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Diet and gut microbiota are both important factors in the pathogenesis of Crohn’s
disease, and changes in diet can lead to alteration in gut microbiome. However,
there is still insufficient exploration on interaction within the gut microbiota under
high-protein diet (HPD) intervention. We analyzed the gut microbial network and
marker taxa from patients with Crohn’s disease in public database (GMrepo,
https://gmrepo.humangut.info) combined with investigation of the changes of
composition and function of intestinal microbiome in mice fed on HPD by metagenomic
sequencing. The results showed that there was an indirect negative correlation between
Escherichia coli and Lachnospiraceae in patients with Crohn’s disease, and Escherichia
coli was a marker for both Crohn’s disease and HPD intervention. Besides, enriched
HH_1414 (one of the orthologs in eggNOG) related to tryptophan metabolism was from
Helicobacter, whereas reduced orthologs (OGs) mainly contributed by Lachnospiraceae
after HPD intervention. Our research indicates that some compositional changes in gut
microbiota after HPD intervention are consistent with those in patients with Crohn’s
disease, providing insights into potential impact of altered gut microbes under HPD on
Crohn’s disease.
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INTRODUCTION

Crohn’s disease is a subtype of inflammatory bowel diseases (IBDs) characterized by chronic
inflammation of any part of the gastrointestinal tract, with a progressive and destructive course
as well as an increasing incidence worldwide (Torres et al., 2017; Roda et al., 2020). The cause and
progression of Crohn’s disease remains unclear. It has been reported that several factors involve in
the cause of Crohn’s disease include genetic susceptibility, environmental factors (e.g., diet), altered
gut microbiota, and dysregulated immune system (Torres et al., 2017; Levine et al., 2018; Wark et al.,
2020). However, the contribution of genetics together only explained 19%–26% of the hereditary
variance of IBD (Peters et al., 2017). Diet is an important factor in the pathogenesis and treatment
of IBD (Pascal et al., 2017). Dietary components that are associated with the risk of IBD mainly
include dietary fiber, sugar, fat, and protein (Mentella et al., 2020). One large prospective study of
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the dietary patterns demonstrated the increased protein intake,
specifically animal protein in the form of meat or fish correlated
with IBD (Jantchou et al., 2010). Some animal studies also showed
that high-protein diet had harmful effects on experimental colitis
(Lan et al., 2016; Vidal-Lletjos et al., 2019).

One of the mechanisms involved in the pro- or anti-
inflammatory effects of diet is the intermediate impact of diet
on the composition and metabolic activity of the gut microbiota
(Zheng et al., 2020). Microbes can act as intermediate factors in
intestinal inflammation (Ramanan et al., 2014). The majority of
animal models of colitis require microbiota to develop intestinal
inflammation, and there is no evidence of colitis in germ-
free mice (Weingarden and Vaughn, 2017; Glassner et al.,
2020). A systematic review based on high-quality case-control
studies showed that Escherichia coli was the most consistent
harmful microbiota, whereas the abundance of Lachnospiraceae
decreased in patients with IBD compared with healthy controls
(Pittayanon et al., 2020). It was reported that adherent invasive
Escherichia coli linked to patients with Crohn’s disease (Palmela
et al., 2018; Mirsepasi-Lauridsen et al., 2019). Besides, numerous
previous studies indicated that the abundance of Lachnospiraceae
decreased in patients with IBD (Baumgart et al., 2007; Frank
et al., 2007; Lepage et al., 2011; Gevers et al., 2014; Haberman
et al., 2014), and Lachnospiraceae was a major producer of the
short-chain fatty acid (SCFA) in the human gut, which promoted
epithelial barrier integrity and inhibited intestinal inflammation
(Chen et al., 2017; Sun et al., 2021).

Notably, there is no single microorganism alone can explain
the occurrence of IBD, and antibiotics targeting a particular
microbe has not shown long-term effectiveness in the treatment
of Crohn’s disease (Weingarden and Vaughn, 2017). Indeed, there
have been extensive investigations of specific microbes in the
intestine with the development of high-throughput sequencing
techniques but still limited research concerning the interaction
within the microbiota (Coyte et al., 2015). It is crucial to explore
the gut microbiota of patients with Crohn’s disease from multiple
perspectives and the effect of different diets on the microbiota.
To explore the potential impact of altered gut microbiota under
HPD on Crohn’s disease, the co-occurring gut microbial network
and markers from public databases have been used and HPD mice
model was constructed to investigate the changes of composition
and function of intestinal microbiome.

