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B chromosomes represent additional chromosomes found in many eukaryotic organisms.
Their origin is not completely understood but recent genomic studies suggest that they
mostly arise through rearrangements and duplications from standard chromosomes. They
can occur in single or multiple copies in a cell and are usually present only in a subset of
individuals in the population. Because B chromosomes frequently show unstable
inheritance, their maintenance in a population is often associated with meiotic drive or
other mechanisms that increase the probability of their transmission to the next generation.
For all these reasons, B chromosomes have been commonly considered to be
nonessential, selfish, parasitic elements. Although it was originally believed that B
chromosomes had little or no effect on an organism’s biology and fitness, a growing
number of studies have shown that B chromosomes can play a significant role in
processes such as sex determination, pathogenicity and resistance to pathogens. In
some cases, B chromosomes became an essential part of the genome, turning into new
sex chromosomes or germline-restricted chromosomes with important roles in the
organism’s fertility. Here, we review such cases of “cellular domestication” of B
chromosomes and show that B chromosomes can be important genomic players with
significant evolutionary impact.
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INTRODUCTION

B chromosomes are supernumerary dispensable chromosomes that occur only in some
individuals or populations within a species, or only in a subset of cells or tissues within an
individual (Beukeboom, 1994; Camacho, 2005; Houben et at., 2014; Ruban et al., 2020). Their
presence in a species can thus be viewed as a type of genetic polymorphism. Unlike standard
chromosomes, they often show irregular non-Mendelian inheritance (Jones, 1995). B
chromosomes were observed for the first time by Wilson (1907) in true bugs (Hemiptera)
from the genusMetapodius. Soon after, similar observations were published for cucumber beetles
(Coleoptera) from the genus Diabrotica (Stevens, 1908). In plants, such structures were first
observed in rye (Secale cereale) and named “k-chromosomes” by Gotoh (1924), and later
described in maize (Zea mays) by Kuwada (1925) and Longley (1927) who labelled them as
“supernumerary chromosomes.” The term “B chromosomes” was introduced by Randolph (1928)
and has been used by the scientific community ever since. In synchrony, all the other
chromosomes in the genome are referred to as “A chromosomes”.
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Based on the number of species studied so far it has been
estimated that approximately 15% of eukaryotic species have B
chromosomes (Beukeboom, 1994; D’Ambrosio et al., 2017) with
new findings of B chromosomes being regularly described
(reviewed in Jones, 2017). A database collecting information
about B chromosomes has been available since 2017
(D’Ambrosio et al., 2017). Out of the 2,828 eukaryotic species
with B chromosomes reported there, 73.56% are plants, 25.95%
animals and 0.49% fungi (D’Ambrosio et al., 2017). However, it is
important to note that some groups of organisms have been
cytogenetically studied less extensively than others and thus the
representation of B chromosomes among specific taxonomic
groups is currently difficult to compare (D’Ambrosio et al., 2017).

B chromosomes can occur in single or multiple copies per cell
but usually their copy number is rather low. There is normally
either one or a few copies of B chromosomes functioning usually
as univalents (Camacho, 2005). However, in some species,
extreme numbers of B chromosomes can be observed in a
single cell, such as in some plant species of the genus
Pachyphylum (Crassulaceae), which have up to 50 B
chromosome copies (Uhl and Moran, 1973). Other organisms
with high numbers of B chromosomes are maize (Z. mays) with
up to 34 copies (Jones and Rees, 1982), the wood mouse
(Apodemus peninsulae) with up to 24 copies (Volobuev and
Timina, 1980) and the Xylota nemorum fly with up to 24 B
chromosomes copies (Boyes and van Brink, 1967). In some cases,
extensive variability in the number of B chromosomes can be
observed among individuals or populations within a species
(Camacho et al., 2000). It has been reported that these high
numbers of B chromosomes could have negative effects on their
hosts, particularly on their fertility and viability (Houben, 2017),
especially if the B chromosomes occur in odd numbers (Camacho
et al., 2004).

