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Longitudinal and transversal 
resonant tunneling of interacting 
bosons in a two‑dimensional 
Josephson junction
Anal Bhowmik1,2* & Ofir E. Alon1,2

We unravel the out‑of‑equilibrium quantum dynamics of a few interacting bosonic clouds in a two‑
dimensional asymmetric double‑well potential at the resonant tunneling scenario. At the single‑
particle level of resonant tunneling, particles tunnel under the barrier from, typically, the ground‑state 
in the left well to an excited state in the right well, i.e., states of different shapes and properties are 
coupled when their one‑particle energies coincide. In two spatial dimensions, two types of resonant 
tunneling processes are possible, to which we refer to as longitudinal and transversal resonant 
tunneling. Longitudinal resonant tunneling implies that the state in the right well is longitudinally‑
excited with respect to the state in the left well, whereas transversal resonant tunneling implies that 
the former is transversely‑excited with respect to the latter. We show that interaction between bosons 
makes resonant tunneling phenomena in two spatial dimensions profoundly rich, and analyze these 
phenomena in terms of the loss of coherence of the junction and development of fragmentation, 
and coupling between transverse and longitudinal degrees‑of‑freedom and excitations. To this end, 
a detailed analysis of the tunneling dynamics is performed by exploring the time evolution of a few 
physical quantities, namely, the survival probability, occupation numbers of the reduced one‑particle 
density matrix, and the many‑particle position, momentum, and angular‑momentum variances. To 
accurately calculate these physical quantities from the time‑dependent many‑boson wavefunction, 
we apply a well‑established many‑body method, the multiconfigurational time‑dependent Hartree for 
bosons (MCTDHB), which incorporates quantum correlations exhaustively. By comparing the survival 
probabilities and variances at the mean‑field and many‑body levels of theory and investigating the 
development of fragmentation, we identify the detailed mechanisms of many‑body longitudinal and 
transversal resonant tunneling in two dimensional asymmetric double‑wells. In particular, we find 
that the position and momentum variances along the transversal direction are almost negligible at the 
longitudinal resonant tunneling, whereas they are substantial at the transversal resonant tunneling 
which is caused by the combination of the density and breathing mode oscillations. We show that 
the width of the interparticle interaction potential does not affect the qualitative physics of resonant 
tunneling dynamics, both at the mean‑field and many‑body levels. In general, we characterize the 
impact of the transversal and longitudinal degrees‑of‑freedom in the many‑boson tunneling dynamics 
at the resonant tunneling scenarios.

Tunneling is a purely quantum mechanical phenomenon which takes place in classically-forbidden region, 
originally intended to account for α-decay, fusion, and fission in nuclear  physics1,2. Apart from nuclear physics, 
tunneling occurs naturally in photoassociation and photodissociation processes, and in solid-state  structures3–7. 
Ultracold quantum gases have been the subject of research to simulate solid-state  systems8–15. In the context 
of the study of tunneling dynamics of ultracold atoms, a double-well potential with static barrier is a standard 
example. Most of the tunneling phenomena were investigated with ultracold atoms in one dimension, either 
in a double-well potential or in periodic optical lattices, and focused on the atomic motion in the lowest band, 
i.e., particularly with the ground  state16–23. Moreover, it was shown in a double-well potential that the inclusion 
of higher single-particle levels is fundamentally important for  correlations24,25. Josephson-like dynamics of a 
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Bose–Einstein condensate of rubidium atoms was investigated in the second Bloch band of an optical square 
 lattice26. Unconventional orbital superfluidity in the P- and F-bands of a bipartite optical square lattice was 
achieved  in27,28. Recently, we explored the tunneling dynamics of ultracold bosons in a symmetric double-well 
potential where the atomic motion lies in the ground as well as excited  bands29. Dynamics and quantum opti-
mal control of different complex atomic quantum systems and the transition from the ground to complicated 
excited states have been investigated in anharmonic trap or in optical  lattices30–32. Moreover, complicated tun-
neling dynamics of ultracold atoms, such as, Fermi-Fermi  mixture33,34 and bosonic impurities with a bosonic 
 medium35,36 were studied in a double-well potential.

The interband quantum tunneling of ultracold atoms between the ground and excited bands can occur by 
breaking the symmetry of the two wells of a symmetric double-well potential, say, by generating an asymmetric 
double-well potential. This asymmetric double-well potential can be understood as a unit cell of a tilted optical 
 lattice37–40. Also, an external electromagnetic field can induce interband transitions as demonstrated in the spec-
troscopy of Wannier-Stark  levels41. Here, we are interested in the interband quantum tunneling in an asymmetric 
double-well potential, typically describes in the tilted optical lattice. Per definition, the interband tunneling in 
an asymmetric double-well potential occurs when the energy of the ground state on one side of the double-well 
coincides with the energy of an excited state on the other side. This leads to tunneling between those states 
which is resonantly enhanced by the energy matching, usually referred to as resonantly enhanced  tunneling42,43.

Resonantly enhanced tunneling phenomenon has been observed in various fields of research, such as in 
a nonlinear effect in a Mott insulator by creating a particle-hole  excitation44, in the presence of many-body 
 coherences45, in waveguide  arrays46, in an optical lattice with an external magnetic field producing a Zeeman 
splitting of the energy  levels47, in the two-terminal current-voltage characteristics of a finite  superlattice48, in 
solid states systems such as  superlattice5,49, and in accelerated optical lattice  potentials38,39.

Hitherto, resonantly enhanced tunneling is studied when the resonant condition of energy matching of the 
two wells is along the direction of the  barrier42,43,50. We name it longitudinal resonant tunneling. In Ref.43, the 
condensates were prepared in a one-dimensional optical lattice with an additional Stark force and determined 
the tunneling rate by the Landau-Zener  formula51–55. Zenesini et al.  experimentally investigated the impact of 
atom-atom interactions on the resonantly enhanced tunneling process and presented a complementary theoreti-
cal description of Landau-Zener tunneling for ultracold atoms in periodic  potentials42. The out-of-equilibrium 
quantum mean-field and many-body dynamics of interacting bosons were recently explored in a one-dimensional 
asymmetric double-well  potential50 using the multi-configurational time-dependent Hartree for bosons (MCT-
DHB)  method56–58. Precisely, the interacting bosons were prepared in the ground state of the left well (harmonic 
potential) and the mechanism of the tunneling process in the resulting double-well was studied by analyzing 
the time-evolution of the survival probability, depletion and fragmentation, and the many-particle position and 
momentum  variances50.