MATERIALS AND METHODS

The Data From Public Database
By querying GMrepo1 (Wu et al., 2020) for data of gut microbes
of healthy individuals and the patients with Crohn’s disease, the
gut microbial network was obtained and filtered to show only a
portion of the microbial co-occurring network associated with
Escherichia coli. In addition, the biomarkers related to Crohn’s
disease were evaluated by the LEfse algorithm in this website.
The MicroPattern database2 (Ma et al., 2017a,b) was subsequently

1https://gmrepo.humangut.info
2http://www.cuilab.cn/micropattern

used to perform enrichment analysis of microorganisms in
different diseases.

Animals
Female BALB/c mice (3 weeks old, 12–15 g) from Hunan SJA
Laboratory Animal Co. Ltd. (Changsha, China) were raised under
specific pathogen–free condition and divided into two groups
randomly. One group was fed with standard diet (SD), and the
other with HPD for 4 weeks (the specific diet information of the
two groups of mice is shown in Table 1). After that, the mice
were sacrificed through the inhalation of isoflurane. The colon
was then incised longitudinally by a sterilized scissor, and the
mucus was rubbed by a sterile swab for metagenomic sequencing.
The study was approved by the Institutional Ethics Committee
for Animal Procedures of the Central South University (No.
2018syclwo0252).

Metagenomic Sequencing and
Taxonomic Classification
DNA concentration was measured by the Qubit R©dsDNA
Assay Kit in Qubit R©2.0 Flurometer (Life Technologies, CA,
United States). DNA (1 µg) per sample was used as input material
for the preparation of DNA samples. Sequencing libraries were
constructed using NEBNext R©UltraTM DNA Library Prep Kit for
Illumina (NEB, United States), and index codes were added to
attribute sequences to each sample. Briefly, the DNA sample
was sheared by sonication to a size of 350 bp, and then, DNA
fragments were end-polished and ligated with the full-length
adaptor for Illumina sequencing with further PCR amplification,
PCR products were purified (AMPure XP system), and libraries
were analyzed for size distribution by Agilent2100 Bioanalyzer
and quantified using real-time PCR. The clustering of the index-
coded samples was performed on a cBot Cluster Generation
System, and next library preparations were sequenced on an
Illumina HiSeq platform. Raw sequences were processed to
remove low-quality sequences using fastp (Chen et al., 2018)
(version 0.21.0) and FastUniq (Xu et al., 2012) (version 1.1.0)
to eliminate duplicates in paired short DNA sequence reads in a
FASTQ format. The sequences from mice were filtered out using
the mice reference genome (mm39) by Bowtie2 (Langdon, 2015)

TABLE 1 | Composition of the experimental diets.

SD HPD

Casein (g/kg) 200 593

Cystine (g/kg) 3 3

Starch (g/kg) 397 67

Maltodextrin (g/kg) 132 69

Sucrose (g/kg) 100 100

Fiber (g/kg) 50 50

Fat (g/kg) 70 70

Antioxidants (g/kg) 0.014 0.014

Minerals (g/kg) 35 35

Vitamins (g/kg) 10 10

Choline bitartrate (g/kg) 2.5 2.5
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(version 2.3.5). The remaining high-quality reads were used
for taxonomic classification by Kraken2 (Wood et al., 2019)
(version 2.0.7), utilizing the custom Kraken2 microbiological
database including bacteria and fungi with default settings. The
read count tables of several levels (e.g., phylum, class, order,
family, genus, and species) were generated by Bracken (Lu et al.,
2017) to estimate the relative abundance of microorganisms in
different samples.

Metagenomic Assembly, Gene
Prediction, and Function Annotation
After quality control, the remaining high-quality reads were
assembled by megahit (Li et al., 2015) (version 1.2.9) with default
settings. In total, we retrieved 1,418,865 contigs with 254,615,694
base pairs. The contigs greater than 350 bp were used to perform
the coding sequence (CDS) prediction with MetaGeneMark (Zhu
et al., 2010) (version 3.38). We predicted 801,725 CDSs from
the filtered contigs. A gene catalog was established using all
predicted genes after de-redundancy by CD-HIT (Fu et al., 2012)
and 413,994 genes remained. The read coverage for each gene in
different samples was estimated by Salmon (Patro et al., 2017)
with mapping raw reads from each sample to sequences in
gene catalog. The function annotation for genes in gene catalogs
was performed by eggNOG-mapper (Huerta-Cepas et al., 2017)
(version 2.0.1). The genes annotated with tax scope in bacteria,
fungi, and viruses were remained only to ensure the accuracy
of annotations and prevent contamination of host genes. After
annotation, a total of 9,684 genes remained. To research the
potential functions of these genes, we added up the abundance
of genes annotated as the same ortholog (OG) in eggNOG and
finally got 7,869 OGs.