B chromosomes show high variability in their size across
species. They can be similar in size to A chromosomes (Jones,
2018) but also, in some species, B chromosomes are considerably
smaller than the smallest A chromosomes e.g., in the harvest
mouse Reithrodonomys megalotis (Peppers et al., 1997) or the fly
Megaselia scalaris (Wolf et al., 1991). On the other hand, B
chromosomes bigger than the biggest A chromosomes have been
reported in cyprinid fish Alburnus alburnus (Ziegler et al., 2003),
the giant white-tailed rats Uromys caudimaculatus (Baverstock
et al., 1982) and the characid fish Aslyanax scabripinnis
(Mestriner et al., 2000). Variation in size can also be observed
within a species e.g. in the grasshopper Eyprepocnemis plorans
(López-León et al., 1993).

B chromosomes were for a long time considered to have no
important function for the carrier individual and spreadmostly as
genome parasites (e.g., Ӧstergren, 1945; Van Valen, 1977).
Currently, however, the view of B chromosomes is changing
with many active B chromosome genes with important functions
for their hosts being discovered (reviewed in Houben et al., 2014;
Ruban et al., 2017, Dala Benetta et al., 2020). Based on these
findings, it has been proposed that the effects of B chromosomes
on their host may shift back and forth from parasitic or neutral to
beneficial (Camacho et al., 2000). In some species, it has been
even hypothesised that B chromosomes may became an essential,

stable part of the genome turning, for example, into new sex
chromosomes or chromosomes restricted to germline that
became essential for viability and fertility of their carriers
(Carvalho, 2002; Nokkala et al., 2003; Dalíková et al., 2017;
Torgasheva et al., 2019; Imarazene et al., 2021; Lewis et al.,
2021). In this review we describe mechanisms of B
chromosome origin, strategies of their inheritance and give
examples of the “cellular domestication” of B chromosomes,
where these chromosomes provide some important functions
for their hosts. We reviewed possible pathways of B chromosome
evolutionary dynamics with outcomes ranging from the classical
view of B chromosomes as nonessential genetic elements
spreading in the population as genomic parasites to important
genomic players providing benefits to their hosts.

Origin of B Chromosomes
The question of where B chromosomes come from has been
puzzling researchers since their discovery. Currently, the most
likely explanation is that B chromosomes originate from A
chromosomes as by-products of chromosomal rearrangements or
unbalanced segregation, when a chromosome fragment or an extra
copy of an A chromosomemay develop into a proto-B chromosome
(Peters, 1981; Jones and Rees, 1982; Talavera et al., 1990; Camacho
et al., 2000; Mestriner et al., 2000; Dhar et al., 2002; Bauerly et al.,
2014). Once a proto-B chromosome exists it may acquire additional
genetic material through duplications from other A chromosomes
(Martis et al., 2012; Marques et al., 2018; Ahmad et al., 2020; Blavet
et al., 2021). Throughout the evolution of B chromosomes, various
mobile elements and unique coding and noncoding sequences can
be incorporated, sometimes amplifying and sometimes degenerating
due to the very small selection pressure on the B chromosome
(reviewed in Houben et al., 2014; Marques et al., 2018). Next-
generation sequencing of B chromosomes in various species
confirmed that these chromosomes are largely composed of A
chromosome paralogous sequences, although in some plant
species organellar DNA has also been shown to contribute to the
B chromosomes (Valente et al., 2014; Ruban et al., 2017; Marques
et al., 2018; Ruiz Ruano et al., 2018). For example, in rye (S. cereale),
one of the best-studied plant models for B chromosome research, B
chromosomes seem to harbor A chromosome derived sequences,
mostly coming from 3R to 7R autosomes, with a significant
contribution of organellar DNA (Martis et al., 2012). Similarly, in
the goat grass Aegilops speltoides, B chromosomes share sequences
not only with A chromosomes but also with the DNAof plastids and
mitochondria, suggesting that organelle-to-nucleus DNA transfer
affects B chromosome evolution (Ruban et al., 2014; Ruban et al.,
2020). The level of homology between B chromosomal and A
chromosomal paralogous sequences can be used to estimate the
age of B chromosomes. In maize (Z. mays), such comparison
revealed the very ancient origin of the B chromosomes (Blavet
et al., 2021).

In several species, B chromosomes appear to have originated
from sex chromosomes. This seems to have happened for
example in the flies from the genus Glossina, the New Zealand
endemic frog Leiopelma hochstetteri (reviewed in Camacho,
2005) and the grasshopper E. plorans, where the B
chromosome is derived from a paracentromeric region of the
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X chromosome (López León et al., 1994). The involvement of sex
chromosomes in the origin of B chromosomes has been also
demonstrated in the rodent group Oryzomyini (Ventura et al.,
2015).

