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Abstract: This study proposes a method for identifying and evaluating driving risk as a first step
towards calculating premiums in the newly emerging context of usage-based insurance. Telemat-
ics data gathered by the Internet of Vehicles (IoV) contain a large number of near-miss events which
can be regarded as an alternative for modeling claims or accidents for estimating a driving risk
score for a particular vehicle and its driver. Poisson regression and negative binomial regression
are applied to a summary data set of 182 vehicles with one record per vehicle and to a panel data
set of daily vehicle data containing four near-miss events, i.e., counts of excess speed, high speed
brake, harsh acceleration or deceleration and additional driving behavior parameters that do not
result in accidents. Negative binomial regression (AIC,yerspeed = 997.0, BIC;perspeed = 1022.7) is seen
to perform better than Poisson regression (Al Coverspeed = 7051.8, BICperspeed = 7074.3). Vehicles are
separately classified to five driving risk levels with a driving risk score computed from individual
effects of the corresponding panel model. This study provides a research basis for actuarial insurance
premium calculations, even if no accident information is available, and enables a precise supervision
of dangerous driving behaviors based on driving risk scores.

Keywords: driving risk assessment; usage-based insurance; driving risk score; telematics; near-miss
event; driving behavior; panel data analysis; count data model; econometrics; generalized linear
model

1. Introduction

Near-miss events are incidents that denote the existence of danger, even if no accident
occurs. Reporting of near-miss events is an established error reduction technique that has
been used by many industries to manage risk and reduce accidents. In the auto insurance
industry, insurers traditionally calculate premiums by analyzing past claims reported by
the insured policy holders, and reward those drivers that do not report accidents with a
no-claims bonus. However, this may be a rather incorrect approach to the assessment of
accident risk, especially when the insured has suffered accidents but chooses not to make
a claim so as not to lose the no-claims bonus. Fortunately, the advent of the Internet of
Vehicles (IoV) offers a better solution to this problem, using near-miss events to identify
driving risk. Near-miss events ultimately provide information that can lead to actuarial
premium calculations in the auto insurance industry [1,2].

This study explores how to evaluate driving risks, in the short term, and to score
drivers without claims and accidents based on information on near-miss counts over a short
period of time. One of the main novelties of this approach, in the absence of claims, is to
use telematics sensors for observation of drivers over a given period. The model obtained
in this study offers an important alternative for driving risk identification. Not only can the
model reflect risk factors that influence each near-miss event but it can also help to evaluate
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drivers’ risks, and fixed-effects panel count data models can be used to rank drivers
according to their individual effects. The modeling method and results are invaluable for
insurance companies for developing usage-based insurance (UBI) to personalize premiums.
They are also of interest to traffic regulatory authorities for promoting safe driving and the
prevention of accidents.

Near-miss events are incidents that need to be defined and extracted from the original
raw data files for further processing and analysis. By dealing only with near-miss events,
and excluding claims or accidents, this study aims to specifically identify driving patterns.
This study is carried out both on a per driver summary data set and on a panel data set
where a daily summary is shown for each driver. Our data contain counts of the four
types of near-miss events in our study. Speeding, high speed braking, harsh acceleration
and harsh deceleration have been defined based on actual driving conditions and local
laws and regulations. Other high-risk events, e.g., sharp turning, dangerous lane changing
and unexpected maneuvers, proved by previous studies to be related to driving risk, are
not included in this study due to the dimension and precision limitations of the original
data set.

Our interest is to model the frequency of near-miss events given the drivers’ charac-
teristics. The simplest statistical model that links a count data dependent variable with
explanatory factors is the Poisson model. Essentially, the Poisson model is similar to linear
regression, where a response depends on some others inputs. Here we think that dis-
tance driven or mean speed among others, influence the expected frequency of near-miss
events. A Poisson model, which is also known as a Poisson regression model, is easily
interpretable and provides a way to elucidate the significant effects on the conditional
expected frequency. Poisson models are constrained by the fact that conditional expectation
and conditional variance are equal. Negative binomial regression models are a natural
extension that overcomes this restriction. More details on the models are provided in the
Methods section below.

Since the extracted frequency of near-miss events is an unbounded non-negative
integer, Poisson regression and negative binomial regression are both suitable for modeliza-
tion. Poisson regression, negative binomial regression, zero-inflated Poisson regression
and zero-inflated negative binomial regression are respectively applied to the summary
data set. Average speed, brake times, accelerator pedal position, engine fuel rate etc., are
selected as independent variables. Either mileage or fuel consumption can be chosen as the
exposure variable to offset the model. In order to reach a clear understanding of risk factors
of different near-miss events, each near-miss event is individually used as a dependent
variable. However, regardless of which one is selected as the dependent variable, negative
binomial regression is shown to provide the best fit in the summary data in this study.

Negative binomial regression also performs better than Poisson regression on the
panel data sets. Individual effects and time effects are estimated using panel Poisson
regression and panel negative binomial regression on a short panel data set of six days
in length. The regression results confirm the existence of individual effects and time
effects, and also enable the driving risk of each vehicle to be ranked. The driving risk
level of vehicles can then be classified by converting the individual effects into scores, thus
providing an important reference for further accurate calculation of premiums.

The rest of this article is organized as follows. The development of UBI and previous
efforts on driving risk assessment are summarized in Section 2. Section 3 describes the
data and introduces the key parameters used in modeling. Section 4 presents the model
expression of Poisson regression and negative binomial regression used in the study.
The results of negative binomial regression using the summary data set and the panel data
set are reported and analyzed in Section 5. The results are discussed and the conclusions
are presented in Section 6.
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2. Literature Review

The auto insurance industry is continuously pursuing new ways to calculate more
accurate actuarial premiums. However, traditional auto insurance calculations are limited
by the difficulty of obtaining information on policy holders, so classical ratemaking uses
simple information on drivers (age gender,), vehicles (type of car, model and brand) and
driving sections [3]. With current advances in information technology, a new type of
insurance business, UBI, based on multi-source data and personalized premium calculation
is becoming the mainstream. The Pay-as-you-drive (PAYD) mode of charging premiums is
based on mileage or fuel consumption, on the premise that mileage or fuel consumption
correlates with the probability of suffering an accident [4]. PAYD has evolved into a newer
scheme, called the pay-how-you-drive (PHYD) ratemaking mode, which is based on mul-
tiple sources of data, including driving behavior data [5]. Following the development of
5G communication technology, it may now be possible to implement an even more sophis-
ticated monitoring and pricing strategy, known as the manage-how-you-drive (MHYD)
principle, i.e., real-time calculation of premiums based on multi-source data and providing
real-time information to drivers to restrain from bad driving behavior [3,6]. However, due
to technological, regulatory and other issues regarding privacy [7], there is still no mature
PHYD product on the market at present [8,9] and, in terms of MHYD, further research is
necessary on driving risk to produce products that better reflect the driver profile [10].

Traffic accidents all over the world result in a large number of casualties every year,
and high-risk driving is one of the main factors behind these incidents [3]. Consequently,
research on driving risk has been a topic of interest over recent decades. Simulation experiments
to evaluate driving risk have been designed in the laboratory setting to identify driving risk
factors [11-14] as well as experiments using actual vehicles on the road [15-19]. Questionnaire
surveys for driving risk assessment have also been studied [20,21]. In fact, the naturalistic type
of driving data collected by the IoV or smart phones, known as telematics data, can effectively
reduce the influence of subjective factors and unreasonable assumptions in producing effective
risk-mitigating actions [22-26].

In research related to driving risk assessment in the auto insurance industry, machine
learning and generalized linear models feature equally. Machine learning, with its strong
ability to process big data efficiently, is increasingly gaining ground in its application in the auto
insurance business. Logistic regression [27], cluster analysis [28], decision tree [5], support vector
machine [29], neural network [30] and other machine learning models [31-33] have been widely
studied in the field of driving risk assessment, and the results have shown machine learning
to be a powerful tool [34]. However, since most machine learning procedures, being black
box algorithms, do not offer a high degree of interpretability, they cannot completely replace
the conventional generalized linear models implemented for decades in the auto insurance
industry [8].

Conventional generalized linear models discern the correlation between influencing
factors and claims or accidents in frequency and severity models [9,24,25,35]. However,
the study of near-miss events even when there is a lack of information on claims and
accidents should not be ignored [2,15]; on the contrary, since near-misses are more frequent
than accidents and are positively associated with them, they can be considered a good
alternative for risk modeling for driving risk assessment [1]. Compared with previous
studies, this study not only conducts regression on the summary data set to model and
analyze the factors causing near-miss events, but also conducts panel data regression on
the panel data set to consider individual effects and time effects. The regression results can
not only make more accurate causal inference, but also carry out risk scoring.