Determination of Gene Host
To determine the host of the predicted genes, we used
DIAMOND (Buchfink et al., 2015) (version 2.0.8.146) to align the
predicted CDSs to the non-redundant database sub-library from
NCBI, which is containing only microorganisms and utilized
MEGAN (Arumugam et al., 2019) (version 6.20.11) software
to determine its belonging classification of microorganisms.
In MEGAN’s algorithm, we used a relatively conservative
discrimination method (only genes were determined in the same
clades, which were considered to be this clade).

Detection of Different Species and
Association Network Construction
The different species between HPD and SD groups were
identified by R package ANCOMBC (Lin and Das Peddada,
2020) (version 1.0.5), and 1,619 different species were detected
out from 4,808 species. These different species all passed
significance thresholds [need P < 0.05, adjustment using false
discovery rate (FDR)]. To explore the correlation of different
microbes, the co-occurrence network was constructed on the
basis of relative abundances of different species. The species with
the number of reads < 6 were excluded to avoid unreliable
results, and the FastSpar (Watts et al., 2019) (version 1.0)
was then used to realize the SparCC network efficiently. Only

statistically significant (P < 0.05) correlations were considered
in network analyses. Afterward, the R package igraph was used
to construct the microbial network. To further find the potential
identical functional groups between the constructed microbial
co-occurrence network and the core bacteria that are critical, we
used MCODE (Bader and Hogue, 2003) in Cytoscape (Shannon
et al., 2003) with default settings. After that, 101 species were
obtained in final co-occurrence networks within 12 clusters, and
10 hub species were identified. The Cytoscape (3.8.0) was used to
visualize the network and the sub-networks.

Discrimination of Difference Orthologs
Mann–Whitney rank test was performed for all OGs, with
the calculation of corrected P-value (FDR). The “log2FC” was
explained by log2FC = log2[(A+ 1)/(B+ 1)], where A and
B are the OGs abundance of HPD and SD groups, respectively.
The filter condition was FDR < 0.385, P < 0.05, and | log2FC|
> 2. Finally, 15 OGs were detected. All calculations above were
implemented in python (version 3.8.5).

Short-Chain Fatty Acid Analysis
Short-chain fatty acids (SCFAs) were extracted from mouse
feces using acetonitrile: water (1:1) and derivatized using 3-
nitrophenylhdyrazones. SCFAs were analyzed on a Jasper HPLC
coupled to Sciex 4500 MD system. In brief, individual SCFAs were
separated on a Phenomenex Kinetex C18 column (100× 2.1 mm,
2.6 µm) using 0.1% formic acid in water as mobile phase A and
0.1% formic acid in acetonitrile as mobile phase B. Octanoic acid-
1-13C1 purchased from Sigma-Aldrich and Butyric-2, 2-d2 from
CDN Isotopes were used as internal standards for quantitation
(Li et al., 2019).

Other Bioinformatics Analysis and Data
Visualization
The Multi-Response Permutation Procedure (MRPP) test was
implemented in the vegan package (version 2.5-7) under the R
platform. The R package mixOmics (version 6.10.9) was used
to make partial least-squares discriminant analysis (PLS-DA)
model. The data visualization was performed in R (version 3.6.1).

RESULTS

Escherichia coli and Lachnospiraceae
Have Potential Negative Correlation in
Microbial Gut Co-occurrence Network of
Crohn’s Disease
To explore the co-occurrence of Escherichia coli and other
microbes in the intestines of patients with Crohn’s disease,
we investigated the gut microbial network in the GMrepo
and selected part of gut microbiota network of Crohn’s
disease as shown in Figure 1A. It was found that there
existed an indirect negative correlation between Escherichia
coli and Lachnospiraceae. In the data sets of multiple studies,
Escherichia coli was a marker for Crohn’s disease. Whereas
Lachnospiraceae bacterium 2-1 and Lachnospiraceae bacterium
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FIGURE 1 | Analysis of gut microbiota in patients with Crohn’s disease. (A) Partial of co-occurrence microbial network in patients with Crohn’s disease shows
relationships among gut microbes. The node sizes are proportional to the number of connected nodes in the network, and the colors indicate positive (green) or
negative (red) correlations. The nodes marked with green belong to Lachnospiraceae family. (B) Marker taxa are shown between health and Crohn’s disease using
LEfSe analysis. Y-axis represents BioProject ID in NCBI, and X-axis represents LDA scores calculated by LEfSe.