Resonant tunneling in a two-dimensional (2D) double-well set-up brings interesting new questions, especially, 
on the role of transverse excitations. Also, in 2D double-well, there can be a resonant tunneling phenomenon 
which does not exist in one-dimension, namely, transversal resonant tunneling when the energy-matching con-
dition of the two wells of an asymmetric double-well is satisfied along the transverse direction of the barrier. In 
this work, we focus on the longitudinal and transversal resonant tunneling for the initial bosonic structures of 
the ground and excited states in a 2D asymmetric double-well potential. Here the bosons are loaded in the left 
well of the double-well potential and the barrier is formed along the x-direction. In order to investigate the tun-
neling dynamics in the longitudinal resonant scenario, we consider two different structures of bosonic clouds, 
i.e., the ground and transversely excited (y-excited) states. Although, the ground state has a one-dimensional 
analog, but to create a transversely excited state, one requires at least a 2D  geometry29. Therefore, to investigate 
the effect of the longitudinal resonant tunneling on the very basic state which includes transverse excitations is 
of fundamental interest. Moreover, we investigate the impact of the transverse direction on the tunneling dynam-
ics of the ground state at the longitudinal resonant tunneling condition. In the transversal resonant scenario, 
the bosonic structures are assumed to be the ground and longitudinally excited (x-excited) states. These two 
states have one-dimensional analogs but the transversal resonant tunneling does exist only in a 2D geometry. 
Therefore, the role of longitudinal excitations in transversal resonant tunneling can be examined. In order to 
accurately explore the out-of-equilibrium tunneling dynamics for both resonant tunneling scenarios, we solve 
the underlying time-dependent many-boson Schrödinger equation using the MCTDHB  method57,58. We solve 
the quantum dynamics of all the bosonic clouds at the mean-field and many-body levels.

Tunneling dynamics for all the bosonic structures are analyzed by the time evolution of various physical 
quantities, namely, the survival probability, loss of coherence, depletion and fragmentation, and the many-
particle position, momentum, and angular-momentum variances. Even when the bosons are fully condensed, 
the variance is a sensitive probe of  correlations59. Therefore, to display the effects of the quantum correlations 
on the variances of different operators, we compare the mean-field and many-body variances in addition to 
the corresponding comparison of the survival probabilities. We notice that the rate of growth of the quantum 
correlations depends on the shape of the bosonic clouds, presence of transverse excitations in the system, and 
the resonant tunneling condition. The interconnection between the density oscillations and the variances are 
discussed both at the longitudinal and transversal resonant tunneling scenarios. We show that correlations have 
different consequences on the various quantities discussed in this work. In general, we ask how the transverse 
degrees-of-freedom, perpendicular to the junction, can influence the time evolution of various physical quantities 
in a 2D asymmetric double-well potential at the resonant tunneling scenario. We find that the time evolutions of 
the variances behave completely differently in the longitudinal and transversal resonant tunneling conditions.
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Theoretical method
The dynamics of N interacting bosons in a two-dimensional trap can be described by the time-dependent many-
body Shrödinger equation,

where T̂(r) and V̂(r) represent the kinetic and potential energy terms, respectively. The interaction between the 

bosons is repulsive and considered as a Gaussian  function60 W(r1 − r1) = �0
e−(r1−r2)

2/2σ 2

2πσ 2
 with σ = 0.25

√
π  . 

In Appendix B, we investigate the role of the width of the interparticle interaction potential and demonstrate 
explicitly that the mean-field and many-body physics found in this work do not qualitatively depend on this 
width. Here, �0 is the interaction strength and it is related with the interaction parameter � by � = �0(N − 1) 
where N is the number of bosons. Note that the stronger the interaction parameter � is, the larger the many-body 
effects. Here the model inter-bosons interaction does not have any qualitative impact on the physics described 
here.

In order to solve Eq. (1) in-principle numerically exactly, we use the MCTDHB  method20,21,50,56,57,59,61–70,70–79. 
MCTDHB incorporates a variational optimal ansatz which is generated by distributing the N bosons over M 
time-dependent orbitals. The MCTDHB wavefunction is described  as57

where Cn(t) is the expansion coefficients and |n; t� = |n1, n2, . . . , nM; t� . The number of time-dependent per-

manents |n; t� is 
(N +M − 1

N

)

 . M = 1 in the set of permanents, |n; t� , of Eq. (2) represents the Gross-Pitaevskii 
ansatz and solves the time-dependent Gross-Pitaevskii  equation80. The accuracy of the wavefunction increases 
with M and achieves the convergence of different physical quantities of interest discussed in this work, such as 
the survival probability, depletion and fragmentation, and the many-particle position, momentum, and angular-
momentum variances. The numerical implementation of the real-time dynamics employed in this work can be 
found  in81,82.

Results and discussion
Here, we divide the section into two parts, namely, longitudinal and transversal resonant tunneling. In each part, 
we investigate the time evolution of various physical quantities, such as the survival probability, loss of coherence, 
and the variances of the position, momentum, and angular-momentum many-particle operators when the sym-
metry of the double-well potential is broken and it reaches to the resonant tunneling condition. The quantities 
discussed here incorporate a detailed information of the time-dependent many-boson wave function, explicitly, 
the density, reduced one-particle density matrix, and reduced two-particle density matrix.

Longitudinal resonant tunneling. We investigate the dynamics of a few bosonic clouds prepared as 
either the ground or transversely-excited state for the longitudinal resonant tunneling phenomena in asym-
metric 2D double-well potential. In the longitudinal resonant tunneling, we consider that the bosons are initially 
prepared in the left well,

of a double-well potential, where c is the asymmetry parameter. The bosons are taken in the state of either as the 

non-interacting ground, �G = 1√
π
F(x, y) , or as the transversely-excited, �Y =

√

2

π
yF(x, y) , states, where 

F(x, y) = exp[−{(x + 2)2 + y2}/2] . Figure 1 shows the initial density distributions of �G and �Y . To explore the 
dynamics of the bosonic clouds, we suddenly quench the inter-particle interaction at t = 0 from � = 0 to 
� = 0.01π and simultaneously change the trapping potential from VL(x, y) to the longitudinally-asymmetric 2D 
double-well potential, VT (x, y) . Here the asymmetry implies that the right well is lower than the left well. This is 
achieved by adding a linear term in the longitudinal direction. The mathematical form of VT (x, y) is (see Fig. 1a):

To accurately tackle the many-body physics involved in the two-dimensional bosonic Josephson junctions, we 
have performed the MCTDHB computations with different time-dependent orbitals for different initial bosonic 
structures. For �G , the many-body computation is performed with M = 6 time-dependent orbitals, while for 
�Y with M = 10 time-dependent orbitals. The convergence of the quantities, discussed in this work, with the 
orbital numbers are shown in the supplemental materials. For the numerical solution of the longitudinal resonant 
tunnelling, the considered box size is [−10, 10)× [−10, 10) with periodic boundary conditions having a grid 
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of 64× 64 points. Convergence of the results with respect to the number of grid points has been checked and 
presented in the supplemental materials. Adequacy of the 2D box size for the longitudinal tunneling scenario 
has been checked. For the many-body dynamics, the number of bosons and interaction parameter are chosen 
as N = 10 and � = 0.01π . The mean-field dynamics are also computed with same interaction parameter � to 
relate the results with the respective many-body ones. It is noted that as the considered interparticle interaction 
in the dynamics is weak, the preparation of the initial state in the relaxation process either with noninteracting 
bosons or with � = 0.01π does not affect the dynamical behavior of the properties discussed in this work. The 
consistency of preparation of the initial state is documented in the supplemental materials  of29. The natural units 
� = m = 1 are employed throughout this work.