3. Data Description

The telematics data used in this study are collected from an IoV information service
provider in China. While we cannot obtain more data due to the commercial privacy
of the data, the limited data also contains valuable driving risk information, which is
worth studying. The original data set contains 182 data files, representing sensor data
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for 182 vehicles observed from 3-8 July 2018 [10]. Each data file contains 62 different
measurements but, after data processing [36], less than one-third of them can be used due
to recording errors and inconsistencies. The original data are transformed for modeling
into a summary data set with information on each driver (see details in Table 1).

Table 1. Descriptive statistics of the summary data set for 182 drivers observed from 3-8 July 2018.

Variable Mean Standard Deviation Minimum Median Maximum Defination
overspeed 19.19 45.37 0 0 330 Frequency of driving speed greater than 100 km/h
highspeedbrake 44.23 108.3 0 4 942 Frequency of braking when the driving speed is greater than 90 km/h
harshacceleration 139.0 134.7 0 101 899 Frequency of cases when acceleration is greater than 6 m/s?
harshdeceleration 1419 137.8 1 105 913 Frequency of cases when acceleration is less than 6 m/s?
kilo 2223 1674 3.73 1832.175 7164 Total driving distance (km)
fuel 621.7 470.9 10.25 487.295 2018 Total fuel consumption (L)
brakes 1588 1426 6 11385 9243 Total number of brakes
range 5.201 5.021 0.027 3.399 26.78 Range of driving (geographical units)
speed 36.88 16.37 0.297 36.657 67.84 Mean of speed (km/h)
rpm 1028 188.3 233.1 1009.301 1620 Mean of revolutions per minute (r/min)
acceleratorpedalposition  21.05 7.110 0.187 21.26 39.29 Mean of acceleration pedal position (%)
enginefuelrate 11.52 4.464 1.868 11.203 22.01 Mean of engine fuel rate (%)

60 80 100

Frequency

40

Frequency
kdensity overspeed

The number of each parameter is 182.

The variables overspeed, highspeedbrake, harshacceleration and harshdeceleration
are individually filtered by combining the rules of traffic law and driving code. Previous
studies have confirmed that speeding is a dangerous driving behavior which is likely to
cause traffic accidents [3]. In China, traffic safety regulations stipulate a maximum speed
for each type of vehicle on all types of roads. The maximum speed limit for the vehicles
in this study is 90 km/h; exceeding this by 10% is not deemed to be a traffic offense.
Therefore, 100 km/h is taken as the threshold value of the overspeed near-miss event.
Another high risk near-miss event that deserves attention is that of emergency braking; at
high speed (>90 km/h), if the brake is not used correctly or is subjected to lateral force,
the car is prone to side-slip or even cartwheel. Lastly, both harsh acceleration and harsh
deceleration are near-miss events that compromise driving safety and fuel economy. Based
on previous research experience [1,2,37] and the filter analysis of the extreme values of
this data set by box graph method, 6 m/s? is determined as the filtering threshold value
of harsh acceleration and harsh deceleration. Figure 1 shows that near-miss events are all
non-negative integers. Combined with the relationship between expectation and variance
shown in Table 1, the four near-miss events are shown to be suitable as dependent variables
of a Poisson regression or a negative binomial regression.

Frequency
kdensity harshdeceleration

Frequency
kdensity harshacceleration

Frequency
kdensity highspeedbrake
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Figure 1. Histogram of frequency distribution of four near-miss events: (a) Over speed; (b) High speed brake; (c) Harsh

acceleration; (d) Harsh deceleration.

The panel data set has one summary per day for each driver. The statistics of the panel
data set are shown in Table 2.
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Table 2. Descriptive statistics of a panel data set for 182 drivers observed over six days (total cases 1092).

Variable N Mean Standard Deviation Minimum Median Maximum

overspeed 1092 3.199 14.37 0 0 315
highspeedbrake 1092 7.435 21.74 0 0 215
harshacceleration 1092 23.37 29.78 0 14 223
harshdeceleration 1092 23.86 30.16 0 13.5 233
kilo 1092 372.6 373.2 0 263.24 1739

fuel 1092 104.1 105.7 0 72.15 565.8
brakes 1092 264.7 291.0 0 178 1940

range 1092 2.406 2.963 0 1.243 14.07

speed 1092 31.96 21.58 0 31.514 77.74

rpm 1092 894.3 346.9 0 973.714 1731

acceleratorpedalposition 1092 17.51 10.19 0 18.613 45.74

enginefuelrate 1092 9.794 5.835 0 10.018 26.18

4. Methods

Poisson regression is a generalized linear model. Negative binomial regression can be
considered as a generalization of Poisson regression with overdispersion of the dependent
variable Y; where subindex i refers to the i-th observation in the data set. The probability
density function of the Poisson distribution is:

—Ai7\Yi
P(EZ%‘HJZ# 1)
Yi:
where A; is the Poisson arrival rate and is determined by explanatory variable x; in Poisson
regression to represent the average number of events, which is equal to the expectation
and variance of the explained variable E(Y; | x;) = V(Y; | x;) = A;.
The negative binomial distribution is a mixture of a Poisson (A) and a Gamma (a,b)
distribution. The probability density function of the negative binomial distribution is:

o ~ T(y+a) b\ 1 Y}/
folas) = [ 5w I 0s0 o - (Y () @

where A is the mean and variance of the Poisson distribution, a is the shape parameter
of the Gamma distribution, b is the inverse scale parameter of the Gamma distribution,

E(y) = § =Aand V(y) = §(1+4) =3 (1+2).
The zero-inflated model is applicable when the counting data contains a large number
of zero values. Theoretically, it is a two-stage decision. First, it decides whether to choose

zero or a positive integer, and then it determines which positive integer to choose. Therefore,
the probability distribution of Y; is a mixed distribution:

e SO+ (A-0)P(Ki=yi|x) yi=0
Pr(Yz_yl|xl)_{ (1_9)P(K1:y1|x1) y1>0 (3)

where 0 is the probability of an extra zero value, K; can follow a Poisson distribution or a

negative binomial distribution depending on the characteristics of the dependent variable.

The conditional expectation function of a negative binomial regression model depends

on a vector of explanatory variables x; and, similar to Poisson, is usually defined by a
log-link as:

E(yi | xi) = Ai = Ti x exp(a + Brx1; + - - - + Bixxi) (4)

where i is the number of the observation, k depends on the number of independent
variables, T; denotes the offset variables (so, in our application, kilo; or fuel; is the exposure
variable), x1;... xy; represent the independent variables such as brakes;, range;, speed;, rpm;,
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Summary
data set

acceleratorpedal position; and enginefuelrate;, & and B1... By are unknown parameters that
need to be estimated.

The two-way fixed effect model of panel Poisson regression and panel negative
binomial regression is specified as:

E(yit | xit) = Aip = Ty X exp(a + Brxyjs + - - - + BrXpir + di + pi) 5)

where i is the number of the observation, ¢ is of time reference, k depends on the number of
independent variables, Tj; is the offset and equals kilo;; or fuel;; as the exposure variable
of the ith observation at time t, xy;. .. Xy;; represent the independent variables of the ith
observation at time t such as brakes;;, range;;, speed;;, rpm;;, acceleratorpedalposition;; and
enginefuelratey, « and fB... By are unknown parameters that need to be estimated, d;
represents the individual effect and p; represents the time effect. To avoid identification
problems in the model specification, d; = p; = 0.

The methodology of this study involves data preparation, modeling, risk scoring of
driving risk, etc. The whole technical process is shown in Figure 2.

Original
telematics data

Data processing Data processing

Preparation

Panel
data set

A

A A

Poisson
regression

Zero-inflated
Poisson
regression

Negative ZErg mf!ated Panel Pane.l MOdeImg
N " Negative . Negative
binomial . . Poisson o 5
binomial binomial

regression regression

regression regression

Regression result of four
near-miss events

Regression result of four
near-miss events

| Scoring

l

Driving risk factor

v

Driving risk factor

analysis

v

analysis

Driving risk
classification

A A 4

Driving behavi L~
supervision

» ¥

> N .
premium calculation

Application

Figure 2. Technical flow chart.

In the data preparation stage, the original data need to be preprocessed, including
multi-source data fusion, data cleaning, missing processing, etc. Then the summary data
set and panel data set required in this study are obtained through statistical calculation.
In the modeling phase, multiple count data models are used on two data sets for regression
analysis, which follows certain premises. Our observed drivers can be considered inde-
pendent of each other. Even if they drive in a similar area, they do not have any apparent
relationship between each other. When we observe one driver over time, we have taken
care of temporal correlation using the panel model that considers that one individual is
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observed repeatedly, here each day. In the scoring stage, the regression results obtained
from the regression model most suitable for the data in this study can be used for causal
analysis of near-miss events and driving risk scoring and rating. In the research field
of telematics data application, the results of this study show this application has poten-
tial in, for example, driving behavior supervision and personalized premium calculation.
The work at this stage has yet to be completed. Data processing in the preparation and
Poisson regression and negative binomial regression on different data sets in the modeling
can be implemented with data tools such as Stata, Python, R, etc.

