data reports

OPEN a ACCESS

ISSN 2056-9890

Crystal structure of 2-(1,3-dioxoindan-2yl)isoquinoline-1,3,4-trione

Raza Murad Ghalib,^a* C. S. Chidan Kumar,^{b,c}‡ Rokiah Hashim,^d Othman Sulaiman^d and Hoong-Kun Fun^{e,b}*§

^aDepartment of Chemistry, Faculty of Sciences & Arts Khulais, King Abdulaziz University, Jeddah, KSA, ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^cDepartment of Chemistry, Alva's Institute of Engineering & Technology, Mijar, Moodbidri 574 225, Karnataka, India, ^dSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^eDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia. *Correspondence e-mail: raza2005communications@gmail.com, hfun.c@ksu.edu.sa

Received 30 October 2014; accepted 26 November 2014

Edited by M. Zeller, Youngstown State University, USA

In the title isoquinoline-1,3,4-trione derivative, C₁₈H₉NO₅, the five-membered ring of the indane fragment adopts an envelope conformation with the nitrogen-substituted C atom being the flap. The planes of the indane benzene ring and the isoquinoline-1,3,4-trione ring make a dihedral angle of $82.06~(6)^{\circ}$. In the crystal, molecules are linked into chains extending along the *bc* plane *via* $C-H \cdots O$ hydrogen-bonding interactions, enclosing $R_2^2(8)$ and $R_2^2(10)$ loops. The chains are further connected by π - π stacking interations, with centroidto-centroid distances of 3.9050 (7) Å, forming layers parallel to the *b* axis.

Keywords: crystal structure; isoquinoline-1,3,4-trione derivative; synthesis; hydrogen bonding; pharmacological properties.

CCDC reference: 1036387

1. Related literature

For the biological activity of isoquinoline-1,3,4-triones, see: Chen et al. (2006); Du et al. (2008). For related isoquinoline-1,3,4-trione structures, see: Yu et al. (2010); Huang et al. (2013). For synthetic applications of isoquinoline-1,3,4-trione, see: Yu et al. (2010); Huang et al. (2011, 2013). For the synthesis of related compounds, see: Chen et al. (2006); Du et al. (2008); Ghalib et al. 2011; Schaber et al. 2004; Huang et al. (2013).

V = 1425.27 (3) Å³

Cu Ka radiation

 $0.24 \times 0.15 \times 0.14 \text{ mm}$

9639 measured reflections

2597 independent reflections

2458 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.93 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.024$

217 parameters

 $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Z = 4

2. Experimental

2.1. Crystal data

C₁₈H₉NO₅ $M_r = 319.26$ Monoclinic, $P2_1/c$ a = 12.6080 (1) Åb = 13.6849 (2) Å c = 8.4467 (1) Å $\beta = 102.051 \ (1)^{\circ}$

2.2. Data collection

Bruker APEXII CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.808, T_{\max} = 0.879$

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.093$ S = 1.042597 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6A\cdots O2^{i}$	0.95	2.54	3.4862 (16)	171
$C7 - H7A \cdots O1^{i}$	0.95	2.51	3.1397 (15)	124
C10−H10A···O5 ⁱⁱ	1.00	2.24	3.2022 (15)	161
$C13-H13A\cdots O5^{iii}$	0.95	2.37	3.2852 (16)	163
$C16-H16A\cdots O4^{iv}$	0.95	2.50	3.3596 (17)	150
	L 1. C	·\1	1. (!!!)	1 1. (')

Symmetry codes: (i) x, y, z + 1; (ii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $-x, y + \frac{1}{2}, -z - \frac{1}{2}$; (iv) $-x, y - \frac{1}{2}, -z - \frac{1}{2}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Acknowledgements

RH and OS acknowledge Universiti Sains Malaysia (USM) for providing research facilities. CSCK thanks Universiti Sains Malaysia (USM) for a postdoctoral research fellowship. The authors extend their appreciation to The Deanship of Scien-

§ Thomson Reuters ResearcherID: A-3561-2009.