At first we investigate how the longitudinal resonant tunneling phenomena of �G and �Y are achieved by 
gradually increasing the asymmetry parameter, c, in the longitudinally-asymmetric 2D double-well potential 
described in Eq. (4). Further, we discuss the time-evolution of the different physical quantities, mentioned above, 
for �G and �Y at the resonant tunneling condition and compare them with the corresponding results of sym-
metric 2D double-well potential, which can be obtained at c = 0 from Eq. (4). The investigation is performed 
and compared at the mean-field and many-body levels of theory.

In this work, �G and �Y  are prepared in the left well of a 2D double-well potential. When we gradually 
increase the value of c starting from zero, the symmetry of the double-well potential breaks and the left well 
becomes the upper well and, consequently, the right well becomes the lower well. For some special values of c, 
the one-body energy of the left well coincides with one of the higher one-body energy levels of the right well, 
resulting in an enhanced tunneling of bosons from the left well to the right well. This enhancement of tunneling 
is usually referred to as the resonant tunneling in a double-well potential, see in this  context42,43. From Eq. (4), 
we can find out that at any asymmetry parameter c, the energy difference of one-body spectrum between the 
two wells becomes 4c. Analytically, for harmonic left and right wells, one can realize that the resonant tunneling 
occurs when 4c will be equal to an integer.

Figure 1.  (a) Schematic diagrams for the asymmetric 2D double-well potential for longitudinal resonant 
tunneling, described in Eq. (4). Here the the right well is lower than the left well. Panels (b) and (c) show the 
initial density distributions for the ground and transversely-excited states, respectively.

Figure 2.  Variation of the maximal number of particles tunneling [in %] from the left to the right well with the 
asymmetry parameter c for the states �G and �Y at the mean-field level. The data is generated from the time-
dependent solution of the Gross-Pitaeveskii equation. We show here dimensionless quantities.



5

Vol.:(0123456789)

Scientific Reports |          (2022) 12:627  | https://doi.org/10.1038/s41598-021-04312-6

www.nature.com/scientificreports/

Now, we show how the gradual increase of asymmetry between the two wells of a double-well potential influ-
ences the tunneling of particles. In Fig. 2, we present, at the mean-field level, the variation of the maximal number 
of particles tunneling from the left to the right well for the states �G and �Y with the asymmetry parameter c. 

This maximal number of particles in the right well is determined from 
+∞
∫

x=0

+∞
∫

y=−∞
dxdy

ρ(x, y; t)
N

 , where ρ(x, y; t) 
is the density of the bosonic cloud, at a particular instant of time when the right well is maximally occupied by 
the particles. Here we start from the symmetric double-well potential. At c = 0 , when the bosons are allowed to 
evolve in time, we observe that 100% of the bosons can tunnel from the left to right well, signifying the delocali-
zation of the one-particle eigen-functions in a symmetric double-well. Now, a small increase of asymmetry 
between the wells makes the one-particle state to be only partially delocalized over both wells, leading to a sup-
pression of tunneling of particles. Further increase of the asymmetry, beyond c = 0.1 , the one-particle state slowly 
begins to be delocalized in one of the wells, and the tunneling of particles increases. At c = 0.25 , we find well-
delocalization of the one-particle state in one of the well which leads to a complete tunneling of particles or 
specifically, refer to as resonant tunneling condition, when one-body energy of the left well matches with the 
energy of one of the one-body excited states of the right well. Similarly, the second resonant tunneling appears 
at c = 0.5 . As the system is weakly interacting, we find that the maximum tunneling of particles is 100% both 
for �G and �Y  at c = 0 , c = 0.25 , and c = 0.5 . Also, we observe a small difference of maximum tunneling of 
particles between the results of �G and �Y at off-resonant tunneling conditions. Here, it is noted that if the bosons 
are prepared in the right well (lower well), the gradual increase of asymmetry between the wells reduces the 
maximal number of bosons tunneling to the left well. Further increase of asymmetry between the wells, at c � 0.1 , 
the bosons become trapped in the right well, and produces only a mild breathing motion, mainly due to the 
quenching of the interaction.

Next, we focus on both the resonant tunneling values of c and study how the many-body correlations affects 
the dynamical behaviors of the survival probability, loss of coherence, and the many-particle position, momen-
tum, and angular-momentum variances. Moreover, we will display the corresponding analysis of the results 
obtained for the symmetric double-well potential to serve as a reference. In addition, we will present a compari-
son study of the mean-field and many-body results both for �G and �Y.

In order to adequately capture the time evolutions of �G and �Y  between the two wells of a double-well 

potential, we examine the survival probability in the left well, PL(t) =
0
∫

x=−∞

+∞
∫

y=−∞
dxdy

ρ(x, y; t)
N

 , where ρ(x, y; t) 
is the density of the bosonic cloud. We compare between the results of the mean-field and many-body dynamics 
of PL(t) in Fig. 3 for the asymmetry parameters, c = 0 , 0.25, and 0.5. Here we want to mention that, to have a 
proper comparison among all the results presented in this paper, the time-scale for the dynamics is set to be 
equal to the Rabi oscillations (tRabi) of the symmetric double-well trap (when c = 0 ). We find that tRabi = 132.498 
for the symmetric 2D double-well  potential29.

In Fig. 3, we observe, for both �G and �Y  , back and forth of the density between the left and right wells 
with the essentially same frequency of oscillations at a particular value of c. In the non-interacting system, at 
t = 0 , �G and �Y  lie approximately on the lowest band along the direction of the barrier and when there is 
an interaction quench, more bands are coupled. Note that we use the notion of (excited) bands interchange-
able with (excited) states although we have a two-site trap. Both the frequency and amplitude of the tunneling 
oscillations of �G are essentially similar to those of �Y at the mean-field level. But at the many-body level, only 
the frequency of the tunneling oscillations remains very similar for �G and �Y at a particular value of c, while 
the amplitudes show a substantial difference as time progresses. The difference in the many-body tunneling 
amplitude between �G and �Y occurs as more states start to couple with time to �Y in comparison to �G , see 
Fig. S3 in the supplemental materials. At c = 0.25 and 0.5, the ground state energy of the left well matches with 
energies of the second (which is two-fold degenerate, x�G and y�G ) and third (which is three-fold degener-
ate, xy�G , (x2 − 1)�G , and (y2 − 1)�G ) excited states of the right well, respectively. But, in the process of 
tunneling, �G couples to x�G and (x2 − 1)�G of the right well at c = 0.25 and 0.5, respectively. Similarly, �Y 
couples respectively to x�Y and (x2 − 1)�Y of the right well. The transitions, �G → x�G , �G → (x2 − 1)�G , 
�Y → x�Y , and �Y → (x2 − 1)�Y , are allowed because of symmetry y → −y . As �G and �Y mainly couple 
to those excited states which have excitations only along the x-direction, we call this tunneling the longitudinal 
resonant tunneling.

For both �G and �Y , the short-time mean-field and many-body dynamics of PL(t) overlap for the interac-
tion strength taken here. This condition imitates the so-called infinite-particle limit of the time-dependent 
many-boson Schrödinger  equation83,84. Contrary to the mean-field dynamics, one can find a signature of the 
quantum correlations in the many-body dynamics of PL(t) in terms of incomplete tunneling of the densities 
and, consequently, the amplitude of the oscillations of PL(t) gradually decays. The decay in the amplitude of the 
many-body PL(t) signifies a collapse in the density oscillations, which is more pronounced for �G than for �Y . 
However, as c increases, the decay rates of �G and �Y become smaller. For a certain value of c, the decay rate of 
�G is larger compared to the corresponding rate of �Y , suggesting that in the tunneling process, the many-body 
effects develops in a different rate for different initial structures of the bosonic clouds. Explicitly, we observe 
that having transverse excitation delays the many-body process of the density oscillations collapse. Moreover, at 
c = 0.5 , the time evolution of PL(t) exhibits a partial revival for both the states.