Although it seems to be rare, B chromosomes may also
originate through interspecific hybridization. This has been
described for jewel wasps Nasonia vitripennis. This species-
specific B chromosome known as Paternal Sex Ratio (PSR)
contains transposon-like sequences that appear to be absent
from the N. vitripennis genome, but match sequences present
in another two species of wasp from the genus Trichomalopis
(McAllister, 1995; McAllister and Werren, 1997). This
observation suggests that this B chromosome has been derived
from a chromosome of another species that moved into the N.
vitripennis genome by hybridization (McAllister, 1995; McVean,
1995; McAllister and Werren, 1997; Perfectti and Werren, 2001).

B chromosomes may also have their origin in incompletely
expelled A chromosome from the sperm in pseudogamous
parthenogens as documented in flatworms Polycelis nigra. In
this species, sexual individuals are always diploid while
pseudogamous parthenogens are usually triploid. In
parthenogenetic individuals a sperm is required only to initiate
the egg development and the paternal chromosomes never enter
the oocyte nucleus. In purely parthenogenetic populations of this
species, B chromosomes of three distinct subtypes were found in
almost all individuals. These B chromosomes come from paternal
A chromosomes which escaped the exclusion of the sperm
genome and have been incorporated into the nucleus
(Beukeboom et al., 1996; Sharbel at al., 1997).

B Chromosomes as Genomic Parasites
Traditionally, B chromosomes have been viewed as genomic
parasites that do not provide any advantage to their host and
sometimes can even be detrimental if they are present in high
copy numbers (Camacho et al., 2004). Because their meiotic as
well mitotic inheritance may be unstable especially if they occur
in an odd copy number, B chromosomes evolved diverse ways to
promote their own transmission, preventing their loss from the
population. These include meiotic drive, mitotic drive associated
with gonotaxis and preferential fertilization of the ovum by B
chromosome carrying spermatozoa.

Meiotic drive (Figure 1A,B) promoting the transmission of B
chromosomes can occur during female as well as male meiosis.
Female meiotic drive (Figure 1A) is, however, more common
(Jones, 2018). It stems from the asymmetry of female meiosis,
where one ovum and three polar bodies (which do not
participate in inheritance) are produced from a single diploid
oogonia. Many B chromosomes have been shown to have a
mechanism helping them to end up in the ovum rather than in a
polar body (reviewed in Jones, 2018). Female meiotic drive is
often associated with specific centromeric sequences, as
centromeres bind to the meiotic spindle during chromosome
segregation (Padro-Manuel De Villena and Sapienza, 2001).
However, sometimes the total number of centromeres in each
side of the meiotic spindle, rather than specific centromeric
sequences, determine which chromosomes will end up in the egg
and which in polar bodies (Padro-Manuel De Villena and

Sapienza, 2001). If a higher number of centromeres
preferentially segregate to the egg, the presence of an
additional B chromosome bringing one extra centromere,
may cause B chromosomes to preferentially segregate to the
gamete. Generally, such a type of meiotic drive based on the
total number of centromeres may also lead to a chromosome
fission and the origin of acrocentric chromosomes from
metacentric chromosomes (Padro-Manuel De Villena and
Sapienza, 2001. Interestingly, it has been observed in
mammals and insects that B chromosomes occur more often
in species with acrocentric rather than metacentric
chromosomes (Bidau and Martí, 2004; Palestis et al., 2004;
Palestis et al., 2010), suggesting that female meiotic drive
based on total number of centromeres may help to spread B
chromosomes in a population. However, we cannot rule out the
possibility that acrocentric chromosomes simply generate B
chromosomes more frequently than metacentric chromosomes.

B chromosomes can also increase their transmission by male
meiotic drive (Figure 1B), where haploid cells without B
chromosomes do not survive, although it seems to be much
rarer than female meiotic drive (Jones and Rees, 1982). A specific
case of male meiotic drive was described in the mealybug
Pseudococcus affinis. In this species, paternally inherited
chromosomes become heterochromatic during early embryonic
development. During male meiosis, paternal and maternal
chromosomes segregate to different poles and only meiotic
products with euchromatic maternal chromosomes form
functional sperm. The B chromosome, although paternally
inherited, segregates with the maternal chromosomes and ends
up in the functional sperm (Nur, 1962).