7-1 belonging to Lachnospiraceae were markers in the healthy
controls (Figure 1B).

Six Notable Microbes Are Detected
Under the Influence of High-Protein Diet
To explore the impact of HPD on the intestinal flora,
metagenomic sequencing was performed in mice from HPD
and SD group, followed by mapping of various levels of
intestinal microbial composition. The complex composition of

gut microbes is presented on a two-dimensional plane using
a supervised learning PLS-DA model. The composition of the
gut microbes in HPD group converged, whereas it was more
dispersed in the other group (Figure 2A). Similarly, according
to MRPP test, there was significant difference of between-subjects
(β) diversity between HPD and SD groups (P = 0.1). To accurately
identify the impact of HPD on the gut microbes, ANCOMBC
algorithm was applied in strict screening conditions (refer to
Materials and Methods) to screen out 457 different microbes
(Figure 2B). Next, a gut microbial co-occurrence network was
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FIGURE 2 | Alteration of intestinal microbial structure in mice fed a high protein diet. (A) PLS-DA analysis based on the relative abundance of species reflects the
between-subjects (β) diversity across groups, in which the orange circles and blue squares represent HPD and SD groups, respectively (MRPP, P = 0.1). (B) Volcano
plot demonstrates the differential abundance of species between HPD and SD groups. ANCOMBC is used to calculate the P-values. Points are colored according to
the number of log2FC if they passed significance thresholds. (Adjusted P < 0.05, adjustment using FDR). (C) The microbial co-occurrence network where different
nodes indicate different species is constructed. Red links indicate positive covariation between two individual nodes, whereas blue links indicate negative covariation.
The hub species are marked by red triangles.

constructed on the basis of the results of ANCOMBC. There were
12 clusters and 10 seed nodes, which were considered as hub
species in the network (Figure 2C). Considering the statistical
differences between groups and the topology of the network, the
intersection of the two results was taken and presented in Figure
3A. Finally, six notable microbes were detected out and their
relative abundance were shown in Figure 3B.

The Functional Changes of Microbiome
Under the Influence of High-Protein Diet
The top 15 different OGs between groups sorted by log2FC
were shown in Figure 3C. Among them, only the HH_1414
was enriched in HPD group, which was annotated as “Amino
acid transport and metabolism” in COG database and was
considered as a subunit of tryptophan synthase in eggNOG
database. However, there were eight OGs related to life activities
such as replication annotated as “Replication, recombination

and repair” in COG database. The remaining three other
types of OGs were annotated in COG as “Transcription,”
“Cell wall/membrane/envelope biogenesis,” and “Inorganic ion
transport and metabolism,” respectively. The specific descriptions
for each OG were annotated in Table 2.

The Antagonistic Relationship Between
Helicobacter and Lachnospiraceae
Under the Influence of High-Protein Diet
A rigorous LCA algorithm in MEGAN was further applied
to determine the source of these functional genes. It was
noting that the HH_1414 OG related to tryptophan synthesis
was from Helicobacter, whereas most of the other OGs with
reduced abundance came from Lachnospiraceae (Figure 4A).
The relative abundance of Helicobacter in HPD group was
significantly higher than that in SD group, whereas it was
opposite for Lachnospiraceae (Supplementary Figure 1). Next,
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FIGURE 3 | Gut microbiota and OGs with significantly different abundance under high protein diet. (A) Venn diagram shows the number of shared and unique
species for the hub species and ANCOMBC. (B) The heatmap graph shows the relative abundance of six taxa detected in Figure A. The colors from white to green
represent the degree of difference. (C) There are 15 OGs detected with the threshold value [Mann–Whitney rank test, P < 0.05, | log2FC| > 2]. They demonstrate
functional genetic alterations in intestinal microbes with high-protein diet intervention.

the species belonging to Helicobacter and Lachnospiraceae
including their related hub species in microbial co-occurrence
network were extracted to construct a sub-network, which
was displayed in Figure 4B. The results suggested that
the species from the same clusters tended to co-occur,
whereas the relationship between two clusters showed a
negative correlation.