Signature of a growing degree of quantum correlations is already found in terms of decay in the amplitude 
of the time evolution of many-body PL(t) . Now, we will discuss how this gradual increase of the many-body 
correlations can affect the coherence of the condensates, i.e., bosonic clouds of �G and �Y , when the resonant 
tunneling occurs. To compare the results, we also show the loss of coherence for the tunneling of the above 
considered bosonic clouds in the symmetric double-well potential as a reference. In Fig. 4, we present the time 
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Figure 3.  Dynamics of the survival probability of �G (left column) and �Y (right column) in the left well 
of longitudinally-asymmetric 2D double-well potential of N = 10 bosons with the interaction parameter 
� = 0.01π . The first row presents the results for the symmetric double-well potential. Second and third 
rows show the survival probabilities at the resonant tunneling with asymmetry parameter, c = 0.25 and 0.5, 
respectively. M = 1 signifies the mean-field results. The many-body dynamics are computed with M = 6 time-
dependent orbitals for �G and M = 10 time-dependent orbitals for �Y . We show here dimensionless quantities. 
Color codes are explained in each panel.
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Figure 4.  Time-dependent occupation per particle of the first natural orbital, 
n1(t)

N
 , in a longitudinally-

asymmetric 2D double-well potential for N = 10 bosons and interaction parameter � = 0.01π . Panels (a) and 
(b) are for �G and �Y , respectively. The asymmetry parameters are c = 0 , 0.25, and 0.5. The data have been 
obtained with M = 6 time-dependent orbitals for �G and M = 10 time-dependent orbitals for �Y . We show 
here dimensionless quantities. Color codes are explained in each panel.
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evolution of the condensate fraction, 
n1(t)

N
 , obtained by diagonalizing the reduced one-particle density matrix 

of the time-dependent many-boson wave-function (Eq. 2)85,86. The general feature of the occupation of the first 
natural orbital is found to be decreasing with time having a weak oscillatory background for all values of asym-
metry parameters. It is observed that �Y loses coherence faster than �G for a particular value of c, suggesting 
that inclusion of the transverse excitation enhances fragmentation in �Y

29. We find that the rate of loss of coher-
ence becomes slower when one move from c = 0 to the first resonant tunneling value at c = 0.25 and further 
slower at the second resonant tunneling.

In the context of occupations of the first natural orbital, it is worthwhile to mention the occupancy of higher 
natural orbitals. We find that, as the time passes by and fragmentation of the condensate grows, the occupancy 
of all higher natural orbitals gradually increases. The occupancy of higher natural orbitals have direct impact 
on the different many-body quantities discussed later, i.e, on the mechanism of many-body resonant tunneling 
in 2D double-wells. The detailed process of fragmentation with their convergences are discussed in the sup-
plemental materials.

Having explicated the development of many-body correlations and their effects on the time evolution of the 
survival probability and coherence of the bosonic clouds, we find further information of the time-dependent 
many-particle wavefunction and, especially, the signature of the depletion and fragmentation on the condensate. 
As the variance is a sensitive probe of  correlation59, we graphically analyze the dynamical behavior of the vari-
ances of a few fundamental quantum mechanical observables which are mostly influenced by the longitudinal 
resonant tunneling. These are the position and momentum operators along the x-direction, and the angular-
momentum operator.

Figure 5 displays the time evolution of the many-particle position variance per particle along the x-direction, 
1

N
�2

X̂
(t) , in the longitudinally-asymmetric 2D double-well potential with asymmetry parameters, c = 0.25 and 

0.5 for the bosonic clouds of �G and �Y (see Appendix A for the mathematical form of the many-particle vari-
ance and its basic properties). The mean-field and many-body 

1

N
�2

X̂
(t) for the symmetric 2D double-well poten-

tial for �G and �Y are demonstrated in Fig. S1 of the supplemental materials. As a general feature, we find that 

Figure 5.  Time-dependent position variance per particle along the x-direction, 
1

N
�2

X̂
(t) , in a longitudinally-

asymmetric 2D double-well potential for �G (left column) and �Y (right column) of N = 10 bosons with the 
interaction parameter � = 0.01π . The upper and lower rows show 

1

N
�2

X̂
(t) at the resonant tunneling with 

asymmetry parameter, c = 0.25 and 0.5, respectively. M = 1 signifies the mean-field results. The many-body 
dynamics are computed with M = 6 time-dependent orbitals for �G and M = 10 time-dependent orbitals for 
�Y . From t = 0 to 5 tRabi timescale of 

1

N
�2

X̂
(t) is highlighted in the inset of each panel. We show here 

dimensionless quantities. Color codes are explained in each panel.
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the many-body and mean-field values of 
1

N
�2

X̂
(t) are oscillatory in nature. Due to the correlations, the average 

value of the many-body 
1

N
�2

X̂
(t) deviates—it rather significantly increases—from the corresponding mean-field 

results for all asymmetry parameters and bosonic clouds. Although, we found in Fig. 4 that �Y is always more 
fragmented than �G , the deviations in the values of 

1

N
�2

X̂
(t) are always smaller for �Y  compared to �G at a 

particular value of c, apart for short-times at c = 0.5 . Therefore, one can say that the many-body dynamics is 
complicated and there is no one-to-one correlation between the different many-body properties in the junction, 
such as fragmentation and 

1

N
�2

X̂
(t) , but it suggests how the transverse excitations participating in the dynamics 

can impact the fluctuations in measuring an observable. Unlike the mean-field dynamics, the many-body 
1

N
�2

X̂
(t) 

oscillates with a growing amplitude until it reaches an equilibrium value which is more evident at c = 0 for both 
the states (see Fig. S1 of the supplemental materials) and at c = 0.25 for �G . This equilibrium value of 

1

N
�2

X̂
(t) 

is reached when the density oscillations collapse as observed in the time evolutions of PL(t) in Fig. 3. At c = 0.5 , 
we notice that the amplitude of the oscillations of 

1

N
�2

X̂
(t) are also oscillatory, more pronouncedly for �Y , which 

is consistent with the density oscillations. In the dynamics of 
1

N
�2

X̂
(t) , we observe two kinds of oscillations, i.e., 

small frequency with large amplitude and high frequency with small amplitude oscillations. The former one 
comes from the density oscillations and the latter one occurs due to the breathing-mode oscillations of the 
system. At the resonant values of c, the high frequency with small amplitude oscillations are more clearly 
visible.