Mitotic drive leading to the preferential segregation of B
chromosomes to the germline (gonotaxis) (Figure 1C,D) may
also increase the chance of B chromosome transmission to the
next generation. At the same time, it can lead to the multiplication
of B chromosome copies in the cell. Mitotic drive occurs through
the nondisjunction of B chromosomes during mitosis (Jones,
1991). It can happen before meiosis during the germline cell
division and in plants also after meiosis during the gametophytic
phase. Premeiotic mitotic drive (Figure 1C) was described for the
first time in the grasshoppers Calliptamus palaestinensis and
Cammula pelucida (Nur, 1963; Nur, 1969) and leads to an
amplification of B chromosomes in spermatocytes. Similar
phenomenon was later observed in other animals and plants
(Rutishauser and Rӧthlisberger, 1966; Kayano, 1971; Viseras
et al., 1990; Pardo et al., 1995; Jones, 2018). The postmeiotic
mitotic drive (Figure 1D) is known from plants which have,
compared to animals, a haploid gametophyte phase (reviewed by
Houben, 2017). This type of drive was first observed by Hasegawa
(1934) in rye, where the B chromosome moved with its two
nondisjunct chromatids towards the generative nucleus in the
first pollen grain mitosis. The nondisjunction in rye is controlled
by the region on the long arm of the B chromosome where various
tandem repeats have been identified (reviewed in Houben et al.,
2014; Marques et al., 2018).

In some plants, the overtransmission of B chromosomes can
be caused by preferential fertilization of the ovum by the
B-carrying spermatozoid (Jones, 2018). This has been observed
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for example in maize, where mitotic drive at the second pollen
mitosis caused by nondisjunction of B chromosome chromatids
results in two unequal sperms. The egg is then preferentially
fertilized by the sperm bearing the B chromosome during double
fertilization (Blavet et al., 2021).

Although different mechanisms of unequal transmission
already play very powerful roles in B chromosome inheritance,
some B chromosomes found a way to enhance the drive effect.

For example, some cichlid fish from Lake Victoria and Malawi
carry a female-specific B chromosome (Yoshida et al., 2011; Clark
and Kocher, 2019), which exhibits meiotic drive ending up in
more than half of oocytes. Interestingly, offspring of
B-transmitting females show a strong female biased sex ratio
and genotyping of these offspring revealed that the B
chromosome carries a female sex determining gene that is
epistatically dominant to an XY system. Therefore, the

FIGURE 1 | Depiction of transmission mechanisms of B chromosomes. (A) and (B) represent meiotic drive. (A)–female meiotic drive where the B chromosome
segregates preferentially into the egg, (B)–malemeiotic drive where sperms without B do not survive. (C) and (D) represent mitotic drive associated with gonotaxis where
B chromosomes preferentially segregate into the germline (C)–premeiotic mitotic drive during early embryo development when the germline is being determined,
(D)–postmeiotic mitotic drive in plants during gametophytic phase. Blue represents B chromosomes and grey represents A chromosomes.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7275704

Johnson Pokorná and Reifová Evolutionary Significance of B Chromosomes

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


outcome is that an XY fish with a B chromosome becomes a
female and an XY fish without a B chromosome becomes a male.
It has been suggested that the new sex determining function of the
B chromosome evolved to enhance the female meiotic drive of the
B chromosome without providing any beneficial effect to the host
(Clark and Kocher, 2019).

Another example of the B chromosome, which canmanipulate
the sex of its carrier to enhance its own transmission, is PSR
known from the jewel wasp N. vitripennis and other haplodiploid
arthropods (Werren et al., 1987; Werren, 1991; Werren and
Beukeboom, 1993; Werren and Stouthamer, 2003). PSR is
transmitted strictly paternally and causes the complete
elimination of the paternal chromosomes (except for the PSR
itself) after fertilization (Reed and Werren, 1995; Dalla Benetta
et al., 2020). As a result, all diploid fertilized eggs which would
normally develop into females are turned into males causing an
extremely male biased sex ratio (Werren and Beukeboom, 1993;
Werren and Stouthamer, 2003).