5. Results

Before regression, multicollinearity tests are carried out on all explanatory variables to
eliminate the influence of multicollinearity on the model. As shown in Table 3, the variance
inflation factors (VIF) of all selected independent variables are less than 5, while the
correlation coefficients are generally less than 0.7. This indicates that the multicollinearity
among variables is weak, so all of them can be included in the regression equation and
robust estimates can be made.

Table 3. Variance inflation factor and correlation of explanatory variables.

Variable VIF Brakes Range Speed rpm Accelerator Pedal Positon
brakes 3.07
range 2.65 0.1213
speed 2.30 0.0536 0.6262
rpm 2.13 —0.0254 —0.0203 0.1804
accelerator pedal positon 2.03 0.0154 0.1174 0.3458 0.7695
engine fuel rate 1.04 0.1687 0.6313 0.6490 0.1075 0.3529

Both Poisson regression and negative binomial regression are applicable to this study,
and the zero-inflated model is taken as a consideration for the large number of zero values
of dependent variables. In order to determine the regression model which is most suitable
for this study, the performance of the two models on different dependent variables is
compared. All the estimated results are obtained by regression after standardization of the
original values.

5.1. Results of the Summary Data Set

In the summary data set, four near-miss events are respectively treated as dependent
variables while the independent variables are brakes, speed, rpm, accelerator pedal position
and engine fuel rate, where kilo is chosen as the exposure variable or offset. Poisson
regression, zero-inflated Poisson regression, negative binomial regression and zero-inflated
negative binomial regression are estimated (see Table 4). Regardless of which near-miss
event is the dependent variable, negative binomial regression has maximum log-likelihood
value, and minimum AIC value and BIC value. That is, negative binomial regression has
the best performance in this data set.

According to the results of negative binomial regression in different dependent vari-
ables (see Table 5 and Figure 3a), different near-miss events are affected by different driving
risk factors with different influences. Overall, the average speed has the most obvious influ-
ence on near-miss events, with a significant negative effect on harsh acceleration (—0.776)
and harsh deceleration (—0.658). The impact of braking event number on near-miss events
is also positive significant. The higher the number of braking, the more high speed braking
(0.272), harsh acceleration (0.189) and harsh deceleration (0.180) occur. In addition, average
RPM is positively correlated with harsh acceleration (0.178), and average accelerator pedal
position is positively correlated with harsh acceleration (0.152) and harsh deceleration
(0.235). Interestingly, some influencing factors have opposite effects on different dependent
variables. Range of driving has a positive effect on high speed brake (0.272) but a nega-
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tive effect on harsh deceleration (—0.153) while average engine fuel rate has a significant
positive effect on high speed braking (0.705) but a negative effect on sharp deceleration
(—0.157). Furthermore, the significance of the constant term indicates that, in addition to
the factors considered in this study, there are other factors that also influence near-miss
events. The results of the other three regression models on the summary data set are shown
in Tables A1-A3, and discussed in the Discussion section.

Table 4. Model performances of Poisson, zero-inflated Poisson, negative binomial and zero-inflated negative binomial in

summary data set.

Variable Model N Log-Likelihood df AIC BIC

POS 182 —3518.92 7 7051.846 7074.274

overspeed ZIP 182 —2369.82 8 4755.64 4781.272
NB 182 —490.517 8 997.0338 1022.666

ZINB 182 —490.516 9 999.0315 1027.868

POS 182 —2830.75 7 5675.498 5697.926

highspeedbrake ZIP 182 —2667.02 8 5350.034 5375.666
NB 182 —627.422 8 1270.843 1296.476

ZINB 182 —627.422 9 1272.843 1301.68
POS 182 —5857.26 7 11,728.51 11,750.94
harshacceleration ZIP 182 —5857.26 8 11,730.51 11,756.14
NB 182 —1032.81 8 2081.623 2107.255

ZINB 182 —1032.81 9 2083.623 2112.459
POS 182 —6269.47 7 12,552.93 12,575.36
harshdeceleration ZIP 182 —6269.47 8 12,554.93 12,580.56
NB 182 —1037.14 8 2090.285 2115917

ZINB 182 —1037.14 9 2092.285 2121.121

Table 5. The results of negative binomial regression for four near-miss events in the summary data set of drivers.

Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
Coefficient z Coefficient z Coefficient z Coefficient z
constant —5.175** 1587 —5114** 3536 —2.548** 4339 —2525** 4299
brakes 0.264 1.29 0.272 ** 2.60 0.189 *** 3.38 0.180 *** 3.45
range 0.185 0.79 0.272 * 2.05 —0.100 —-1.29 —0.153 —-1.94
speed —0.113 —0.20 0.249 1.28 —-0.776 ***  —881  —0.658 ***  —7.20
rpm 0.125 0.43 —0.0241 —-0.11 0.178 1.90 0.0969 1.07
acceleratorpedalposition 0.290 1.13 0.171 1.03 0.152 1.87 0.235 ** 2.82
enginefuelrate 0.227 0.99 0.705 *** 4.49 —0.0883 -1.12 —0.157 % —2.07
log-likelihood —490.5 —627.4 —1032.8 —1037.1
AIC 997.0 1270.8 2081.6 2090.3
BIC 1022.7 1296.5 2107.3 21159
Observation 182 182 182 182

***p<0.01,*p<0.05*p<0.1.
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overspeed highspeedbrake harshacceleration harshdeceleration
Brakes (standardized) - —— —— - -o-
Range (standardized) — —— —o— ——
Speed (standardized) * ® —— ——
RPM (standardized) —_— —_——— —e— —o—
Accelerator pedal position (standardized) —1—— —t— —e— ——
Engine fuel rate (standardized) 4 —— — —o+ —o—
T T T T T T T T T T T T T T T T T
-1 -05 0 05 1 -05 0 0.5 | -0.5 0 05 -1 -0.5 0 0.5
(a
overspeed highspeedbrake harshacceleration harshdeceleration
Brakes (standardized) - - - - -
Range (standardized) —o— - - .-
Speed (standardized) { —&—— —— —— ——
RPM (standardized) BRI S— —_— — ——
Accelerator pedal position (standardized) 4 —+@—— —to— —— ——
Engine fuel rate (standardized) | ——&—— —+o— ——+ —o—|
T T T T T T T T T T T T T T T
-1 0 1 2 3 -1 0 1 2 -1 -0.5 0 05 -1 -0.5 0 0.5
(b)

Figure 3. Partial coefficient estimation results of (a) negative binomial regression; (b) Panel negative binomial regression.

5.2. Results of the Panel Data Set

As shown in Table 6, the evaluation index (log-likelihood, AIC and BIC) of negative
binomial regression is lower than that of Poisson regression for each dependent variable.
Therefore, negative binomial regression is better than Poisson regression on panel data.

The panel negative binomial regression is used to estimate the two-way fixed effect
model, considering both individual effect and time effect on four dependent variables.
The influencing factors reflected by this (see Table A4 and Figure 3b) differ from those
shown in the results of the summary data. For example, harsh acceleration and harsh
deceleration are positively affected by the number of brakes (0.246 and 0.253) and average
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accelerator pedal position (0.249 and 0.270) but negatively affected by the average speed
(—0.645 and —0.586) and average engine fuel rate (—0.188 and —0.229). However, RPM,
which is not significant in the summary data, is significantly positive for overspeed (1.683)
and high speed braking (1.287). The brakes (0.0505) and engine fuel rate (0.295), which had
a significant positive effect on the summary data, become insignificant.

Table 6. Model performances of Poisson and negative binomial in the panel data set of drivers with
six observations per driver.

Variable Model N Log-Likelihood  df AIC BIC

overspeed XTPOS 1092 —1926.78 188  4229.559  5168.763
XTNB 1092 —957.497 189 2292993  3237.193
highspeedbrake XTPOS 1092 —2594.37 188  5564.733  6503.937
XTNB 1092 —1527.05 189 3432105  4376.305
harshacceleration XTPOS 1092 —6117.44 188 12,610.89  13,550.09
XTNB 1092 —3526.09 189  7430.186  8374.386
harshdeceleration XTPOS 1092 —6042.02 188  12,460.03 13,399.24

XTNB 1092 —3547.66 189 7473311  8417.51

The advantage of panel data over summary data is that fixed effects can be estimated
and thus individual effects and time effects can be interpreted. The time effect is significant
in most cases for high speed braking, harsh acceleration and harsh deceleration, which
indicates that these three near-miss events are greatly influenced by time. The time effect
on the overspeed event is significant for only one day, suggesting that it is less influenced
by time. More importantly, the individual effects of the four near-miss events can be used
to score each observation. It should be noted that the first observation has been omitted in
the regression to avoid complete multicollinearity, and its value is expected to be zero in
the subsequent driving risk score.