06

[‡] Thomson Reuters ResearcherID: C-3194-2011.

tific Research at King Saud University for the research group project No. RGP VPP-207.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2607).

References

- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. H., Zhang, Y. H., Zhang, H. J., Liu, D. Z., Gu, M., Li, J. Y., Wu, F., Zhu, X. Z., Li, J. & Nan, F. J. (2006). J. Med. Chem. 49, 1613–1623.

Du, J. Q., Wu, J., Zhang, H. J., Zhang, Y. H., Qiu, B. Y., Wu, F., Chen, Y. H., Li,

- J. Y., Nan, F. J., Ding, J. P. & Li, J. (2008). *J. Biol. Chem.* **283**, 30205–30215. Ghalib, R. M., Hashim, R., Mehdi, S. H., Quah, C. K. & Fun, H.-K. (2011).
- Acta Cryst. E67, 01525.
- Huang, C. M., Jiang, H., Wang, R. Z., Quah, C. K., Fun, H. K. & Zhang, Y. (2013). Org. Biomol. Chem. 11, 5023–5033.
- Huang, C. M., Yu, H. T., Miao, Z. R., Zhou, J., Wang, S. A., Fun, H. K., Xu, J. H. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631.
- Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B. & Brauer, J. (2004). Thermochim. Acta, 424, 131–142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yu, H. T., Li, J. B., Kou, Z. F., Du, X. W., Wei, Y., Fun, H. K., Xu, J. H. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001.

supporting information

Acta Cryst. (2015). E71, o6-o7 [doi:10.1107/S2056989014025997]

Crystal structure of 2-(1,3-dioxoindan-2-yl)isoquinoline-1,3,4-trione

Raza Murad Ghalib, C. S. Chidan Kumar, Rokiah Hashim, Othman Sulaiman and Hoong-Kun Fun

S1. Chemical context

Urea has a complicated thermal behavior. It is thermally very liable to change. Thermal decomposition of urea under open reaction vessel conditions at temperatures in excess of 152 °C primarily gives cyanic acid (HNCO). HNCO on contact with additional urea in turn yields biuret which at a temperature of greater than 190 °C is liable to transform into cyanuric acid (Schaber *et al.*, 2004). High-temperature thermal decomposition of cyanuric acid also gives cyanic acid again.

Heating of a mixture of ninhydrin and urea above the melting point of urea gives a mixture of 3a,8a-dihydroxy-1,3,3a,8a-tetrahydro- indeno[1,2-d]imidazole-2,8-dione (**3**) and the title compound 2-(1,3-dioxoindan-2-yl)-isoquinoline-1,3,4-trione (**4**) in about equal amounts, figure 4 (Ghalib *et al.* 2011). Compound **4** is most probably the product of reaction of nihyrin with cyanic acid. The formation of an isoquinoline-1,3,4-triones is of interest as some of these compounds have been known for their potent anticancer activity (Chen *et al.*, 2006; Du *et al.* 2008). In continuation to our interest in the chemical and pharmacological properties of ninhydrin derivatives (Ghalib *et al.*, 2011), we synthesized the title compound **4** as a precursor for the synthesis of potential chemotherapeutic agents (Chen *et al.*, 2006).

S2. Structural commentary

In the title compound (Fig. 1), the study of torsion angles, asymmetric parameters and least squares planes reveals that the indane (C10–C12/C17/C18) ring adopts an envelope conformation with the nitrogen substituted C atom deviating by -0.104 (1) Å from the least-squares plane. The indane benzene ring (C12–C17) and the isoquinoline-1,3,4-trione ring exhibit a dihedral angle of 82.06 (6)°, suggesting they are almost perpendicular to each other.

S3. Supramolecular features

In the crystal structure, the molecules are connected into chains extending along the *bc* plane *via* intermolecular C–H···O hydrogen bonds (Table 1) enclosing $R_2^2(8)$ and $R_2^2(10)$ loops (Fig. 2 & 3). In addition, π – π interactions (*C*g2···*C*g3 = 3.9050 (7) Å; symmetry code: 1-x, 1-y, 1-z) stack the molecules into layers parallel to the *b* axis, where *C*g2 and *C*g3 are the centroids of the pyridine-2,3,6-trione and the benzene (C3–C8) rings respectively.