B chromosomes might also be involved in the genetic control
of apomixis (e.g., asexual reproduction via seeds). This has been
described in Boechera stricta and B. holboellii (Brassicaceae). In
these species, there is an additional Het chromosome which in
some cases went through fission resulting in a largely
heterochromatic Het’ chromosome in all apomictic individuals
and a smaller Del chromosome in aneuploid apomictic
individuals. Because these chromosomes are present exclusively in
apomictic plants, it has been suggested that they could play a role in
the genetic control of apomixis (Sharbel et al., 2004; Kantama et al.,
2007; Mandáková et al., 2015). As asexual reproduction can ensure
maintaining the stable combination of chromosomes, B
chromosomes involved in the transition to asexuality could
theoretically gain advantage in their own transmission. However,
Mandáková et al. (2021) argued that these chromosomes may be
more a consequence of apomixis rather than its cause.

New genomic approaches enabling the sequencing of B
chromosomes allow the identification of specific genes and
regions on the B chromosome causing the drive (Dalla Benetta
et al., 2020). A nice example of a gene involved in its own drive is
the haploidizer located on PSR in N. vitripennis which is
responsible for the elimination of paternal chromosomes
except for PSR (Dalla Benetta et al., 2020). Banaei-
Moghaddam et al. (2012) and Banaei-Moghaddam et al.
(2013) identified the B-specific centromeric sequence
responsible for the extended cohesion of the B chromatids
during the first pollen mitosis and their preferential
segregation to the generative nucleus in rye. Using whole B
chromosome assembly, Blavet et al. (2021) determined regions
on the maize B chromosome including B chromosome-specific
repeat concentrated around the centromere and trans-acting
factors on the long arm involved in B chromosome
nondisjunction at the second pollen mitosis. Interestingly,
centromeric region also played a role in a preferential
fertilization of the egg by sperm carrying B-specific centromere
(Blavet et al., 2021). In addition, in several organisms, genes
involved in cell cycle, cell division, chromosome segregation or
cell differentiation have been identified on B chromosomes
(Graphodatsky et al., 2005; Makunin et al., 2016; Navarro

Domínguez et al., 2017; Makunin et al., 2018; Marques et al.,
2018; Kichigin et al., 2019; Martins and Jehangir, 2021). These
might represent candidate genes for B chromosome drive. The
origin of such sequences promoting the B chromosome
transmission is assumed to play an important role during early
B chromosome evolution (Houben et al., 2014). Without such
sequences the B chromosome is likely destined to be lost from the
population if it does not provide any advantage to the host
(Camacho et al., 2000; Ahmad et al., 2020).

Cellular Domestication of B Chromosomes
As described in the previous section, for a long time B
chromosomes were mostly viewed as nonessential selfish
elements which had either no effect on the host or a negative
one, and spread through the population solely as genome
parasites. However, there is accumulating evidence that B
chromosomes in many organisms carry important functions
for their hosts, which can help them to spread in the
population without selfish mechanisms such as drive (Table 1).

A well-known case where a B chromosome is beneficial for its
carrier can be seen in the chive plant Allium schoenoprasum. It
has been observed that individuals with B chromosomes have
better survival rates in their natural habitats than those without
them. These B chromosomes have a positive effect on the
development from seeds as they boost the germination rate in
drought conditions (Holmes and Bougourd, 1989; Plowman and
Bougourd, 1994) It is interesting that in A. schoenoprasum no
mechanisms of drive have been found (Bougourd and Parker,
1979; Holmes and Bougourd, 1989), suggesting that the presence
of B chromosomes in a population may be maintained by their
positive effect on the carrier. A higher survival rate of plants with
B chromosome compared to those without it was observed also in
ryegrass, Lolium peremne (Rees and Hutchinson, 1974). In rye a
comparison between individuals with and without B
chromosomes suggests that rye B chromosomes may play a
role in heat tolerance and may protect plants against damage
caused by heat stress (Pereira et al., 2017).