Next, we consider the momentum variance per particle along the x-direction, 
1

N
�2

P̂X
(t) , and present its time 

evolution at the mean-field and many-body levels for �G and �Y in Fig. 6. We explicitly show the possible quan-
tum correlations effects on the many-body dynamics of 

1

N
�2

P̂X
(t) at the resonant tunneling condition. Recall 

that 
1

N
�2

P̂X
(t) is relatively a more complex quantity than 

1

N
�2

X̂
(t) in the junction as the former one is controlled 

by and more sensitive to the shape of the orbitals. In Fig. 6, we observe, also for 
1

N
�2

P̂X
(t) , two types of oscilla-

Figure 6.  Time-dependent momentum variance per particle along the x-direction, 
1

N
�2

P̂X
(t) , in a 

longitudinally-asymmetric 2D double-well potential for �G (left column) and �Y (right column) of N = 10 
bosons with the interaction parameter � = 0.01π . The upper and lower rows show 

1

N
�2

P̂X
(t) at the resonant 

tunneling with asymmetry parameter, c = 0.25 , and 0.5, respectively. M = 1 signifies the mean-field results. The 
many-body dynamics are computed with M = 6 time-dependent orbitals for �G and M = 10 time-dependent 
orbitals for �Y . We show here dimensionless quantities. Color codes are explained in each panel.
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tions, smaller amplitude with higher frequency and larger amplitude with lower frequency. But there is a differ-
ence with respect to 

1

N
�2

X̂
(t) . For the symmetric double-well potential, 

1

N
�2

P̂X
(t) is dominated by the breathing 

mode oscillations which produce small amplitude with high frequency oscillations (Fig. S1 of the supplemental 
materials). While at the first resonant tunneling, c = 0.25 , the density oscillations are more prominent producing 
the larger amplitude but lower frequency oscillations. But, at the second resonant tunneling, c = 0.5 , 

1

N
�2

P̂X
(t) 

shows a mixture of the density and breathing mode oscillations. At c = 0.25 , the mean-field 
1

N
�2

P̂X
(t) oscillates 

between 0.5 and 1.5, while at c = 0.5 , between 0.5 and 2.5. This reflects the ground (left well) and excited (right 
well) orbitals participating in the dynamics. One of the interesting features at the resonant tunneling condition 
is that the minima values of the many-body 

1

N
�2

P̂X
(t) increases with the growing degree of fragmentation. Also, 

the amplitude of the many-body oscillations of 
1

N
�2

P̂X
(t) eventually decays, which is clearly visible at c = 0.25 , 

when the density collapses. It suggests that in the long-time dynamics of 
1

N
�2

P̂X
(t) , the excited state in the right 

well slowly wins over the initial state prepared in the left well.
In this context, it is worthwhile to briefly discuss the position and momentum variances along the y-direction, 

1

N
�2

Ŷ
(t) and 

1

N
�2

P̂Y
(t) , respectively. We found in our work that the mean-field and many-body values of 

1

N
�2

Ŷ
(t) 

and 
1

N
�2

P̂Y
(t) have very small fluctuations, of the order of 10−3 , atop the value of the non-interacting bosons, 

i.e., 0.5 and 1.5 for both variances, for �G and �Y , respectively (see supplemental materials). Also, with the change 
in asymmetry parameter, we do not observe any substantial changes in the values of position and momentum 
variances along the transverse direction. However, in addition to the motion along the x-direction, the effect of 
the seemingly constant transverse degrees-of-freedom lead to the existence of a purely two-dimensional quantity, 
such as the angular-momentum.

Now, we examine the angular-momentum variance per particle, 
1

N
�2

L̂Z
(t) , and demonstrate the implications 

of the resonant tunneling on its dynamical behavior in Fig. 7, see Appendix A for the mathematical form of 

Figure 7.  Time-dependent variance per particle of the z- component of the angular-momentum operator, 
1

N
�2

L̂Z
(t) , in a longitudinally-asymmetric 2D double-well potential for �G (left column) and �Y (right column) 

of N = 10 bosons with the interaction parameter � = 0.01π . The upper and lower rows show 
1

N
�2

L̂Z
(t) at the 

resonant tunneling with asymmetry parameter, c = 0.25 and 0.5, respectively. M = 1 signifies the mean-field 
results. The many-body dynamics are computed with M = 6 time-dependent orbitals for �G and M = 10 
time-dependent orbitals for �Y . We show here dimensionless quantities. Color codes are explained in each 
panel.
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1

N
�2

L̂Z
(t) . The results are compared at the mean-field and many-body levels for �G and �Y . At t = 0 , in case of 

the symmetric double-well trap, 
1

N
�2

L̂Z
(t) can be calculated analytically and is found to be 2 and 7 for �G and 

�Y , respectively. At the first and second resonant tunneling, the initial values of 
1

N
�2

L̂Z
(t) for �G are reduced to 

1.5 and 1, respectively. But for �Y , 
1

N
�2

L̂Z
(t) remains 7 at t = 0 for the resonant values of c. The mean-field and 

many-body dynamics of 
1

N
�2

L̂Z
(t) in the symmetric double-well potential for the states �G and �Y are demon-

strated in Fig. S1 of the supplemental materials. For the symmetric double-well potential, we find that 
1

N
�2

L̂Z
(t) 

of �G oscillates with amplitude of fluctuations in the order of 10−1 at the mean-field level. A rather small differ-
ence, marking the collapse of the density oscillations, is present between the time evolutions of 

1

N
�2

L̂Z
(t) at the 

mean-field and many-body levels. Unlike for �G , interesting many-body features are found for �Y at c = 0 . It is 
noticed that the amplitude of the many-body 

1

N
�2

L̂Z
(t) of �Y initially grows and, as time passes by, it decays (at 

around t = 12tRabi ) for the symmetric double-well potential. The maximal fluctuations on top of the baseline of 
1

N
�2

L̂Z
(t) at the many-body level is 34% where as at the mean-field level it is 7%. Contrary to the symmetric 

double-well potential, at resonant tunneling, the angular-momentum variance shows a sudden increase in the 
amplitude both for �G and �Y . The mean-field and many-body dynamics of 

1

N
�2

L̂Z
(t) are oscillatory in nature 

at the resonant tunneling values of c. At c = 0.25 , the mean-field 
1

N
�2

L̂Z
(t) oscillates between 1.5 and about 3.5 

for �G and, between 5 and about 13 for �Y . At the second resonant tunneling, the amplitude of the mean-field 
of 

1

N
�2

L̂Z
(t) further increases and oscillates between 1 and approximately 6 for �G , and between 5 and approxi-

mately 22 for �Y . We notice that �Y has always larger fluctuations of amplitude of 
1

N
�2

L̂Z
(t) compared to �G at 

a fixed value of c. The many-body 
1

N
�2

L̂Z
(t) overlaps with the corresponding mean-field results at short time 

scales and shows a decay in amplitude as fragmentation grows, which is more evident at c = 0.25 . The rate of 
decay of 

1

N
�2

L̂Z
(t) values is slower for �Y , which is consistent with the survival probability and 

1

N
�2

P̂X
(t).

Until now, we determined the effect of the transverse excitations on the dynamics of �G and �Y at the reso-
nant tunneling condition within the mean-field and many-body levels of theory. The effects of the transverse 
degrees-of-freedom are analyzed in terms of various physical quantities. The results prove that the transverse 
direction have substantial influences on the dynamics of the ground as well as excited states at the longitudinal 
resonant tunneling scenario in two spatial dimensions.