S4. Database survey

S5. Synthesis and crystallization

A dry mixture of ninhydrin (1) (1.78 g) and urea (2) (0.60 g) in molar ratio 1:1 was heated for 15 minutes to 150 °C above the melting point of urea (130–135 °C). The reaction mixture was cooled and then fractionally crystallized with an alcohol-chloroform (1:1) mixture to give colorless crystals of **3** as 3a,8a-dihydroxy-1,3,3a,8a-tetrahydro- indeno[1,2-d]imidazole-2,8-dione (yield 40%, M.P.: 220 °C) (Ghalib *et al.* 2011) and brownish crystals of the title compound **4** as

2-(1,3-dioxo-indan-2-yl)-isoquinoline-1,3,4-trione (yield 35%, m.p., 290 °C, Fig. 4).

S6. Refinement details

All the H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Figure 2

Crystal packing of the title compound, showing the C6–H6A···O2 and C7–H7A···O1 hydrogen bonding interactions (Symmetry codes: x, y, z + 1) as dashed lines incorporating $R_2^2(8)$ loops. Other H-atoms are omited for clarity.

Figure 3

Crystal packing of the title compound, showing the C–H···O hydrogen bonding interactions (Symmetry codes: x, -y + 1/2, z - 1/2; -x, y + 1/2, -z - 1/2; -x, y - 1/2, -z - 1/2) as dashed lines incorporating $R_2^2(10)$ loops. Other H-atoms are omited for clarity.

Figure 4

Reaction scheme for the title compound.

2-(1,3-Dioxoindan-2-yl)isoquinoline-1,3,4-trione

Crystal data
C ₁₈ H ₉ NO ₅
$M_r = 319.26$
Monoclinic, $P2_1/c$
<i>a</i> = 12.6080 (1) Å
<i>b</i> = 13.6849 (2) Å
c = 8.4467 (1) Å
$\beta = 102.051 (1)^{\circ}$
V = 1425.27 (3) Å ³
Z = 4

F(000) = 656 $D_x = 1.488 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 6347 reflections $\theta = 6.3-71.7^{\circ}$ $\mu = 0.93 \text{ mm}^{-1}$ T = 100 KBlock, orange $0.24 \times 0.15 \times 0.14 \text{ mm}$ Data collection

Bruker APEXII CCD diffractometer	2597 independent reflections 2458 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\rm max} = 72.0^{\circ}, \ \theta_{\rm min} = 6.3^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 14$
(SADABS; Bruker, 2009)	$k = -16 \rightarrow 16$
$T_{\min} = 0.808, \ T_{\max} = 0.879$	$l = -9 \rightarrow 8$
9639 measured reflections	
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.093$	$w = 1/[\sigma^2(F_o^2) + (0.0504P)^2 + 0.5485P]$
S = 1.04	where $P = (F_o^2 + 2F_c^2)/3$
2597 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
217 parameters	$\Delta ho_{ m max} = 0.27 \ m e \ m \AA^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.36681 (7)	0.34686 (7)	-0.36897 (11)	0.0226 (2)	
02	0.56844 (7)	0.37737 (7)	-0.18918 (11)	0.0244 (2)	
03	0.22076 (7)	0.37449 (6)	0.07501 (11)	0.0212 (2)	
04	0.14773 (7)	0.52030 (7)	-0.25876 (13)	0.0310 (3)	
05	0.14677 (7)	0.18880 (6)	-0.12358 (10)	0.0208 (2)	
N1	0.29330 (8)	0.35524 (7)	-0.14517 (12)	0.0167 (2)	
C1	0.37928 (9)	0.35678 (8)	-0.22453 (15)	0.0171 (3)	
C2	0.49378 (10)	0.37240 (8)	-0.11979 (15)	0.0182 (3)	
C3	0.50578 (10)	0.38012 (8)	0.05673 (15)	0.0173 (3)	
C4	0.60836 (10)	0.39054 (9)	0.15659 (16)	0.0202 (3)	
H4A	0.6710	0.3933	0.1108	0.024*	
C5	0.61838 (10)	0.39680 (9)	0.32253 (16)	0.0219 (3)	
H5A	0.6880	0.4043	0.3907	0.026*	
C6	0.52631 (10)	0.39207 (9)	0.39026 (16)	0.0213 (3)	
H6A	0.5339	0.3947	0.5045	0.026*	
C7	0.42389 (10)	0.38360 (8)	0.29149 (15)	0.0191 (3)	
H7A	0.3614	0.3817	0.3377	0.023*	
C8	0.41329 (10)	0.37786 (8)	0.12429 (15)	0.0172 (3)	
C9	0.30286 (10)	0.36955 (8)	0.02176 (15)	0.0172 (3)	
C10	0.18389 (9)	0.34521 (9)	-0.24087 (15)	0.0180 (3)	
H10A	0.1894	0.3278	-0.3539	0.022*	
C11	0.11456 (10)	0.43817 (9)	-0.24898 (16)	0.0210 (3)	