Microbes in the Sub-Network Are
Consistent With Crohn’s Disease
To check whether the microorganisms in the microbial sub-
network under the influence of HPD (Figure 4B) affected Crohn’s
disease, the MicroPattern database was used and these microbes
were enriched in Crohn’s disease (Supplementary Figure 2). In
addition, three microorganisms (Anaerostipes hadrus, Roseburia
intestinalis, and Parabacteroides distasonis) in the sub-network

were detected as healthy markers (Supplementary Figure 3).
On the basis of the above research, we proposed a putative
pattern that excessive protein intake would lead to changes in the
structure of gut microbes, which, in turn, affect the occurrence
and development of Crohn’s disease, as shown in Figure 4C.

DISCUSSION

Dietary intervention with specific characteristics can be
important during the treatment of the inflammatory process
in patients with IBDs (Barros et al., 2021). For patients
with IBD, high fermentable oligosaccharides, disaccharides,
momosaccharides, and polyols (FODMAP) diet contributes to
higher gastrointestinal dysfunction symptoms such as abdominal
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TABLE 2 | Different eggNOG orthologs annotation.

eggNOG orthologs eggNOG description EC

C806_05112 Transposase

C805_01742 ABC transporter transmembrane region

C805_03401 Tetratricopeptide repeat

C806_04984 DDE superfamily endonuclease

C810_02198 Uncharacterized protein family (UPF0236)

C810_04858 DDE superfamily endonuclease

N510_02525 Psort location cytoplasmic

C824_00684 DDE superfamily endonuclease

ANASTE_00488 WYL domain

C816_02063 Psort location cytoplasmic

HH_1414 The alpha subunit is responsible for the
aldol cleavage of indoleglycerol phosphate
to indole and glyceraldehyde 3- phosphate

Tryptophan
synthase

C823_03517 Transposase IS200 like

C824_04699 Psort location cytoplasmic

C823_05964 Psort location cytoplasmic

C806_05062 Bacterial regulatory proteins, tetR family

pain, bloating, and urgency (Cox et al., 2017), whereas low-
FODMAP diet is effective in relieving gut symptoms and
reducing the fecal abundance of microbes with immune
regulation function (Cox et al., 2020). A study of 60 patients with
IBD showed improved symptom scores and fecal calprotective
protein in the low-FODMAP diet subgroup compared to the SD
(Bodini et al., 2019). Mediterranean diets, diets high in fruits,
vegetables, and other plant foods, as well as high-fiber diets
(including fiber supplementation) are associated with reduced
levels of inflammation (King et al., 2007; Smidowicz and Regula,
2015; Wagenaar et al., 2021).

Our study revealed that changes in the gut under the influence
of HPD, which were consistent with Crohn’s disease. It suggested
that HPD may have potential impact on Crohn’s disease by
affecting structural changes in gut microbes. In our experiment,
as for the composition of gut microbiota, Escherichia coli was
detected as notable specie and significantly elevated in HPD
group; meanwhile, its abundance was also elevated in the patients
with Crohn’s disease. This is consistent with previous reports.
Escherichia coli was enriched in intestines of patients with Crohn’s
disease (Gevers et al., 2014; Palmela et al., 2018) and had a high
potential to induce Crohn’s disease (Mirsepasi-Lauridsen et al.,
2019; Nagayama et al., 2020).

To investigate the functional change of gut microbiome,
firstly, we found that HH_1414 annotated as tryptophan
synthase was enriched in HPD group and mainly contributed
by Helicobacter while reduced OGs mainly caused by
Lachnospiraceae. Tryptophan was found to be related to
Crohn’s disease (Jansson et al., 2009; Jacobs et al., 2016). Some
species of Helicobacter were considered to be detrimental in
intestine. For instance, it was reported that IBD was driven by
reactive T cells caused by Helicobacter hepaticus (Xu et al., 2018)
and Helicobacter typhlonius was a key disease trigger to promote
and aggravate IBD (Chichlowski et al., 2008; Powell et al.,
2012). For Lachnospiraceae, it can influence the host epithelium