Transversal resonant tunneling. Proceeding to the transversal resonant tunneling, we want to empha-
size that this scenario does only exist in 2D, thereby bringing to the front new degrees-of-freedom with the 
transverse direction, which we would like to explore. We have found that transverse excitations play a substantial 
role in longitudinal resonant tunneling. Here, we ask how and in what capacity longitudinal excitations play a 
role in transversal resonant tunneling.

In order to investigate the transversal resonant tunneling phenomenon, we assume the bosons are prepared 

either as the non-interacting, �G = 1√
π
F(x, y) , or longitudinally-excited state, �X =

√

2

π
(x + 2)F(x, y) , in the 

left well, V ′
L(x, y) , of a transversely-asymmetric 2D double-well potential, V ′

T (x, y) . Here the asymmetry means 
the right well is wider than the left well. This is generated by making the transverse frequency of the trap spatially-
dependent. V ′

L(x, y) is functioned as

Here, S(x) =
[

1+ (ωn − 1)sin2
(x + 1)π

4

]

 is a switching function for the transversal frequency, where ωn is the 

minimal value of the transversal frequency. The initial density distributions of �G and �X are presented in Fig. 8. 
For investigating the time evolution, as described in the longitudinal resonant tunneling, we quench the inter-
particle interaction at t = 0 from � = 0 to � = 0.01π . At the same time, we convert V ′

L(x, y) to the transversely-
asymmetric 2D double-well potential V ′

T (x, y) (see Fig. 8a), where

(5)V ′
L(x, y) =























1

2
(x + 2)2 + 1

2
y2, x < −1,−∞ < y < ∞,

1

2
(x + 2)2 + 1

2
[S(x)]2y2,−1 < x < +1,−∞ < y < ∞,

1

2
(x + 2)2 + 1

2
ω2
ny

2, x > +1,−∞ < y < ∞.
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Here the many-body computations are performed with M = 6 time-dependent orbitals for both �G and �X . 
For the numerical solution, the considered box size is [−10, 10)× [−10, 10) with periodic boundary conditions 
having the grid density 128× 128 . Convergence of the results with respect to the number of orbitals and number 
of grid points have been checked and presented in the supplemental materials. The number of bosons and inter-
action parameter are chosen as N = 10 and � = 0.01π , same as in the case of longitudinal resonant tunneling. 
The mean-field dynamics are also computed with the interaction parameter �.

At first, we examine how the transversal resonant tunneling can be achieved for two initial bosonic structures, 
�G and �X , in a transversely-asymmetric 2D double-well potential presented in Eq. (6). Here, we gradually 
decrease the transverse frequency in the right well, ωn , from an initial value ( ωn = 1 ) which represents a sym-
metric double-well potential. Similarly to the longitudinal resonant tunneling, here also, the initial states are 
prepared in the left well of the double-well potential. Figure 9 presents the maximal number of particles tunneling 
to the right well for �G and �X . The maximal number is extracted from the time-dependent solution of the 

(6)V ′
T (x, y) =



















































1

2
(x + 2)2 + 1

2
y2, x < −1,−∞ < y < ∞,

1

2
(x + 2)2 + 1

2
[S(x)]2y2,−1 < x < −1

2
,−∞ < y < ∞,

3

2
(1− x2)+ 1

2
[S(x)]2y2, |x| ≤ 1

2
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1
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2
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2
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1
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Figure 8.  (a) Schematic diagrams for the asymmetric 2D double-well potential for transversal resonant 
tunneling, described in Eq. (6). Here the right well is wider than the left well. Panels (b) and (c) show the initial 
density distributions for the ground and longitudinally-excited states, respectively.

Figure 9.  Variation of the maximal number of particles tunneling [in %] from the left to the right well with the 
trapping frequency ωn of the right well for �G and �X (see Fig. 1b). The interaction parameter is � = 0.01π . 
The same plot is highlighted in the inset by enlarging the resonance region. The data is generated from the time-
dependent solution of the Gross-Pitaeveskii equation. We show here dimensionless quantities.
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Gross-Pitaeveskii equation using 
+∞
∫

x=0

+∞
∫

y=−∞
dxdy

ρ(x, y; t)
N

 , where ρ(x, y; t) is the density of the bosonic cloud. 

One can see from Fig. 9, at ωn = 1 , that the maximal number of particles tunneling to the right well is 100%. 
Decreasing the value of ωn reduces the number of maximum particles which can tunnel to the right well for both 
initial bosonic clouds. The rate of decay of the maximal number of particles tunneling to the right well with ωn 
is smaller for �X as it essentially lies in the first excited band along the direction of the barrier and thus feels a 
smaller barrier when it tunnels. Further decrease of ωn , the maximal number of particles tunneling to the right 
well grows. When the one-body energy of the left well coincides with one of the one-body higher energy levels 
of the right well, again the maximal number of particles tunneling to the right well reaches to almost 100%. We 
find only one resonant tunneling for the span of ωn considered here. For �G and �X , the transversal resonant 
tunneling occurs at ωn = 0.19 and ωn = 0.18 , respectively. Also, it can be observed from the figure that for 
slightly off-resonant values of ωn , the maximal number of particles tunneling to the right well significantly 
decreases in comparison to the respective value of ωn at resonant tunneling for �G , but it varies much weaker 
with ωn for �X.

The transversal resonant tunneling for �G found in Fig. 9 is when �G of the left well couples to (y2 − 1)�G 
of the right well. Similarly, �X of the left well couples to (y2 − 1)�X of the right well to facilitate the transversal 
resonant tunneling of �X , see Fig. 10. The resonant tunneling channels �G → y�G and �X → y�X are symmetry 
forbidden, at least at the mean-field level, as the time-dependent orbital becomes odd with respect to y → −y . 
Here we select three values of ωn which are either at the resonant tunneling value or close to it, say, ωn = 0.18 , 
0.19, and 0.20, and investigate the overall dynamical response through the survival probability, loss of coher-
ence, and the variances of position, momentum, and angular-momentum operators. To show the effects of the 
many-body correlations on different physical quantities, we compare the results of many-body dynamics with 
corresponding results at the mean-field level.

Now, we start with the discussion of the density oscillations in terms of the survival probability in the left 
well for both the states �G and �X . Figure 11c and f shows the dynamical behaviors of the survival probabilities 
at the resonant tunneling conditions for �G and �X , respectively. We notice that the frequencies of tunneling 
of the density between the left and right wells are different for �G but are essentially same for �X for different 
ωn considered here. At ωn = 0.18 , 0.19, and 0.20, the tunneling frequencies for �G are 1.41tRabi , 2.30tRabi , and 
1.55tRabi , respectively. While for �X , the tunneling frequency is around 0.38tRabi for all three ωn values.

At a fixed value of ωn , both the frequency and amplitude of the survival probability at the mean-field and 
many-body levels are practically the same for �X . Whereas for �G , although the frequency of the survival prob-
ability are very similar at the mean-field and many-body levels, the amplitudes of the survival probability show 
a significant deviation which is a maximal at ωn = 0.19 . The gradual decay at the many-body level of dynamics 
of the survival probability signifies the growing degree of quantum correlations which will be quantitatively 
discussed later in terms of the loss of coherence in the system. All in all, Fig. 11 reflects that correlations develops 
faster for �G compared to �X.