C12	0.00327 (10)	0.40620 (9)	-0.24322 (16)	0.0215 (3)
C13	-0.09105 (10)	0.46146 (10)	-0.26425 (18)	0.0276 (3)
H13A	-0.0910	0.5291	-0.2893	0.033*
C14	-0.18531 (11)	0.41422 (10)	-0.2473 (2)	0.0314 (3)
H14A	-0.2510	0.4502	-0.2610	0.038*
C15	-0.18544 (11)	0.31468 (10)	-0.21033 (19)	0.0315 (3)
H15A	-0.2513	0.2842	-0.2000	0.038*
C16	-0.09097 (11)	0.25943 (10)	-0.18845 (18)	0.0267 (3)
H16A	-0.0910	0.1918	-0.1629	0.032*
C17	0.00336 (10)	0.30685 (9)	-0.20540 (15)	0.0201 (3)
C18	0.11462 (9)	0.26700 (8)	-0.18079 (14)	0.0173 (3)

Atomic displacement parameters $(Å^2)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (4)
N1 $0.0137 (5)$ $0.0192 (5)$ $0.0172 (5)$ $-0.0005 (4)$ $0.0031 (4)$ $-0.0005 (5)$ C1 $0.0180 (6)$ $0.0152 (6)$ $0.0189 (7)$ $0.0001 (4)$ $0.0055 (5)$ $0.0000 (6)$ C2 $0.0169 (6)$ $0.0160 (6)$ $0.0222 (7)$ $0.0003 (4)$ $0.0055 (5)$ $0.0000 (6)$ C3 $0.0180 (6)$ $0.0149 (5)$ $0.0190 (6)$ $0.0000 (4)$ $0.0043 (5)$ $0.001 (6) (6)$ C4 $0.0180 (6)$ $0.0196 (6)$ $0.0226 (7)$ $-0.0004 (4)$ $0.0054 (5)$ $0.000 (6) (6) (6) (6) (6) (6) (6) (6) (6) (6)$	010 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	007 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 (4)
C3 $0.0180(6)$ $0.0149(5)$ $0.0190(6)$ $0.0000(4)$ $0.0043(5)$ 0.001 C4 $0.0180(6)$ $0.0196(6)$ $0.0234(7)$ $-0.0004(4)$ $0.0054(5)$ 0.001 C5 $0.0185(6)$ $0.0224(6)$ $0.0226(7)$ $-0.0017(5)$ $-0.0004(5)$ 0.000 C6 $0.0250(6)$ $0.0207(6)$ $0.0180(6)$ $-0.0017(5)$ $0.0036(5)$ -0.000 C7 $0.0206(6)$ $0.0178(6)$ $0.0202(6)$ $-0.0010(4)$ $0.0069(5)$ -0.000 C8 $0.0181(6)$ $0.0138(5)$ $0.0198(6)$ $-0.0005(4)$ $0.0039(5)$ 0.000 C9 $0.0180(6)$ $0.0146(5)$ $0.0198(6)$ $-0.0005(4)$ $0.0024(4)$ 0.000 C10 $0.0157(6)$ $0.0203(6)$ $0.0174(6)$ $-0.0002(4)$ $0.0024(4)$ 0.000 C11 $0.0177(6)$ $0.0207(6)$ $0.0237(7)$ $-0.0012(5)$ $0.0031(5)$ 0.000 C13 $0.0203(6)$ $0.0192(6)$ $0.0423(8)$ $0.0017(5)$ $0.0042(5)$ 0.001 C14 $0.0177(6)$ $0.0261(7)$ $0.0497(9)$ $0.0029(5)$ $0.0058(6)$ -0.000 <td>6 (5)</td>	6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	004 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	003 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 (4)
C10 0.0157 (6) 0.0203 (6) 0.0174 (6) -0.0002 (4) 0.0024 (4) 0.000 C11 0.0177 (6) 0.0207 (6) 0.0237 (7) -0.0003 (5) 0.0022 (5) 0.003 C12 0.0178 (6) 0.0202 (6) 0.0257 (7) -0.0012 (5) 0.0031 (5) 0.000 C13 0.0203 (6) 0.0192 (6) 0.0423 (8) 0.0017 (5) 0.0042 (5) 0.001 C14 0.0177 (6) 0.0261 (7) 0.0497 (9) 0.0029 (5) 0.0058 (6) -0.00	06 (4)
C110.0177 (6)0.0207 (6)0.0237 (7)-0.0003 (5)0.0022 (5)0.003C120.0178 (6)0.0202 (6)0.0257 (7)-0.0012 (5)0.0031 (5)0.000C130.0203 (6)0.0192 (6)0.0423 (8)0.0017 (5)0.0042 (5)0.001C140.0177 (6)0.0261 (7)0.0497 (9)0.0029 (5)0.0058 (6)-0.00	1 (4)
C12 0.0178 (6) 0.0202 (6) 0.0257 (7) -0.0012 (5) 0.0031 (5) 0.000 C13 0.0203 (6) 0.0192 (6) 0.0423 (8) 0.0017 (5) 0.0042 (5) 0.001 C14 0.0177 (6) 0.0261 (7) 0.0497 (9) 0.0029 (5) 0.0058 (6) -0.00	9 (5)
C130.0203 (6)0.0192 (6)0.0423 (8)0.0017 (5)0.0042 (5)0.001C140.0177 (6)0.0261 (7)0.0497 (9)0.0029 (5)0.0058 (6)-0.00	0 (5)
C14 0.0177 (6) 0.0261 (7) 0.0497 (9) 0.0029 (5) 0.0058 (6) -0.00	4 (6)
	034 (6)
C15 0.0188 (6) 0.0264 (7) 0.0508 (9) -0.0049 (5) 0.0107 (6) -0.00	36 (6)
C16 0.0222 (6) 0.0189 (6) 0.0398 (8) -0.0028 (5) 0.0083 (5) -0.00	010 (5)
C17 0.0183 (6) 0.0195 (6) 0.0225 (7) -0.0007 (5) 0.0039 (5) -0.00	019 (5)
C18 0.0177 (6) 0.0180 (6) 0.0157 (6) -0.0019 (4) 0.0025 (4) -0.00	35 (4)

Geometric parameters (Å, °)

01—C1	1.2048 (15)	C7—C8	1.3927 (18)
O2—C2	1.2102 (15)	С7—Н7А	0.9500
О3—С9	1.2136 (15)	C8—C9	1.4825 (17)
O4—C11	1.2080 (16)	C10—C18	1.5332 (16)
O5—C18	1.2088 (15)	C10-C11	1.5370 (16)
N1—C1	1.3886 (15)	C10—H10A	1.0000