and mucosal immune system by enriching in proximity to the
mucosa (Nava et al., 2011; Van den Abbeele et al., 2013; Riva
et al., 2019). The genomic analysis of Lachnospiraceae suggested
a significant role of using diet-derived starch and other sugars
to promote the production of SCFAs (Byndloss et al., 2017;
Vacca et al., 2020). SCFAs generated by intestinal microbial
metabolism may reduce the risk of Crohn’s disease through
increasing mucosal immune tolerance (Schirmer et al., 2019).
However, no significant differences in the content of SCFAs in
feces were found in our study (Supplementary Figure 4). This
may be due to the cross-feeding of gut microbes (D’Souza et al.,
2018) or due to the limitation of sample size. Our previous
study found that the antibiotics can reduce damage of mucus
layer caused by a high-protein diet (Chen et al., 2021). However,
gut microbes are a complex community in which the altruistic
behavior and community effects of drug-resistant bacteria
need to be taken into account (Lee et al., 2010; Frost et al.,
2018). It was reported that Lachnospiraceae can contribute
to the microbiota-mediated colonization resistance against
drug-resistant pathogens through conversion of primary to
secondary bile acids (Buffie et al., 2015; Studer et al., 2016).
Besides, the tissue samples from the patients with Crohn’s disease
were characterized by decrease in specific genera from families
Ruminococcaceae and Lachnospiraceae (Tyler et al., 2016).
Secondly, our study revealed that an alteration of the microbiota
in the sub-network was constructed and that Anaerostipes
hadrus, Roseburia intestinalis, and Parabacteroides distasonis
were detected as markers of healthy controls. Parabacteroides
distasonis was a node between Helicobacter and Lachnospiraceae
in the sub-network, which had a negative correlation with the
former and positively correlated with the latter in our study.
Moreover, it was reported that Parabacteroides distasonis could
contribute to repair the integrity of the intestinal wall and was
closely related to the metabolism of bile acids (Wang et al.,
2019). Bile acid metabolites were generated by bacteria from
host-produced bile acids, which, however, were reduced in
patients with IBD (Schirmer et al., 2019). Roseburia intestinalis
belonging to Lachnospiraceae was reported to reduce disease
activity index scores and alleviate intestinal mucosal epithelial
injury in a mouse model of colitis (Shen et al., 2018). Anaerostipes
hadrus was also a bacterium from Lachnospiraceae, which played
an important role in inositol catabolism-butyrate biosynthesis
pathway (Zeevi et al., 2019). Butyrate was also a type of SCFAs,
which can promote the development of regulatory T cells and
continuously strengthen the mucosal barrier. Consequently, the
structure of gut microbe’s changes under excessive protein maybe
closely related to Crohn’s disease.

Nevertheless, there are some limitations in our study, for
instance, larger clinical cohort and lack of differences in gut
microbes in rodents and exploration of humans, which need to
be covered in the future. In inclusion, only female mice were
considered in our experiments, which is unclear for the bias of
the experimental results, and some studies have reported that
sex has not been clarified for the occurrence of IBD (Severs
et al., 2018; Greuter et al., 2020). Our present study has taken
the first step toward bringing a new perspective to elucidate the
complex network between Crohn’s disease and HPD using the gut
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FIGURE 4 | Sources of differential OGs and the symbiotic relationship of these microbes under HPD. (A) The classification levels of 15 different OGs are shown,
orange represents those enriched in HPD group, and blue represents the enrichment in SD group. (B) A sub-network containing Helicobacter genus,
Lachnospiraceae family, and the filtered six hub species is extracted from the previous microbial co-occurrence network. Red links indicate positive covariation
between two individual nodes, whereas blue links indicate negative covariation. The hub species are marked by red triangles. In addition, “Heli” represents
Helicobacter, and “Lac” represents Lachnospiraceae. (C) A hypothetical pattern that HPD affects Crohn’s disease by altering the composition of gut microbes is
proposed.

microbiota as a bridge. However, more metabolites and immune-
related cytokines in addition to SCFAs should be considered
in the next step, which could help to establish a link between
gut microbes and host immune indicators under the influence
of HPD. In addition, the functional studies on mice are also
needed to confirm our proposed effect of altered gut microbiota
on Crohn’s disease.

CONCLUSION

In this work, we focused on the potential impact of altered gut
microbiota on Crohn’s disease under HPD, and constructed a
mouse model of HPD to study changes in the composition and
function of the gut microbiota. Our results revealed a consistency
in the alteration of gut microbes in HPD and Crohn’s disease.
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In the meantime, we proposed a pattern of the effect of altered
gut microbes under HPD on Crohn’s disease on the basis of
the co-occurrence relationship of gut microbes. In addition,
we explained the reason for altered functions of gut microbes
under HPD. Therefore, our study provided new ideas for
explaining how HPD affect Crohn’s disease. For future studies,
combining multi-omics approaches together may better explain
the effect of HPD on the alteration of gut microbes on the
development of IBD. In addition, the use of gut microbial
interventions to verify the therapeutic effect on IBD should be
further validated.
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