfused
fluidic system

Benzo-a-pyrene
toxicity, b-carotene
and retinoid transport

[194–196]

Neuronal Caco-2, HT-29 PC12, glial cells, primary
enteric neurocytes

Collagen-embedded
system,
Transwell system

Co-culture
characteristics, LPS
stimulation,
pathogen invasion

[197–200]

Fibroblast
Caco-2, IEC-6,
IPI-21,
CRL-2102

Primary human and rat
fibroblasts, Rat-2

Collagen-embedded,
long term 3D

Co-culture
characteristics [201–204]

Immune cells Caco-2; HT-29,
m-ICcl2

Whole blood cells, dendritic
cells from isolated blood
monocytes and bone
marrow, lymphoblastoic TK6
cells, macrophage-like THP-1
and RAW264.7, murine
lymphocytes of Peyers
patches, Jurkat cells,
RBL-2H3 (rat basophils),
mast cells

Transwell system,
floating filter system
and direct
contact, indirect
micropattern surface

Co-culture
characteristics,
bioactivity of drugs,
LPS, probiotica,
benzo-a-pyrene,
aflatoxin, fucoidan,
immunoreactivity
of ovalbumin

[205–216]
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Table 2. Cont.

Intestinal Cell
Lines Co-Cultured Cell (Line) Experimental Setup Application Ref.

3 or more cell
types Caco-2+HT29-MTX

Raji B, fibroblast +
immunocytes, blood derived
macrophages +
dendritic cells

Transwell system,
direct contact,
collagen-embedded
Transwell system,

(Peptide) drug
transport and
permeability

[217–219]

Adipocyte Caco-2,
HT29-19A PAZ-6 Transwell system Co-culture

characteristics [185]

Endothelium
Caco-2,
HT29-6B,
LS180EB3

Primary HMEC,
immortalized isolated
HMEC from lymph node,
appendix, lung, skin and
intestine microvessels,
HUVEC, EA.hy926 cells

Transwell system, 3D
dynamic model with
decellularized
jejunum segments,
indirect contact

Co-culture
characteristics,
migration and
adhesion of tumor
cells, effect of
anthocyanins of grape

[220,221]

Adipocyte Cells Co-Cultured Cell (Line) Experimental Setup Application Ref.

Immune cells
Mouse
preadipocytes,
3T3-L1

RAW264 Direct contact

Cross-talk grape,
Maqui, calafate,
blueberry polyphenol
extracts,
naringenin chalcone

[81,222,223]

LPS: lipopolysaccharide.

The impact of polyphenols on other co-culture models, which are not including intestinal
transport or modifications, have also been published before. In co-culture models of adipocyte cell
lines with immune cells such as macrophages [81,222,223], as well as with endothelial cells have been
more studied in the context of polyphenol research. Different crosstalk mechanisms including ROS,
inflammatory markers, MCP-1 and PAI-1 were influenced by wine, maqui, calafate and blueberry
polyphenol extract as well as narigenin chalcone, in a mouse adipocyte-macrophage co-culture
system. Although the primary objective of these models was related to the effect of polyphenols
on obesity, these cross-talk mechanisms may have an indirect impact on endothelial function as well.

Finally, very recent research demonstrates the link of cardiovascular diseases with the intestinal
microbial composition and metabolism [224,225], although this has still been far less studied than
the microbial impact on metabolic syndrome, obesity and diabetes [226]. As polyphenols have been
shown to have a strong influence on microbial metabolism, as well as on microbial composition due
to their antimicrobial effects, we consider this field to be largely unexplored. Single cell models and
Transwell models have been widely applied in combination with intestinal microbiota to investigate
adhesion of probiotic bacteria and pathogens [227], transient intestinal colonization [228], modulation
of the immune system [229], and healing of damaged intestinal mucosa [230]. The major drawback
of using conventional (Transwell) systems with live bacteria is the limited contact time (only a few
hours) and the sensitivity of the cells towards intestinal fluids. New dynamic modules, such as
rotating wall vessel production units, the Host-Microbe Interaction model [231] and the gut-on-a-chip
model [232], allow increased differentiation of the intestinal cell lines, longer co-incubation times and
biofilm formation. Therefore, several of these models could be useful for the study of the impact of
polyphenols on the crosstalk mechanisms not only between host cells individually, but also between
the host and the residing microbial community, in the context of cardiovascular diseases.

5. General Conclusions

This review has demonstrated that cell lines, almost exclusively in a monoculture setup, have
widely been used to understand the mechanisms by which polyphenols may exert effects on
cardiovascular parameters. Yet, though cell lines offer an easy-to-use and high-throughput model
to screen and rank biophenols according to their bioavailability and bioactivity, one may question
the relevance of these models to be extrapolated to the in vivo situation. Firstly, the concentration of
polyphenols applied in these studies is often a factor 10 to 1000 higher than what is circulating in the
blood stream. Next to this, the cancer origin of many commercially available cell lines, as well as the
micro-environment in which the cells are isolated and cultivated outside the host may strongly impact
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their gene expression profile, and hence also their response to (lower concentrations) of polyphenols.
In vivo, this micro-environment can be considered as a cocktail of many chemicals structures that
find their origin in the ingested foods, metabolites from enzymatic, microbial and cellular origin,
cytokines, extracellular matrix compounds and circulating blood factors. In addition, it was already
proven that mechanical factors such as low shear stress—present in the gut lumen as well as in the
blood stream—strongly impact the differentiation behavior of the cells. So far, the majority of these
cell studies do not take into account this micro-environment, or only use a limited set of stressors to
simulate the onset of cardiovascular disease. The lack of these studies are probably the result of (i) the
lack of analytical data about the exact composition of this micro-environment; (ii) the lack of protocols
for stabilization of the micro-environment to limit the variability in cell response; and (iii) the lack of
protocols describing how to apply the micro-environment to the cells in a successful way. Recent
progress in the -omics areas together with the design of more complex cell models may trigger more
relevant mechanistic research in this field.
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