	1 100 (1 0	G11 G1 0	1 4000 (1 =)
NIC9	1.4036 (16)	C11—C12	1.4802 (17)
N1—C10	1.4525 (15)	C12—C13	1.3890 (18)
C1—C2	1.5424 (16)	C12—C17	1.3966 (17)
C2—C3	1.4707 (17)	C13—C14	1.3863 (19)
C3—C4	1.3961 (17)	C13—H13A	0.9500
C3—C8	1.4016 (17)	C14—C15	1.398 (2)
C4—C5	1.3835 (18)	C14—H14A	0.9500
C4—H4A	0.9500	C15—C16	1.3901 (19)
C5-C6	1 3987 (18)	C15—H15A	0.9500
C5H5A	0.9500	C_{16} C_{17}	1 3883 (18)
C6_C7	1 2001 (10)	C_{16} H_{16A}	0.0500
	1.3881 (18)	C17 $C19$	0.9300
Со—поА	0.9500	C1/C18	1.4/8/(10)
C1 N1 C0	124.01 (10)	N1 C10 C19	114.07 (10)
CI-NI-C9	124.81 (10)	NI-C10-C18	114.97 (10)
CI—NI—CI0	118.64 (10)	NI-C10-C11	114.32 (10)
C9—N1—C10	116.40 (10)	C18—C10—C11	103.57 (9)
01—C1—N1	122.48 (11)	N1—C10—H10A	107.9
O1—C1—C2	120.34 (11)	C18—C10—H10A	107.9
N1—C1—C2	117.17 (10)	C11—C10—H10A	107.9
O2—C2—C3	124.14 (11)	O4—C11—C12	128.41 (12)
O2—C2—C1	117.35 (11)	O4—C11—C10	124.84 (11)
C3—C2—C1	118.51 (10)	C12—C11—C10	106.74 (10)
C4—C3—C8	120.06 (11)	C13—C12—C17	121.27 (12)
C4-C3-C2	120 40 (11)	C13 - C12 - C11	128.83(12)
$C_{8} = C_{3} = C_{2}^{2}$	119 54 (11)	C_{17} C_{12} C_{11}	109.86(11)
C_{0} C_{2} C_{2}	110.71 (11)	C_{14} C_{12} C_{12} C_{12}	109.00(11) 117.55(12)
$C_5 = C_4 = U_4 \Lambda$	119.71 (11)	$C_{14} = C_{12} = C_{12}$	117.55 (12)
C_{3}	120.1		121.2
$C_3 - C_4 - H_4 A$	120.1	C12—C13—H13A	121.2
C4—C5—C6	120.23 (11)		121.24 (12)
С4—С5—Н5А	119.9	C13—C14—H14A	119.4
С6—С5—Н5А	119.9	C15—C14—H14A	119.4
C7—C6—C5	120.36 (12)	C16—C15—C14	121.26 (12)
С7—С6—Н6А	119.8	C16—C15—H15A	119.4
С5—С6—Н6А	119.8	C14—C15—H15A	119.4
C6—C7—C8	119.63 (11)	C17—C16—C15	117.44 (12)
С6—С7—Н7А	120.2	C17—C16—H16A	121.3
С8—С7—Н7А	120.2	C15—C16—H16A	121.3
C7—C8—C3	119.98 (11)	C16—C17—C12	121.25 (11)
C7—C8—C9	118.45 (11)	C16—C17—C18	128.40 (11)
C3—C8—C9	121.57 (11)	C12—C17—C18	110.28 (10)
03-09-N1	118.63 (11)	05-C18-C17	127.71(11)
03 - C9 - C8	123 28 (11)	05-C18-C10	127.71(11) 125.71(11)
$V_{3} = C_{3} = C_{3}$	123.28(11) 118.00(10)	$C_{17} C_{18} C_{10}$	125.71(11) 106.57(10)
111-09-00	110.09 (10)	C1/C10C10	100.37 (10)
C0 N1 $C1$ $C1$	177 94 (11)	C1 N1 C10 C19	121 20 (11)
$C_{10} = N_{1} = C_{1} = O_{1}$	-1//.84(11)	$C_1 - N_1 - C_1 0 - C_1 \delta$	131.20 (11)
C_{10} NI C_{1} C_{2}	-2.54(16)	C9—N1—C10—C18	-53.10(13)
C9—N1—C1—C2	1.89 (16)	C1—N1—C10—C11	-109.16 (12)
C10—N1—C1—C2	177.19 (9)	C9—N1—C10—C11	66.53 (13)