Now, we demonstrate the effect of growing degree of correlations on the loss of coherence of the bosonic 
clouds, �G and �X , at the transversal resonant tunneling and also at its vicinity. In Fig. 12, we display the time-
dependent occupation of the first natural orbital, namely the condensate fraction, 

n1(t)

N
 . As observed in the 

longitudinal resonant tunneling, here also, 
n1(t)

N
 decays with time with a weak oscillatory background. As �G 

lies in the lowest band, it feels the barrier more and yields comparatively strong background oscillations than 
�X . It is observed that both states lose their coherence faster at the resonant value of ωn and the loss of coherence 

Figure 10.  The densities per particle for the initial states (a) �G and (b) �X . The interaction parameter is 
� = 0.01π . The plots are generated at t ≈ tRabi from the time-dependent solution of the Gross-Pitaeveskii 
equation. We show here dimensionless quantities.
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Figure 11.  Dynamics of the survival probability of �G (left column) and �X (right column) in the left well of a 
transversely-asymmetric 2D double-well potential of N = 10 bosons with the interaction parameter � = 0.01π . 
First, second, and third rows show the results at frequency, ωn = 0.20 , 0.19, and 0.18, respectively. M = 1 
signifies the mean-field results. The many-body dynamics are computed with M = 6 time-dependent orbitals. 
We show here dimensionless quantities. Color codes are explained in each panel.

Figure 12.  Time-dependent occupation per particle of the first natural orbital, 
n1(t)

N
 , in a transversely-

asymmetric 2D double-well potential. The number of bosons is N = 10 and the interaction parameter 
� = 0.01π . Panels (a) and (b) are for �G and �X , respectively. The data have been obtained with M = 6 
time-dependent orbitals. We show here dimensionle ss quantities. Color codes are explained in each panel.
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becomes gradually slower away from the resonant tunneling. The loss of coherence at the resonant tunneling are 
seen to be almost 35% and 5% for �G and �X , respectively, at the maximum time ( t = 30tRabi ) considered here. 
Side by side, the loss of coherence in the system is accompanied by a growing degree of fragmentation, leading 
to increase of the occupancy of higher natural orbitals. See the supplemental materials for the detailed analysis 
of the mechanism of fragmentation in transversal resonant tunneling as well as to verification of convergence.

To further characterize the many-body correlations at the transversal resonant tunneling condition for �G 
and �X , we graphically present the dynamical behavior of the variances of the position and momentum operators 
along the x- and y-directions, and the angular-momentum operator. Also, the many-body results are compared 
with the corresponding mean-field results. These physical quantities at other values of ωn , i.e., 0.18 and 0.20 for 
�G and 0.19 and 0.20 for �X , along with their convergences are demonstrated in the supplemental materials.

Figure 13 displays the dynamics of the many-particle position and momentum variances per particle along 
the x-direction, 

1

N
�2

X̂
(t) and 

1

N
�2

P̂X
(t) , respectively, at the transversal resonant tunneling conditions of �G and 

�X . Details of 
1

N
�2

X̂
(t) and 

1

N
�2

P̂X
(t) for �G and �X in the symmetric double-well potential are discussed in 

Fig. S1 of the supplemental materials. The panels show that the fragmentation developed in the system yields 
the deviation of the many-body results compared to the corresponding mean-field one. This deviation is larger 
for �G in comparison with �X , which is consistent with the corresponding survival probability. For �G , the 
many-body dynamics of 

1

N
�2

X̂
(t) and 

1

N
�2

P̂X
(t) almost reach at its equilibrium when the density oscillations 

collapse. It is found that the frequency of oscillations is practically the same for the mean-field and many-body 
dynamics of 

1

N
�2

X̂
(t) and 

1

N
�2

P̂X
(t) . As we have seen in the dynamics of the survival probability, the oscillation 

frequency of both quantities is higher for �X compared to �G . Moreover, both for �G and �X , we find that the 
frequency of oscillations of the survival probability is twice the frequency of oscillations of 

1

N
�2

X̂
(t) while they 

are practically identical for 
1

N
�2

P̂X
(t) . An interesting many-body feature is observed for �G in the time evolution 

of 
1

N
�2

X̂
(t) . Here, we find that there are two types of oscillations taking place, namely, one with high amplitude 

and the second with a small amplitude. This type of oscillations may arise due to the transition of bosons from 
the lower to higher band, which requires a detailed analysis. Many-body linear-response  theory94, is capable of 
identifying many-body excitation spectrum of interacting bosons, which goes beyond the scope of the present 

Figure 13.  Time-dependent position and momentum variances per particle along the x-direction in a 
transversely-asymmetric 2D double-well potential for �G (left column, ωn = 0.19 ) and �X (right column, 
ωn = 0.18 ) under transversal resonant tunneling conditions. The number of bosons is N = 10 and the 
interaction parameter � = 0.01π . M = 1 signifies the mean-field results. The many-body dynamics are 
computed with M = 6 time-dependent orbitals. We show here dimensionless quantities. Color codes are 
explained in each panel.
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work. The time evolution of 
1

N
�2

P̂X
(t) is accompanied by two types of oscillations, smaller amplitude with higher 

frequency and larger amplitude with lower frequency, but is mostly dominated by the former one which is com-
ing from the breathing mode oscillations.

Now, let us discuss the role played by the transversal resonant tunneling of �G and �X on the time evolution 
of the position and momentum variances along the y-direction, 

1

N
�2

Ŷ
(t) and 

1

N
�2

P̂Y
(t) , respectively (see Fig. 14). 

Unlike in the longitudinal resonant tunneling and in the case of symmetric double-well potential where the 
position and momentum variances along the y-direction of �G and �X have very small fluctuations in amplitude 
(of the order of  10−3, see Fig. S4 and discussion of the first section in the supplemental materials), here, in the 
transversal resonant tunneling, we observe comparatively large fluctuations which are clearly more prominent 
for 

1

N
�2

Ŷ
(t) . For both the states, �G and �X , it is found that the frequency of oscillation of 

1

N
�2

Ŷ
(t) overlaps 

with the corresponding frequency of the survival probability. The amplitude of the many-body time evolution 
of 

1

N
�2

Ŷ
(t) decays with time, originating from the growing degree of fragmentation which is more evident for 

�G . It is clear from Fig. 14 that 
1

N
�2

Ŷ
(t) is dominated by the density oscillations while 

1

N
�2

P̂Y
(t) by the breathing 

oscillations. We notice that, for �G , the transversal resonant tunneling gives rise to a beating pattern in the 
many-body dynamics of 

1

N
�2

Ŷ
(t) and 

1

N
�2

P̂Y
(t) . This beating pattern may be the consequence of the combination 

of different breathing frequencies. A dedicated study of many-body excitations in the transversely-asymmetric 
2D double-well potential could resolve the many-boson states.