In the fungus Nectria haematococca, resistance to antibiotics,
which are naturally produced by pea plants, is associated with the
presence of B chromosomes which show stable inheritance under
certain conditions (Miao et al., 1991; Enkerli et al., 1997). These B
chromosomes thus increase the pathogenicity of their host.
Observations of an increase in pathogenicity under the
influence of a B chromosome has also been demonstrated in
other fungi species e.g., in Magnaporthe oryzae, Fusarium
oxysporum, F. sp. radicis-cucumerinum, Alternaria alternata,
Cochliobolus heterostrophus and Leptoshaeria maculans (Ma
et al., 2010; Balesdent et al., 2013; van Dam et al., 2017).
Interestingly, sequencing of the fungal B chromosomes
revealed that these chromosomes display different genomic
properties compared to the A chromosomes, including faster
evolutionary rates, higher density of transposable elements and
more gene duplications (Vanheule et al., 2016; Yang et al.,
2020). It has been suggested that such a “two-speed” genome
may bring an advantage to the pathogens by allowing more
rapid adaptations to the host and new environments through
more frequent mutations on the faster evolving B
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chromosomes (Croll and McDonald 2012). B chromosomes
can also increase the resistance of their host to pathogens, such
as, for example, in the oat plant, Avena sativa, where they
increase the resistance of the plants to rust caused by the fungus
Puccinia coronata f. sp. avenae (Dherawattana and Sadanaga,
1973).

It has been proposed that B chromosomes can become
involved in sex determination and start to function as sex
chromosomes (e.g., Camacho, 2005). Although, this crucial
function can at the beginning represent a way how to
enhance the B chromosome transmission as has been
described in some cichlid fish (Clark and Kocher, 2019), it
can later become essential for the host. In addition, the B
chromosome can theoretically turn into a sex chromosome
when it starts to pair with the X or Z in the system where Y
or W is not present (i.e. X0 or Z0). Possible examples of such B
to sex chromosome transition have been described in moth and

butterfly species (Lepidoptera). Lukhtanov (2000) mentioned
examples, which may represent different phases of such
evolutionary transition, from the stage where a newly formed
W chromosome (originally B chromosome) is still dispensable
and individuals with or without it can be found in a population,
to the stage where the W chromosome has the sex determining
function and is fully fixed and essential. Although these
examples support the possibility of the sex chromosome
origin within B chromosomes, Lukhtanov (2000) provides
alternative explanations of these observations. Also, in the
family Tischeriidae and in the clade Ditrysia (Lepidoptera),
the W possibly arose from a B chromosome which started to
pair with the Z chromosome (Dalíková et al., 2017). However, a
possibility that at least in Tischeriidae W chromosome evolved
from the fusion of a Z chromosome and an autosome has not
been ruled out (Dalíková et al., 2017; Hejníčková et al., 2019).
Recent data from genome sequencing in another butterfly

TABLE 1 | List of examples where B chromosomes have a beneficial or necessary function for their hosts.

Species Group Function Reference

Nectria haematococca fungus (Ascomicota) resistance to antibiotics Miao et al. (1991)
Enkerli et al. (1997)increased pathogenicity on pea roots
Rodriguez-Carres et al. (2008)utilization of unique carbon/nitrogen sources
Coleman et al. (2009)

Magnaporthe oryzae fungus (Ascomicota) increased pathogenicity Ma et al. (2010)
Balesdent et al. (2013)
van Dam et al. (2017)

Fusarium oxysporum fungus (Ascomicota) increased pathogenicity Armitage et al. (2018)
Balesdent et al. (2013)
Ma et al. (2010)
Thatcher et al. (2016)
Williams et al. (2016)
van Dam et al. (2017)

Fusarium sp. radicis-cucumerinum fungus (Ascomicota) increased pathogenicity Ma et al. (2010)
Balesdent et al. (2013)
van Dam et al. (2017)

Alternaria alternata fungus (Ascomicota) increased pathogenicity caused by
production of host-specific toxins

Hatta et al. (2002)
Akagi et al. (2009)
Ma et al. (2010)
Balesdent et al. (2013)
van Dam et al. (2017)

Cochliobolus heterostrophus fungus (Ascomicota) increased pathogenicity Ma et al. (2010)
Balesdent et al. (2013)
van Dam et al. (2017)

Leptoshaeria maculans fungus (Ascomicota) increased pathogenicity Ma et al. (2010)
Balesdent et al. (2013)
van Dam et al. (2017)

Avena sativa plant (Poaceae) resistance to rust Dherawattana and Sadanaga (1973)
Lolium peremne plant (Poaceae) higher survival rate Williams (1970)

Rees and Hutchinson (1974)
Allium schoenoprasum plant (Amaryllidaceae) boost of the germination rate Holmes and Bougourd (1989)