6. Discussion

The regression results of Poisson regression (see Table A1), zero-inflated Poisson
regression (see Table A2), negative binomial regression (see Table 5) and zero-inflated
negative binomial regression (see Table A3) on the summary data set show the importance
of driving behavior variables in driving risk. The high significance of two variables,
braking times and average speed, in the four regression models indicates that these two
factors have a very important impact on the generation of near-miss events. Moreover,
the significant performance of specific independent variables in the regression model of
specific dependent variables indicates that near-miss events are affected by a variety of
driving behavior factors and the formation mechanism of each near-miss event is different.
For example, the positive effect of RPM on harsh acceleration events, the positive effect of
accelerator pedal position on harsh deceleration events and the positive effect of engine
fuel rate on high speed braking events are shown in Tables A1-A3, Table 5.

The results obtained by panel regression are more reliable than those obtained by
pooled regression. Tables 5 and A4 and Figure 3 show that some coefficients that are not
significant in the pooled negative binomial regression become significant in the panel
negative binomial regression, while some significant parameters in the pooled negative
binomial regression are not significant in the panel negative binomial regression. This
means that the dependent variables are affected by individual effects and time effects.
In the panel negative binomial regression, most of the individual and time coefficients are
significant, which indicates the suitability of this type of regression analysis.

Driving risks can be evaluated by the regression coefficients of negative binomial
models on panel data. The value of the individual coefficients within a regression indicates
the individual’s deviance from the level of the expected occurrence of a particular near-
miss event, given the information on all the other explanatory variables. In other words,
the individual effect coefficient can be understood as the effect utility of each vehicle on
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level 5

the occurrence of the corresponding near-miss event. Geometrically, the effect coefficient of
each individual is a change in the intercept.

Four near-miss events are used as dependent variables to obtain four sets of regression
coefficients. Given that the influencing factors and generating mechanisms of different near-
miss events are different, combining the four groups of regression coefficients into one group
is not recommended. However, harsh acceleration and harsh deceleration show very similar
characteristics in terms of data description before regression (Tables 1 and 5), after regression
(Figure 3 and Table A4) and in distribution of driving risk score (Table A5). Even so, it is not
recommended to combine them into a single near-miss event for study, because the occurrence
conditions and coping operations of them are different, and it is the most appropriate choice to
study each near-miss event separately.

In order to transform individual effect estimates of near-miss models into a driving
risk grading, several steps need to be followed. Firstly, winsorization avoids the influence
of possibly spurious outliers (the double tail was winsorized with the threshold 0.01 in
this study). Secondly, the regression coefficient can be compressed to the interval of [0,1]
through normalization. Each group of coefficients is then mapped into an interval of
[0,5] (see Table A5), and each observation then is given a driving risk level from 1 to 5,
i.e., excellent, good, medium, bad and terrible (see Figure 4). The values of exactly 0 and 5
are included because the corresponding observations are the minimum and the maximum
values in their group and are Min-Max scaled. In overspeed and highspeedbrake groups,
two types of observations with high risk or low risk can be clearly seen. This indicates that
these two near-miss events are more sensitive to driving behavior than harshacceleration
and harshdeceleration and can be considered as a higher priority and weight in subsequent
studies. Note that the same observation (id125) has different risk levels for different
near-miss events, which also explains why multiple near-miss events cannot be analyzed
together. Ultimately, the premium would be charged individually according to the driving
risk level of the insured person.

level 4 4

level 3 1

Driving Risk Level

level 2 1

level 14

%Temble
o
id125(score=4.363)
r Bad
id125(score=3.088)
o
id125(score=2.887)
r Medium
id125(score=1.068) [ Good
o
Z
°
® o e ® (K )

Excellent

Over-speed High-speed-brake Harsh-acceleration Harsh-deceleration

Near-miss Event

Figure 4. Driving risk ranking of four near-miss events.
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7. Conclusions

The number and type of dependent variables and independent variables selected in
this study are limited by the size and quality of the original data. With the promotion and
innovation of IoV and of new energy vehicles, the amount and dimension of data will
be greatly increased. Therefore, application of near-miss events as dependent variables
could be easily increased or decreased, according to needs. For example, sharp turn
should be included, if possible, as a near-miss event because sharp turn is a highly studied
and accident-proven pattern of high driving risk. For the same reason, more driving
behavior indicators, such as steering wheel angle speed, brake pedal position, and so on,
could be used as independent variables in the regression model. In addition, traditional
auto insurance factors, such as driver information, vehicle information, road information,
environment information and the health status of batteries (of new energy vehicles) should
be considered to provide more optional independent variables for the model.

In practical applications, near-miss events can be combined with claims and accidents
to accurately evaluate driving risks. This study proves that near-miss events can be used
as driving risk scores when there are no claims or accidents. However, when claims or
accidents exist, the driving risk score obtained from claims or accidents can be used as
the basis for premium calculation, while the driving risk rating obtained from near-miss
events can be used to remind and warn drivers to reduce the corresponding dangerous
driving habits.

In this study, the best performing negative binomial regression (see Table 4) was
selected as the main method for modeling on our data set. The model is suitable for similar
causal analysis of similar data sets. However, in case of risk event prediction or analysis
on other data sets, it is necessary to reevaluate the goodness of fit of various models,
and even machine learning methods with good prediction performance should be taken
into consideration. The optimal method is not fixed, but depends on the data, conditions
and purposes.

Econometrics and machine learning complement each other. The generalized linear
model established in this study reveals the relationship between driving behavior factors
and near-miss events, and gives a driving risk score for each observation. This model
has strong explanatory power, but its generalization degree and robustness need to be
further tested, especially on larger data volume and data dimension. The successful
application of machine learning methods in many fields shows that they are often effective
in dealing with big data problems but that their results cannot always be easily interpreted,
and this interpretation is exactly what the insurance field values. Therefore, telematics data
application offers a new way to help find a balance between econometrics and machine
learning so as to have good explainability, good generalization ability, quick response
ability, and so on [38,39].

In general, near-miss events can provide insurers with effective risk information in
the absence of claims and accident data. In our real case study, negative binomial regres-
sion is the most suitable modeling method for near-miss events as dependent variables.
This study provides a technical reference for the promotion and development of PHYD
ratemaking schemes.
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Abbreviations

The following abbreviations are used in this manuscript:

UBI usage-based insurance
IoV Internet of vehicles
PAYD  pay as you drive
PHYD  pay how you drive
MHYD manage how you drive

VIF variance inflation factor
POS Poisson

ZIpP Zero-inflated Poisson
NB Negative binomial

ZINB Zero-inflated negative binomial
XTPOS Panel Poisson
XTNB  Panel negative binomial

AIC Akaike information criterion
BIC Bayesian information criterion
Appendix A

Table A1. The results of Poisson regression for four near-miss events in the summary data set of drivers.

Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
Coefficient z Coefficient z Coefficient z Coefficient z
constant —5.191** 2145 —5.194** 2998 —2.612** —40.34 —2.591** —40.05
brakes 0.279 1.82 0.349 *** 5.93 0.191 *** 3.66 0.186 *** 3.78
range 0.0437 0.21 0.0741 0.78 —0.157 —1.65 —0.208 * —2.04
speed —0.175 —0.92 0.489 ** 3.22 —0.717**  —857  —0.601**  —6.51
rpm 0.514 1.59 0.202 0.87 0.272 ** 2.94 0.183* 1.98
acceleratorpedalposition 0.0467 0.18 —0.0337 —0.23 0.169 1.91 0.238 ** 2.67
enginefuelrate 0.540 * 2.24 0.755 *** 4.32 —0.0499 —0.59 —0.119 —1.48
log-likelihood —3518.9 —2830.7 —5857.3 —6269.5
AIC 7051.8 5675.5 11,728.5 12,552.9
BIC 7074.3 5697.9 11,750.9 12,575.4
Observation 182 182 182 182

***p<0.01,*p<0.05*p <0.1.
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Table A2. The results of zero-inflated Poisson regression for four near-miss events in the summary data set of drivers.

Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
Coefficient z Coefficient z Coefficient z Coefficient z
constant —4388** —18.08 —5.006** —2496 —2612** —4034 —-2591**  —40.05
brakes 0.167 1.08 0.339 *** 5.34 0.191 *** 3.66 0.186 *** 3.78
range 0.0365 0.20 0.0755 0.81 —0.157 —1.65 —0.208 * —2.04
speed —0.391 % —2.12 0.408 * 2.48 —0.717 *** —-857  —0.601 *** —6.51
rpm 0.607 * 2.18 0.274 1.11 0.272 ** 2.94 0.183 * 1.98
acceleratorpedalposition —0.117 —0.52 —0.0563 —0.38 0.169 1.91 0.238 ** 2.67
enginefuelrate 0.346 1.59 0.700 *** 4.01 —0.0499 —0.59 —0.119 —1.48
inflate-constant 0.101 0.66 —1.183**  —472  —27.29** 29509 —27.00** —363.25
log-likelihood —2369.8 —2667.0 —5857.3 —6269.5
AlC 4755.6 5350.0 11,730.5 12,554.9
BIC 4781.3 5375.7 11,756.1 12,580.6
Observation 182 182 182 182

< 0.01, ™ p<0.05,* p<0.1.

Table A3. The results of zero-inflated negative binomial regression for four near-miss events in the summary data set

of drivers.
Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
Coefficient z Coefficient z Coefficient z Coefficient z
constant —5.153** 737 —5.114** 3536 —2.548 *** —43.39 —2.525 *** —42.99
brakes 0.263 1.25 0.272 ** 2.60 0.189 *** 3.38 0.180 *** 3.45
range 0.180 0.73 0.272 * 2.05 —0.100 —-1.29 —0.153 —1.94
speed —0.114 —0.20 0.249 1.28 —0.776 *** —8.81 —0.658 *** —7.20
rpm 0.130 0.41 —0.0241 —0.11 0.178 1.90 0.0969 1.07
acceleratorpedalposition 0.284 0.98 0.171 1.03 0.152 1.87 0.235 ** 2.82
enginefuelrate 0.227 0.99 0.705 *** 4.49 —0.0883 —1.12 —0.157 * —2.07
inflate-constant —3.793 —0.17 —14.62 *** —6.14 —2529 *#** 20422  —2327** —313.10
log-likelihood —490.5 —627.4 —1032.8 —1037.1
AIC 999.0 1272.8 2083.6 2092.3
BIC 1027.9 1301.7 2112.5 2121.1
Observation 182 182 182 182
% < 0.01, ™ p < 0.05,* p<0.1.
Table A4. Panel negative binomial regression results for four near-miss events.
Variabl Overspeed Highspeedbrake Harshacceleration Harshdeceleration
ariable Coefficient z Coefficient z Coefficient z Coefficient z
constant —3.768 *** (—8.68) —4356**  (=17.39)  —2284**  (=2513)  —2269**  (—20.81)
brakes —0.0400 (—0.31) 0.0505 0.73) 0.246 *++ (6.93) 0.253 *++ (7.23)
range ~0.0637 (—0.36) ~0.0108 (—0.12) ~0.00410 (—0.07) —0.0595 (—1.09)
speed —0.0405 (—0.08) —0.0965 (—0.39) —0.645**  (—6.09) —0.586**  (—5.24)
rpm 1.683 * (2.34) 1.287 ** (3.00) 0.143 (0.91) 0.145 (0.93)
acceleratorpedalposition 0.391 (0.83) 0.175 (0.79) 0.249 * (2.12) 0.270 * (2.52)
enginefuelrate 0.113 (0.22) 0.295 (1.18) —0.188 (—1.58) —0.229* (—2.04)
2018-07-04 0.273 (1.23) 0.216 (1.91) —0.111* (-2.12) —0.216 ** (—4.33)
2018-07-05 ~0.168 (—0.73) —0.0572 (—0.52) —0206%*  (—4.34) —0317**  (—6.72)
2018-07-06 —0.00716 (—0.03) —0.228* (—2.08) —0.257 *** (—4.84) —0.370 *** (=7.19)
2018-07-07 —0.477 * (—=2.11) —0.200 (—1.68) —0.485 *** (—=7.41) —0.600 *** (—=9.27)
2018-07-08 0.206 (0.90) 0.117 (0.95) —0.694 *** (—8.63) —0.784 *** (—9.58)
id2 —2881**  (—29.17) —2.001* (—2.25) 1.266 *** (5.24) 1.342 ** (4.80)
id3 —19.05%*  (—14.86)  —18.13**  (—16.37) 2.004 % (2.31) 1.740 #+ (4.75)
id4 —18.29 *** (—15.94) —17.91 *** (—20.04) 1.891 *** (8.66) 1.960 *** (8.58)
id5 —29.62 *** (—41.07) —4.956 *** (=7.51) —1.193 *** (—=3.77) —1.072 *** (—3.39)
id6 —1.478* (—2.40) —0.554 (~1.79) 1.067 *** (3.31) 0.935 *** 4.27)
id7 —3.236 (—4.11) —0.645 (—1.58) 0.656 ** (3.15) 0.835 ** (3.05)
ids 2079 (=2448)  —2368**  (—4.01) ~0.190 (—0.61) 0.124 (0.35)
id9 ~1.156 (~1.10) —0.0678 (=0.11) —0.251 (—0.79) ~0.109 (—0.28)
id10 3110 # (—5.93) 1527 (—4.20) —0.345* (—2.17) ~0.256 (—1.63)