O1—C1—C2—O2	2.38 (17)	N1-C10-C11-O4	38.25 (18)
N1-C1-C2-O2	-177.36 (10)	C18—C10—C11—O4	164.10 (13)
O1—C1—C2—C3	-177.50 (11)	N1-C10-C11-C12	-142.00 (11)
N1—C1—C2—C3	2.76 (15)	C18—C10—C11—C12	-16.15 (13)
O2—C2—C3—C4	-2.32 (18)	O4—C11—C12—C13	7.3 (2)
C1—C2—C3—C4	177.55 (10)	C10-C11-C12-C13	-172.42 (13)
O2—C2—C3—C8	177.08 (11)	O4—C11—C12—C17	-170.35 (14)
C1—C2—C3—C8	-3.05 (16)	C10-C11-C12-C17	9.92 (14)
C8—C3—C4—C5	1.19 (17)	C17—C12—C13—C14	-0.4 (2)
C2—C3—C4—C5	-179.41 (11)	C11—C12—C13—C14	-177.81 (14)
C3—C4—C5—C6	0.42 (18)	C12—C13—C14—C15	0.0 (2)
C4—C5—C6—C7	-1.67 (19)	C13—C14—C15—C16	0.3 (2)
C5—C6—C7—C8	1.27 (18)	C14—C15—C16—C17	-0.3 (2)
C6—C7—C8—C3	0.35 (17)	C15—C16—C17—C12	-0.1 (2)
C6—C7—C8—C9	-179.58 (10)	C15—C16—C17—C18	176.66 (13)
C4—C3—C8—C7	-1.59 (17)	C13—C12—C17—C16	0.4 (2)
C2—C3—C8—C7	179.01 (10)	C11—C12—C17—C16	178.31 (12)
C4—C3—C8—C9	178.35 (10)	C13—C12—C17—C18	-176.86 (12)
C2—C3—C8—C9	-1.06 (16)	C11—C12—C17—C18	1.01 (15)
C1—N1—C9—O3	174.03 (10)	C16—C17—C18—O5	-9.2 (2)
C10—N1—C9—O3	-1.36 (15)	C12—C17—C18—O5	167.87 (12)
C1—N1—C9—C8	-5.98 (16)	C16-C17-C18-C10	171.40 (13)
C10—N1—C9—C8	178.63 (10)	C12-C17-C18-C10	-11.55 (14)
C7—C8—C9—O3	5.45 (17)	N1-C10-C18-O5	-37.31 (17)
C3—C8—C9—O3	-174.48 (11)	C11—C10—C18—O5	-162.74 (12)
C7—C8—C9—N1	-174.54 (10)	N1-C10-C18-C17	142.12 (10)
C3—C8—C9—N1	5.52 (16)	C11—C10—C18—C17	16.70 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C6—H6 <i>A</i> ···O2 ⁱ	0.95	2.54	3.4862 (16)	171
C7—H7A···O1 ⁱ	0.95	2.51	3.1397 (15)	124
C10—H10A····O5 ⁱⁱ	1.00	2.24	3.2022 (15)	161
C13—H13 <i>A</i> ···O5 ⁱⁱⁱ	0.95	2.37	3.2852 (16)	163
C16—H16 <i>A</i> ···O4 ^{iv}	0.95	2.50	3.3596 (17)	150

Symmetry codes: (i) x, y, z+1; (ii) x, -y+1/2, z-1/2; (iii) -x, y+1/2, -z-1/2; (iv) -x, y-1/2, -z-1/2.