Proceeding, we examine the time evolution of the angular-momentum variance per particle, 
1

N
�2

L̂Z
(t) , for 

�G and �X at the transversal resonant tunneling scenario (see Fig. 15). For the dynamics of 
1

N
�2

L̂Z
(t) in a sym-

metric double-well potential for �G and �X , we refer to the discussion of Fig. S4 of the supplemental materials. 
The mean-field dynamics of 

1

N
�2

L̂Z
(t) for �G showcases smooth undulations and it is uneven for �X which is 

consistent with the survival probabilities of the corresponding states. The amplitude of the oscillations of the 
mean-field 

1

N
�2

L̂Z
(t) of �X is larger compared to �G , as one can see in panels (a) and (b) of Fig. 15. For both 

states, we notice that the frequency of the oscillations of 
1

N
�2

L̂Z
(t) overlaps with the corresponding frequency of 

Figure 14.  Time-dependent position and momentum variance per particle along the y-direction in a 
transversely-asymmetric 2D double-well potential for �G (left column, ωn = 0.19 ) and �X (right column, 
ωn = 0.18 ) under transversal resonant tunneling conditions. The number of bosons is N = 10 and the 
interaction parameter � = 0.01π . M = 1 signifies the mean-field results. The many-body dynamics are 
computed with M = 6 time-dependent orbitals. We show here dimensionless quantities. Color codes are 
explained in each panel.
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1

N
�2

Ŷ
(t) . The growing degree of the fragmentation causes a decay in amplitude of the many-body 

1

N
�2

L̂Z
(t) which 

is significantly more prominent for �G and hardly visible for �X.

Summary and conclusions
The paradigm of a bosonic Josephson junction, in which bosons can tunnel back and forth between two poten-
tial wells, is shown to be very rich at resonant tunneling condition in two spatial dimensions. We have investi-
gated the dynamical behavior of a few intricate coherent bosonic clouds at resonant tunneling conditions in a 
two-dimensional asymmetric Josephson junction. In particular, we examine two types of resonant tunnelings, 
longitudinal and transversal. For the longitudinal resonant tunneling, the initial bosonic clouds are considered 
as the ground and transversely-excited states, whereas for transversal resonant tunneling, they are taken as the 
ground and longitudinally-excited states. The excited states are considered in such a way that we can explore the 
impact of longitudinal resonant tunneling on the transversely-excited state and analogously, transversal resonant 
tunneling on the longitudinally-excited state. The dynamical behavior is analyzed by solving the full many-body 
Schrödinger equation and presenting the time evolution of the survival probability, depletion or fragmentation, 
and the many-particle position, momentum, and angular momentum variances. To characterize the influence of 
the many-body correlations on the tunneling dynamics of the different shapes of the bosonic clouds, we compare 
the mean-field and many-body results.

Focusing on the longitudinal resonant tunneling scenario, we verify that a gradual change of asymmetry 
parameter c either from the values of resonant tunnelings, or the value for which one gets the symmetric double-
well potential, decreases the tunneling probability of the bosons. The many-body correlations exhibit the col-
lapse of the density oscillations which is manifested in the dynamics of the survival probability. The collapse 
rate becomes slower when one moves away from the symmetric double-well potential to the first longitudinal 
resonant tunneling condition ( c = 0.25 ) and further slower toward the second longitudinal resonant tunneling 
condition ( c = 0.5 ). Moreover, at c = 0.5 we find a partial revival pattern in the mean-field as well as the many-
body survival probabilities. Although the rate of collapse of density oscillation for �Y is slower compared to �G at 
a fixed value of c, the presence of transverse excitation in �Y makes it more fragmented than �G at a given time. 
Compared to the symmetric double-well potential, we observe that both initial states become less fragmented 
at c = 0.25 and further less fragmented at c = 0.5.

Referring to the transversal resonant tunneling scenario, we scan the frequency along the transverse direc-
tion in the right well, ωn , starting from the value ωn = 1 (symmetric 2D double-well) and reaching down to 
ωn = 0.17 , and find that the first resonant tunneling in the transverse direction occurs at ωn = 0.19 and 0.18 for 
�G and �X , respectively. This resonant tunneling is achieved when the bosons tunnel from �G of the left well to 
(y2 − 1)�G of the right well. Similarly, for �X , the bosons tunnel from �X to (y2 − 1)�X . The time evolution of 
the many-body survival probability of �G and �X signifies that the rate of collapse of density oscillations is faster 
for �G compared to �X . This collapse of density oscillations occurs due to the growing degree of many-body 
correlations which is graphically shown in terms of the loss of coherence in the system.

To obtain further information of the time-dependent many-particle wavefunction, we present the many-
particle variances of the observables, 

1

N
�2

X̂
(t) , 

1

N
�2

Ŷ
(t) , 

1

N
�2

P̂X
(t) , 

1

N
�2

P̂Y
(t) , and 

1

N
�2

L̂Z
(t) , both at the longi-

tudinal and transversal resonant tunneling conditions. Also, we demonstrate a possible interconnection of the 
above-mentioned quantities with the survival probability and loss of coherence. It is observed that the growing 
degree of fragmentation impacts the time-evolution of each variance for the longitudinal and transversal resonant 
tunneling differently. We notice that, in general, at the resonant tunneling, effects of breathing dynamics are 
amplified in the dynamics of variances. Focusing on the longitudinal resonant tunneling at c = 0.5 , a signature 

Figure 15.  Time-dependent variance per particle of the z- component of the angular-momentum operator, 
1

N
�2

L̂Z
(t) , in a transversely-asymmetric 2D double-well potential for �G (left column, ωn = 0.19 ) and �X (right 

column, ωn = 0.18 ) under transversal resonant tunneling conditions. The number of bosons is N = 10 and the 
interaction parameter � = 0.01π . M = 1 signifies the mean-field results. The many-body dynamics are 
computed with M = 6 time-dependent orbitals. We show here dimensionless quantities. Color codes are 
explained in each panel.



17

Vol.:(0123456789)

Scientific Reports |          (2022) 12:627  | https://doi.org/10.1038/s41598-021-04312-6

www.nature.com/scientificreports/

of partial revival is observed in the dynamics of 
1

N
�2

X̂
(t) , 

1

N
�2

P̂X
(t) , and 

1

N
�2

L̂Z
(t) . Also, in the longitudinal reso-

nant tunneling, 
1

N
�2

Ŷ
(t) shows a very small-amplitude fluctuations of the order of 10−3 , which is contrary to the 

transversal resonant tunneling where the amplitude of 
1

N
�2

Ŷ
(t) is significantly high, of the order of 101 . Moreover, 

the breathing oscillations in the dynamics of 
1

N
�2

P̂Y
(t) at the longitudinal resonant tunneling is barely visible, 

while at the transversal resonant tunneling it is appreciable. Interestingly, at the transversal resonant tunneling, 
we notice a beating pattern in the dynamics of 

1

N
�2

Ŷ
(t) and 

1

N
�2

P̂Y
(t) which may arise due to the mixture of 

different breathing frequencies.
The present work can inspire several promising and interesting future research directions. An immediate 

extension would be the dynamics of even more intricate bosonic structures, e.g., vortex state or a mixture of 
vortex states induced by Raman process using light with orbital angular  momentum87–92 or by synthetic magnetic 
 fields93 in the longitudinal and transversal resonant tunneling conditions. Also, to apply a linear response  theory94 
to accurately calculate the different breathing frequencies involved in the time evolution of different quantities at 
the resonant tunneling scenario would be challenging. Finally, in the long run we could envision that additional 
geometries would open up in three spatial dimensions.
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