id11 —2.026* (—2.42) —1.163 ** (—3.45) —0.162 (—0.88) —0.272 (—1.22)
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1 465 (-—3.52) ~0.156 0.0900 (0.35)
id45 2110 a6, s (=0.35) 0.336 (1.33) 0.468 (1.85)
id46 01 ' (~3.20) 0.105 (0.64) '
: 132 (0.14) —0.480 0.282 (1.18)
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id49 D508 *#x (—34.70) 55 o (3.72) 0.829 *** (5.36) 0.787 *** (4.63)
id50 2 556 *** (-3 §4) :1 '90775*** (=3.27) —0.568 ** (—2.60) —0.353 (_i 67)
id51 2062 ' ; (=3.87) —0.413 * (—2.43) _ '
1 0.62 (—20.07) —20.01 *** 0.331 (—1.80)
id52 2173 (L1676) 2090 (—27.73) 1.123 ** (3.56) 1,140 #+* (3.69)
! 65 (—21.34)  —20.00 *** 0.952 (—3.75)
id54 4,881 *** (—5.39) L os2 (—31.74) —0.133 (—0.72) 0.200 1.01)
id55 100 . (—2.66) —0.686 *** (—3.36) _ - ;
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: 2.462 (-3.72) —0.0866 0.476 (1.37)
ids7 106 ++ ' (~020) 0.119 (0.40)
: 96 (—22.99) —0.700 0.377 0.77)
id58 B : (=1.51) 0.110 (0.36) "
1 1.877 (—1.66) —0.692 0.719 (2.27)
id59 -3 okt . (V0.83) —0.344 (—=0.77)
: 8.77 (—43.77)  —0.0709 00660 (0.16)
id60 —3.117 ** (—2.65) _3 é15 wxk (-0.10) —0.726* (=2.11) —0.587 (—1.68)
ide61 0 : ' (~4.00) —0.711* (—2.07) - '
! 821 (0.83) 1.078 0.565 (—1.69)
id62 - : (1.78) —1.288 ** (—2.87 _ «
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id63 0136 %+ : (L46) —0.670 (—1.58) -
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id6a 5529 (139) ooy (—33.84) 1.393 *** (10.47) 1.513 *** (10.22)
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Table A4. Cont.
Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
Coefficient z Coefficient z Coefficient z Coefficient z
id147 —2.851 *** (—3.75) —0.0796 (—-0.17) —1.021 ** (—2.90) —0.896 ** (—2.59)
id148 —3.737 *** (—4.05) 1.617 *** (3.83) —0.0483 (—0.14) —0.0520 (—0.16)
id149 —3.202 *** (—3.53) —1.184* (—2.01) —0.554 ** (—2.59) —0.343 (—1.54)
id150 —3.616 ** (—3.24) —0.905 * (—2.24) —1.167 *** (—4.30) —0.905 *** (—3.46)
id151 —0.362 (—0.51) —1.167 * (—=2.07) —1.654 *** (—5.15) —1.677 *** (—4.32)
id152 —32.89 *** (—33.69) —3.751 *** (—6.31) —1.421 ** (—3.68) —1.382 *** (—4.40)
id153 —1.598 * (—2.14) —0.169 (—0.46) —2.936 *** (—5.34) —3.067 *** (=5.01)
id154 —21.84 *** (—20.17) —2.716 *** (—3.85) —1.703 *** (—4.38) —1.483 *** (—4.26)
id155 —4.238 *** (—3.67) —2.441* (—2.46) —0.759 ** (-3.12) —0.814 ** (—2.63)
id156 —43.11 *** (—52.10) —1.456 ** (—=3.27) —0.590 ** (—2.64) —0.429 * (—2.03)
id157 —1.868 * (—2.19) 0.337 (0.62) —0.753 ** (—2.82) —0.502 * (—2.35)
id158 —19.28 *** (—28.14) —18.96 *** (—35.46) 0.678 *** (4.39) 0.744 *** (3.87)
id159 —19.26 *** (—28.40) —19.02 *** (—33.84) 0.827 *** (4.09) 0.715 ** (3.07)
id160 —3.790 *** (—4.60) 0.550 (1.25) 0.148 (0.72) 0.337 (1.90)
id161 —22.11 ** (—30.73) —21.31 ** (—34.53) 0.608 *** (4.58) 0.494 *** (3.29)
id162 —20.15 *** (—18.45) —19.53 *** (—23.73) 0.431 (1.86) 0.176 (0.52)
id163 —22.31 ¥+ (—22.00) —21.43 *** (—29.98) 1.844 *** (9.58) 1.656 *** (8.12)
id164 —2.923 ** (—2.69) —2.557 *** (—3.68) —0.245 (—1.66) —0.301 (—1.85)
id165 —20.82 *** (—28.93) —20.471 *** (—32.12) 1.341 *** (11.50) 1.447 *** (10.42)
id166 —25.44 *** (—20.51) —2.439 = (—4.42) —0.158 (—0.49) —0.0534 (—0.15)
id167 —2.696 * (—2.28) —4.124 **+* (—4.21) 1.119 *** (3.43) 1.089 *** (3.53)
id168 —5.731 *** (—6.49) —1.940 *** (—3.42) 0.0447 (0.23) 0.0115 (0.06)
id169 —26.04 *** (—24.96) —24.71 *** (—35.44) 0.473* (2.06) 0.422 (1.82)
id170 —15.15 *** (—15.82) —15.11 ** (—19.48) —17.48 *** (—24.79) —0.684 (—0.99)
id171 —3.650 *** (—3.49) —1.497 ** (—2.86) —0.344 (—-1.62) —0.313 (—1.47)
id172 —3.659 *** (—3.93) —1.951 *** (—4.53) —0.427 (—1.84) —0.367 (—1.34)
id173 —3.036 ** (—2.98) —3.500 *** (—4.94) —0.874 *** (—3.64) —0.888 *** (—3.41)
id174 1.453 (1.39) 0.361 (0.38) —1.484 *** (—6.68) —1.288 *** (—4.64)
id175 —0.688 (—0.99) 1.615 *** (3.66) 0.114 (0.57) 0.333 (1.64)
id176 —1.666 (—1.82) —-0.313 (—0.81) 0.530 (0.98) —0.0614 (—=0.13)
id177 —2.576 ** (—3.13) —1.675 *** (—3.66) —0.245 (—1.10) 0.187 (0.75)
id178 —0.823 (—0.51) 0.510 (1.04) 0.213 (1.00) 0.0436 (0.18)
id179 —19.54 *** (—27.56) —1.071 (-1.13) —1.386 *** (—4.24) —1.021 (—=1.91)
id180 —4.457 *** (—3.85) —2.934 *** (—3.90) —0.402 * (—2.17) -0.277 (—1.44)
id181 —1.850 * (—2.18) —0.909 * (—=2.21) —0.573 (—1.78) —0.354 (—1.41)
id182 —4.754 ** (—3.03) —2.082 ** (—2.75) 0.387 (1.35) 0.409 (1.60)
log-likelihood —952.2391 —1519.954 —3479.969 —3488.38
AIC 2292.478 3427.908 7347.937 7364.76
BIC 3261.657 4397.086 8317.116 8333.939
Observation 1092 1092 1092 1092

< 0.01, ™ p<0.05,* p<0.1.

Table A5. Driving risk scores for four near-miss events after winsorizing and Min-Max scaling on regression coefficients.

Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
id1 4.824741 4.344986 2.622834 2.52286
id2 1.242371 4.033808 3.753797 3.75
id3 2.476298 1.628204 4.413078 4.113936
id4 2.578824 1.749502 4.312131 4.315106
id5 1.133814 3.574272 1.557084 1.542612
id6 4.646467 4.258833 3.576023 3.377835
id7 4.434299 4.244682 3.208862 3.286394
id8 2.244711 3.976736 2.4531 2.636247
id9 4.685306 4.334427 2.398606 2.423189

id10 4.449618 4.107521 2.314633 2.288771
id11 4.580368 4.164127 2.478113 2.27414
id12 4.662871 4.224932 2.692603 2.612564
id13 4.542011 4.219333 2.499553 2.404901
id14 4.441416 4.413722 2.060925 2.1891
id15 4.673486 4.370957 2.542969 2.547549
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Table A5. Cont.

Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
id16 2.050515 1.186551 2.864928 2.924287
id17 2.12168 4.018102 2.444167 2.612747
id18 2.218175 4.2198 1.618724 1.364301
id19 4.704364 4.404081 3.147222 3.058705
id20 1.835814 3.761974 2.883688 2.607535
id21 2.124092 3.944234 2.910488 2.941661
id22 4.506067 4.309374 3.065928 3.014813
id23 4.729211 4.345159 2.199393 2.148866
id24 1.923866 1.063697 2.328926 2.428676
id25 2.207319 1.317181 1.834912 1.854426
id26 4.494367 4.189475 2.229766 1.912948
id27 1.957639 1.080804 2.581383 2.582846
id28 2.621041 1.695073 2.661426 2.805413
id29 4.687598 4.20938 3.150795 3.094367
id30 2.274866 1.419818 2.42362 2.42959
id31 4.77565 4.246703 1.597284 1.655084
id32 4.432128 3.890427 2.524567 2.653621
id33 2.476298 1.503794 2.464713 2.382955
id34 4.531518 4.10441 2.617715 2482718
id35 4.362531 4.183099 2.080579 2.018105
id36 4.325984 3.970049 2.368233 2.209217
id37 0.021711 4.153396 2.194033 2.323519
id38 2.317082 4.132869 1.297123 1.497805
id39 0.024124 5 5 5
id40 4.664922 4.280294 2.374486 2.59519
id41 4.53007 4.186365 2.783634 2.664594
id42 4.768412 4.413722 3.165088 2.886796
id43 4.563723 4.379043 2.590763 2.605157
id44 4.527417 4.320727 2.922994 2.950805
id45 4.570236 4.140489 2.716634 2.780724
id46 4.840663 4.270341 2.344113 2.307974
id47 4.468072 4.193363 1.860818 1.923007
id48 4.883362 4.559747 3.363409 3.242502
id49 1.672979 4.100056 2.115419 2.200073
id50 4.51644 4.048426 2.253886 2.22019
id51 2.268835 1.384051 3.62605 3.565289
id52 2.192845 1.124347 2.306593 1.652341
id53 2.260391 1.348283 2.50402 2.705743
id54 4.236002 4.176723 2.010005 1.938552
id55 4.307288 4.075796 3.044488 2.95812
id56 4.527778 4.331519 2.729141 2.867593
id57 2.18802 4.236128 2.721101 3.180322
id58 4.59834 4.237372 2.315526 2.583211
id59 0 4.333961 1.974272 1.986101
id60 4.448773 3.752022 1.987672 2.006218
id61 4.923769 4.512628 1.472217 1.538954
id62 4.768654 4.429895 2.024299 2.090344
id63 2.165103 1.309405 3.86725 3.906364
ide4 4.519697 4.079528 3.814544 3.747257
id65 2.171134 1.334287 0.904949 1.345099
id66 4.657202 4.110164 3.073075 3.410753

id67 1.641618 3.816248 2.291406 2.244879
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Table A5. Cont.

Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
id68 2.459412 1.607987 1.474004 1.004938
id69 1.78636 1.116571 2.096659 1.951353
id70 2.194051 3.770683 1.292657 1.150329
id71 0.937206 0 3.147222 3.631127
id72 4.157238 4.180455 2.161872 1.934894
id73 4.303307 3.899757 1.25871 1.130212
id74 0.979422 0 2.889941 3.222385
id75 4.478807 4.084194 2.384313 2.439557
id76 2.198876 0.898855 1.152403 0.782736
id77 2.366536 1.433814 3.368769 3.189466
id78 1.845464 3.838019 0.07236 0
id79 4.408728 4.24888 2.41558 2.422275
id8o 2.130123 1.197437 2.609523 2.569404
id81 0.595856 4.168947 2.318206 2.215618
id82 4.656961 4.260855 2.344113 2.224762
id83 4.641884 4.369402 2.512953 2.301573
id84 1.823752 4.054802 1.952832 1.741039
id85 2.061371 3.747356 1.345364 1.317666
id86 1.21101 4.028365 1.486511 1.50695
id87 4.601476 4.505785 2.797927 2.911485
id88 2.341206 1.475802 2.43702 2.371982
id89 1.641618 0.869308 3.605503 3.560717
id90 4.341302 4.214201 1.754511 1.624909
id91 2.40634 1.387161 3.226729 3.270849
id92 1.571659 0.774446 3.380382 3.129115
id93 1.873206 1.03415 2.363766 2.248537
id9%4 4.501001 4.184188 2.48258 2.535571
id95 1.736907 0.925292 2.173486 1.910205
id96 1.999855 1.163225 3.850277 3.750914
id97 2.23868 1.320291 2.208326 2.264996
id98 2.526958 1.600211 1.367697 1.711778
id99 2.583649 1.687298 1.038056 1.271031
id100 4.315007 1.200547 3.339289 3.276335
id101 2.014329 1.197437 3.475969 3.267191
id102 1.72967 0.847537 2.650348 2.495977
id103 2.619835 1.71218 3.107022 3.076993
id104 2.34 1.460251 2.739861 2.762436
id105 4.411502 4.278116 2.208326 1.67703
id106 1.711577 0.852202 2.906021 2.753292
id107 2.215762 1.324956 2.635698 2.657279
id108 1.917835 3.933348 2.147579 1.942209
id109 2.236268 1.290744 2.312846 1.807791
id110 2.288134 1.175666 1.013936 1.568215
id111 4.414035 4.146398 2.777381 2.703914
id112 2.390659 1.522456 1.324817 1.762985
id113 1.147082 3.878919 1.101483 1.337783
id114 1.90336 1.068363 3.191889 3.013899
id115 2.062577 1.197437 2.606843 2.423189
id116 2.119268 3.761352 1.417724 1.485004
id117 2.253154 1.382496 2.483473 2.273226

id118 2.469061 4.235351 2.726461 2.525942
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Table A5. Cont.

Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
id119 2.30502 1.421373 2.4933 2.392099
id120 1.435361 0.55051 2.607647 2.644477
id121 1.255639 4.23815 2.836341 2.876737
id122 2.133742 3.953875 3.179382 3.119971
id123 1.987793 3.739736 3.246382 3.333029
id124 4.309941 3.938791 3.246382 2.852963
id125 4.363014 1.066808 2.887261 3.088881
id126 4.58073 4.005505 3.137395 3.015728
id127 2.083082 1.265862 3.657316 3.446416
id128 2.225412 1.262752 3.303555 3.087966
id129 4.638989 4.465819 2.647847 2.673738
id130 1.741732 0.892635 1.21315 1.027798
id131 4.624635 4.282315 1.747365 1.796818
id132 2.42202 1.567554 1.851885 2.125091
id133 1.568041 3.893381 2.067179 1.891002
id134 0.916701 3.937858 3.058781 3.598208
id135 1.906979 1.087024 3.453636 3.757315
id136 5 5 5 5
id137 1.893711 3.954964 2.66214 3.258047
id138 2.485948 1.635979 1.884045 1.709034
id139 4.329602 4.160394 1.799178 1.903804
id140 4.466504 4.249347 1.482937 1.576445
id141 1.759824 0.892635 1.666071 1.517008
id142 0.219526 4.209225 2.6675 2.682882
id143 0.171278 4.283248 2.294086 2.379298
id144 4.754179 4.430673 2.64615 2.675567
id145 4.525004 4.14702 1.952832 1.945867
id146 1.947989 4.150597 1.613364 1.829737
id147 4.480858 4.332608 1.710738 1.703548
id148 4.37399 4.596448 2.579686 2475311
id149 4.438521 4.160861 2.127926 2.209217
id150 4.388585 4.204249 1.580311 1.695318
id151 4.781077 4.163505 1.145256 0.989393
id152 0.724917 3.761663 1.353404 1.259144
id153 4.631993 4.318705 0 0
id154 2.120474 3.922618 1.101483 1.166789
id155 4.31356 3.965383 1.944792 1.77853
id156 0 4.118562 2.095766 2.130578
id157 4.599426 4.397394 1.950152 2.063826
id158 2.434082 1.548893 3.228515 3.203182
id159 2.434082 1.480468 3.361622 3.176664
id160 4.367597 4.430518 2.755047 2.831017
id1e1 2.072226 1.250311 3.165982 2.974579
id162 2.325525 1.450921 3.007861 2.683797
id163 2.043278 1.16478 4.270145 4.037125
id164 4.472173 3.947344 2.403966 2.247623
id165 2.233855 1.31096 3.820797 3.846013
id166 1.624732 3.965694 2.481687 2.474031
id167 4.499554 3.703658 3.622476 3.518654
id168 4.133476 4.043294 2.662766 2.533376
id169 1.57769 0.707577 3.045381 2.908742
id170 2.962391 2.184934 0 1.897403
id171 4.384484 4.112186 2.315526 2.23665

id172 4.383398 4.041584 2.241379 2.187271
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Table A5. Cont.

Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration
id173 4.458543 3.800697 1.842058 1.710863
id174 5 4.401126 1.297123 1.345099
id175 4.741756 4.596137 2.724674 2.827359
id176 4.623791 4.296311 3.096302 2.466715
id177 4.514028 4.084505 2.403966 2.693855
id178 4.725472 4.424297 2.813114 2.562729
id179 2.40634 4.178434 1.38467 1.589247
id180 4.287144 3.888716 2.263713 2.269568
id181 4.601597 4.203627 2.110952 2.199159
id182 4.2512 4.021212 2.968555 2.896854
References
1.  Guillen, M.; Nielsen, J.P.; Pérez-Marin, A.M. Near-miss telematics in motor insurance. J. Risk Insur. 2021, 1-21. [CrossRef]
2. Guillen, M,; Nielsen, J.P.,; Pérez-Marin, A.M.; Elpidorou, V. Can automobile insurance telematics predict the risk of near-miss
events? N. Am. Actuar. J. 2020, 24, 141-152. [CrossRef]
3. Litman, T. Distance-Based Vehicle Insurance Feasibility, Costs and Benefits; Comprehensive Technical Report; Victoria Transport
Policy Institute: Victoria, BC, Canada, 2011.
4. Tselentis, D.I; Yannis, G.; Vlahogianni, EI. Innovative insurance schemes: Pay as/how you drive. Transp. Res. Procedia
2016, 14, 362-371. [CrossRef]
5. Paefgen, ]J; Staake, T; Thiesse, F. Evaluation and aggregation of pay-as-you-drive insurance rate factors: A classification analysis
approach. Decis. Support Syst. 2013, 56, 192-201. [CrossRef]
6.  Tselentis, D.I; Yannis, G.; Vlahogianni, E.I. Innovative motor insurance schemes: A review of current practices and emerging
challenges. Accid. Anal. Prev. 2017, 98, 139-148. [CrossRef]
7. Troncoso, C.; Danezis, G.; Kosta, E.; Balasch, J.; Preneel, B. Pripayd: Privacy-friendly pay-as-you-drive insurance. IEEE Trans.
Dependable Secur. Comput. 2010, 8, 742-755. [CrossRef]
8.  Pesantez-Narvaez, J.; Guillen, M.; Alcafiiz, M. Predicting Motor Insurance Claims Using Telematics Data—XGBoost versus
Logistic Regression. Risks 2019, 7, 70. [CrossRef]
9.  Guillen, M.; Nielsen, J.P.; Ayuso, M.; Pérez-Marin, A.M. The use of telematics devices to improve automobile insurance rates.
Risk Anal. 2019, 39, 662-672. [CrossRef]
10. Sun, S.; Bi, J.; Guillen, M.; Pérez-Marin, A.M. Assessing driving risk using internet of vehicles data: An analysis based on
generalized linear models. Sensors 2020, 20, 2712. [CrossRef]
11. De Diego, LM.; Siordia, O.S.; Crespo, R.; Conde, C.; Cabello, E. Analysis of hands activity for automatic driving risk detection.
Transp. Res. Part C Emerg. Technol. 2013, 26, 380-395. [CrossRef]
12. Siordia, O.S.; de Diego, LM.; Conde, C.; Cabello, E. Subjective traffic safety experts” knowledge for driving-risk definition.
IEEE Trans. Intell. Transp. Syst. 2014, 15, 1823-1834. [CrossRef]
13. Charlton, S.G.; Starkey, N.J.; Perrone, J.A.; Isler, R.B. What'’s the risk? A comparison of actual and perceived driving risk.
Transp. Res. Part F Traffic Psychol. Behav. 2014, 25, 50-64. [CrossRef]
14. Peng, J.; Shao, Y. Intelligent method for identifying driving risk based on V2V multisource big data. Complexity 2018, 2018.
[CrossRef]
15. Wang, J.; Zheng, Y.; Li, X,; Yu, C.; Kodaka, K.; Li, K. Driving risk assessment using near-crash database through data mining of
tree-based model. Accid. Anal. Prev. 2015, 84, 54—64. [CrossRef]
16. Yan, L. Zhang, Y;; He, Y.; Gao, S.; Zhu, D.; Ran, B.; Wu, Q. Hazardous traffic event detection using Markov Blanket and sequential
minimal optimization (MB-SMO). Sensors 2016, 16, 1084. [CrossRef]
17. Liao, Y.; Wang, M.; Duan, L.; Chen, F. Cross-regional driver—vehicle interaction design: An interview study on driving risk
perceptions, decisions, and ADAS function preferences. IET Intell. Transp. Syst. 2018, 12, 801-808. [CrossRef]
18. Jiang, K, Yang, D.; Xie, S.; Xiao, Z.; Victorino, A.C.; Charara, A. Real-time estimation and prediction of tire forces using digital
map for driving risk assessment. Transp. Res. Part C Emerg. Technol. 2019, 107, 463-489. [CrossRef]
19. Yan, Y, Dai, Y.; Li, X,; Tang, J.; Guo, Z. Driving risk assessment using driving behavior data under continuous tunnel environment.
Traffic Inj. Prev. 2019, 20, 807-812. [CrossRef]
20. Lu,]J; Xie, X,; Zhang, R. Focusing on appraisals: How and why anger and fear influence driving risk perception. J. Saf. Res.
2013, 45, 65-73. [CrossRef]
21. Wang, J.; Huang, H.; Li, Y.; Zhou, H,; Liu, J.; Xu, Q. Driving risk assessment based on naturalistic driving study and driver
attitude questionnaire analysis. Accid. Anal. Prev. 2020, 145, 105680. [CrossRef]
22. Handel, P; Skog, I.; Wahlstrom, J.; Bonawiede, E; Welch, R.; Ohlsson, J.; Ohlsson, M. Insurance telematics: Opportunities and