Plowman and Bougourd (1994)
Secale cereale plant (Poaceae) heat tolerance Pereira et al. (2017)
Tischeria ekebladella moth (Lepidoptera) sex chromosome Dalíková et al. (2017)
Plutella xylostella moth (Lepidoptera) sex chromosome Dalíková et al. (2017)
Cameraria ohridella moth (Lepidoptera) sex chromosome Dalíková et al. (2017)
Dryas iulia butterfly (Lepidoptera) sex chromosome Lewis et al. (2021)
Cacopsylla peregrina plant lice (Psylloidea, Homoptera) sex chromosome Nokkala et al. (2003)
Astyanax mexicanus cavefish (Actinopterygii) sex chromosome Imarazene et al. (2021)
numerous species passerine birds (Passeriformes) germline-restricted chromosome Torgasheva et al. (2019)

Kinsella et al. (2019)
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species Dryas iulia (tribe Heliconiini) support the origin of a W
sex chromosome from a B chromosome and suggest that this
event may have happened multiple times during the evolution
of butterflies (Lewis et al., 2021). It has also been proposed that
the ancestral Y chromosome in Drosophila may have
originated from a B chromosome (Hackstein et al., 1996;
Carvalho, 2002). None of the Y-linked genes in Drosophila
have homologs on the X chromosome and all identified
paralogs are autosomal. This implies that the origin and
evolutionary history of the Y chromosome is different than
simply being a degenerated counterpart of the X chromosome
and Carvalho (2002) proposed that it could have its origin in a
B chromosome that became a segregational partner of the X
chromosome in an X0 system. However, it is also possible that
the present Y in Drosophila could be an outcome of a fusion of
an ancestral Y chromosome with an autosome (Bachtrog,
2013). In the plant lice Cacopsylla peregrina, the Y
chromosome has most likely evolved from a B chromosome
that was integrated into a segregation system with the X
chromosome and later became fixed in the karyotype
(Nokkala et al., 2003). In some cases, such as in the cichlid
fish from the tribe Oreochromini, the B chromosome fused
with the original sex chromosomes and become a stable part of
the genome (Conte et al., 2021). In the cavefish Astyanax
mexicanus the B chromosome contains a gene which
determines male sex and therefore the B chromosome
functions as a sex chromosome with a dominant male
determining role (Imarazene et al., 2021).

In passerine birds (Passeriformes), an extra chromosome has
been observed in the germline. This germline-restricted
chromosome (GRC) is excluded by programmed DNA
elimination from somatic cells during early embryogenesis
(Wang and Davis, 2014). The GRC was first described in the
zebra finch (Taenopygia guttata) (Pigozzi and Solari, 1998), and it
has been revealed recently that it is likely present in all passerine
birds (Passeriformes) (Kinsella et al., 2019; Torgasheva et al.,
2019). The GRC is present in two copies in oocytes forming a
bivalent that undergoes recombination. In contrast, in
spermatocytes there is only a single copy of this chromosome
which forms a heterochromatic element that is eliminated from
the nucleus during the first meiotic division (Schoenmakers
et al., 2010; del Priore and Pigozzi, 2014). Camacho et al. (2000)
suggested that the GRC may be originally a supernumerary B
chromosome which acquired an essential function for birds,
possibly a germline determining role, preventing its loss.
Genomic analysis of the GRC in zebra finch revealed that
similarly as in B chromosomes, most GRC-linked genes are
paralogs to genes on A chromosomes, which have been
subsequently added to the GRC during passerine evolution
(Kinsella et al., 2019). Like B chromosomes, GRC shows high
variability in size ranging from the largest chromosome in the
karyotype in some species to microchromosome in others
(Torgasheva et al., 2019). Dedukh and Krasikova (2021)
pointed out yet another similarity which can be found in the
programed GRC elimination from somatic cells which strongly
resembles mechanisms of tissue-specific B chromosome
elimination as described in goatgrass Aegilops speltoides

where the B chromosome is eliminated from roots (Ruban
et al., 2020).