challenges with the smartphone solution. IEEE Intell. Transp. Syst. Mag. 2014, 6, 57-70. [CrossRef]


http://doi.org/10.1111/jori.12340
http://dx.doi.org/10.1080/10920277.2019.1627221
http://dx.doi.org/10.1016/j.trpro.2016.05.088
http://dx.doi.org/10.1016/j.dss.2013.06.001
http://dx.doi.org/10.1016/j.aap.2016.10.006
http://dx.doi.org/10.1109/TDSC.2010.71
http://dx.doi.org/10.3390/risks7020070
http://dx.doi.org/10.1111/risa.13172
http://dx.doi.org/10.3390/s20092712
http://dx.doi.org/10.1016/j.trc.2012.10.006
http://dx.doi.org/10.1109/TITS.2014.2330576
http://dx.doi.org/10.1016/j.trf.2014.05.003
http://dx.doi.org/10.1155/2018/1801273
http://dx.doi.org/10.1016/j.aap.2015.07.007
http://dx.doi.org/10.3390/s16071084
http://dx.doi.org/10.1049/iet-its.2017.0241
http://dx.doi.org/10.1016/j.trc.2019.08.016
http://dx.doi.org/10.1080/15389588.2019.1675154
http://dx.doi.org/10.1016/j.jsr.2013.01.009
http://dx.doi.org/10.1016/j.aap.2020.105680
http://dx.doi.org/10.1109/MITS.2014.2343262

Entropy 2021, 23, 829 22 of 22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Joubert, ].W.; De Beer, D.; De Koker, N. Combining accelerometer data and contextual variables to evaluate the risk of driver
behaviour. Transp. Res. Part F Traffic Psychol. Behav. 2016, 41, 80-96. [CrossRef]

Verbelen, R.; Antonio, K.; Claeskens, G. Unravelling the predictive power of telematics data in car insurance pricing. J. R. Stat.
Soc. Ser. C Appl. Stat. 2018, 67, 1275-1304. [CrossRef]

Ma, Y.L.; Zhu, X.; Hu, X.; Chiu, Y.C. The use of context-sensitive insurance telematics data in auto insurance rate making.
Transp. Res. Part A Policy Pract. 2018, 113, 243-258. [CrossRef]

Jiang, Y,; Zhang, J.; Wang, Y.; Wang, W. Drivers’ behavioral responses to driving risk diagnosis and real-time warning information
provision on expressways: A smartphone app-based driving experiment. J. Transp. Saf. Secur. 2020, 12, 329-357. [CrossRef]

Jin, W,; Deng, Y.; Jiang, H.; Xie, Q.; Shen, W.; Han, W. Latent class analysis of accident risks in usage-based insurance: Evidence
from Beijing. Accid. Anal. Prev. 2018, 115, 79-88. [CrossRef]

Carfora, M.E; Martinelli, F.; Mercaldo, F; Nardone, V.; Orlando, A.; Santone, A.; Vaglini, G. A “pay-how-you-drive” car insurance
approach through cluster analysis. Soft Comput. 2019, 23, 2863-2875. [CrossRef]

Burton, A.; Parikh, T.; Mascarenhas, S.; Zhang, J.; Voris, J.; Artan, N.S.; Li, W. Driver identification and authentication with active
behavior modeling. In Proceedings of the 2016 12th International Conference on Network and Service Management (CNSM),
Montreal, QC, Canada, 31 October—4 November 2016; pp. 388-393.

Baecke, P,; Bocca, L. The value of vehicle telematics data in insurance risk selection processes. Decis. Support Syst. 2017, 98, 69-79.
[CrossRef]

Guelman, L. Gradient boosting trees for auto insurance loss cost modeling and prediction. Expert Syst. Appl. 2012, 39, 3659-3667.
[CrossRef]

Bian, Y; Yang, C.; Zhao, ].L.; Liang, L. Good drivers pay less: A study of usage-based vehicle insurance models. Transp. Res. Part
A Policy Pract. 2018, 107, 20-34. [CrossRef]

Jafarnejad, S.; Castignani, G.; Engel, T. Towards a real-time driver identification mechanism based on driving sensing data. In
Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan,
16-19 October 2017; pp. 1-7.

Paefgen, J.; Staake, T.; Fleisch, E. Multivariate exposure modeling of accident risk: Insights from Pay-as-you-drive insurance data.
Transp. Res. Part A Policy Pract. 2014, 61, 27-40. [CrossRef]

Boucher, ].P,; Pérez-Marin, A.M.; Santolino, M. Pay-as-you-drive insurance: The effect of the kilometers on the risk of accident. In
Anales del Instituto de Actuarios Esparioles; Instituto de Actuarios Espafioles: Madrid, Spain, 2013; Volume 19, pp. 135-154.

Sun, S.; Bi, J.; Ding, C. Cleaning and Processing on the Electric Vehicle Telematics Data. In Proceedings of the INFORMS
International Conference on Service Science, Nanjing, China, 27-29 June 2019; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 1-6.

Gao, G.; Wiithrich, M.V,; Yang, H. Evaluation of driving risk at different speeds. Insur. Math. Econ. 2019, 88, 108-119. [CrossRef]
Gao, G.; Wang, H.; Wiithrich, M.V. Boosting Poisson regression models with telematics car driving data. Mach. Learn. 2021, 1-30.
[CrossRef]

So, B.; Boucher, ].P.; Valdez, E.A. Synthetic Dataset Generation of Driver Telematics. Risks 2021, 9, 58. [CrossRef]


http://dx.doi.org/10.1016/j.trf.2016.06.006
http://dx.doi.org/10.1111/rssc.12283
http://dx.doi.org/10.1016/j.tra.2018.04.013
http://dx.doi.org/10.1080/19439962.2018.1483988
http://dx.doi.org/10.1016/j.aap.2018.02.023
http://dx.doi.org/10.1007/s00500-018-3274-y
http://dx.doi.org/10.1016/j.dss.2017.04.009
http://dx.doi.org/10.1016/j.eswa.2011.09.058
http://dx.doi.org/10.1016/j.tra.2017.10.018
http://dx.doi.org/10.1016/j.tra.2013.11.010
http://dx.doi.org/10.1016/j.insmatheco.2019.06.004
http://dx.doi.org/10.2139/ssrn.3596034
http://dx.doi.org/10.3390/risks9040058

	Introduction
	Literature Review
	Data Description
	Methods
	Results
	Results of the Summary Data Set
	Results of the Panel Data Set

	Discussion
	Conclusions
	
	References