Evolutionary Dynamics of B Chromosomes
Originally, two theoretical models were proposed to explain the
occurrence of B chromosomes in populations and their
maintenance in relatively stable frequencies. The first model
assumed the spread of B chromosomes by some selfish drive
mechanisms, opposed by negative effects of the B chromosomes
on the carrier’s fitness if they are in high copy numbers (Jones 1995;
Camacho et al., 2000). The second model (White, 1973) proposed
that B chromosomes may be maintained in the population without
drive mechanisms if they have a beneficial effect on their carriers in
small numbers but start to be detrimental in high copy numbers.
Empirical data reviewed in this paper supports both models
providing evidence for the selfish spread of B chromosomes in
populations through drive in many species (Hasegawa, 1934; Nur,
1962; Nur, 1963; Rutishauser and Rӧthlisberger, 1966; Nur, 1969;
Kayano, 1971; Jones and Rees, 1982; Gregg at al., 1984; Murray,
1984; Viseras et al., 1990; Jones, 1991; Pardo et al., 1995; Houben,
2017; Jones, 2018; Clark and Kocher, 2019; Blavet et al., 2021) as
well as identifying beneficial effects of B chromosomes for their
hosts (Williams, 1970; Dherawattana and Sadanaga, 1973; Rees
and Hutchinson, 1974; Holmes and Bougourd, 1989; Miao et al.,
1991; Plowman and Bougourd, 1994; Enkerli et al., 1997; Hatta
et al., 2002; Nokkala et al., 2003; Rodriguez-Carres et al., 2008;
Akagi et al., 2009; Coleman et al., 2009; Ma et al., 2010; Balesdent
et al., 2013; Thatcher et al., 2016; Williams et al., 2016; Dalíková
et al., 2017; Pereira et al., 2017; vanDam et al., 2017; Armitage et al.,
2018; Kinsella et al., 2019; Torgasheva et al., 2019; Imarazene et al.,
2021; Lewis et al., 2021). From the example in rye where B
chromosomes have beneficial function but are still driving
(Pereira et al., 2017) we see that there could be even co-
occurrence of drive and beneficial function which indicates the
rather extensive complexity of B chromosome evolution.

As Camacho et al. (1997) suggested, parasitic B chromosomes
initially spreading in a population by drive may be neutralized by
the evolution of drive suppressors located on the A chromosomes
if they harm the hosts. Since the elimination of already common B
chromosomes from the population may be slow, the new drive
genes may arise on the B before this elimination leading to a new
cycle of B chromosome accumulation. The dynamics between B
chromosomes and the rest of the genome may thus resemble a
classical arms race between a parasite and its host. Certain studied
species seem to show this type of dynamic where A chromosomes
try to suppress the accumulation of B chromosomes and B
chromosomes try to escape this pressure (Bosemark, 1954;
Carlson, 1969; Nur and Brett, 1985, Shaw and Hewitt, 1985;
Shaw et al., 1985; Nur and Brett, 1987, Nur and Brett, 1988;
Romera et al., 1991; Cebriá et al., 1994; Jiménez et al., 1995;
Herrera et al., 1996; Rosato et al., 1996; reviewed in Shaw and
Hewitt, 1990; Camacho et al., 2000).

The examples collected in this review also suggest that
sometimes B chromosomes can become stable and essential
parts of the genome by gaining some vital function such as a
role in sex determination or germline specific function. In fact, B
chromosomes may be predisposed to become sex chromosomes
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or germline-restricted chromosomes by their selfish mechanisms
of transmission including sex-specific meiotic drive and
gonotaxis. In some cases, B chromosomes can also become
accommodated into the genome by being translocated to
autosomes or sex chromosomes as observed in several
organisms (e.g., grasshoppers and maize) or could acquire
regular behavior during meiosis, when two B chromosomes
start to pair, both of which ensures their stable inheritance
and maintenance in the population (e.g., Houben et al., 2000;
Cabrero et al., 2003; Hsu et al., 2003).

CONCLUSION

This review aims to portray B chromosomes as highly dynamic
elements, with variable effects on their hosts, and rich
evolutionary pathways. We are demonstrating that, although
it was originally believed that B chromosomes behave mostly as
genomic parasites with neutral or negative effects on the host
being spread in the population by selfish drive mechanisms, a
growing number of studies have shown that they can also have a
positive effect on their hosts. Here we collected such examples
including cases where B chromosomes increase the
pathogenicity of their hosts or increase the survival rate in
particular habitats. Moreover, we provide examples where B
chromosomes likely became a stable and essential part of the

genome by turning into new sex chromosomes or germline-
restricted chromosomes. In this light, B chromosomes can be
viewed as a reservoir of genetic material for the evolution of
important genomic novelties with potentially significant
evolutionary impacts.
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