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Speed-dependent and mode-
dependent modulations of 
spatiotemporal modules in human 
locomotion extracted via tensor 
decomposition
Ken Takiyama1,4*, Hikaru Yokoyama1,2,4, Naotsugu Kaneko3 & Kimitaka Nakazawa3

How the central nervous system (CNS) controls many joints and muscles is a fundamental question in 
motor neuroscience and related research areas. An attractive hypothesis is the module hypothesis: 
the CNS controls groups of joints or muscles (i.e., spatial modules) by providing time-varying motor 
commands (i.e., temporal modules) to the spatial modules rather than controlling each joint or 
muscle separately. Another fundamental question is how the CNS generates numerous repertoires of 
movement patterns. One hypothesis is that the CNS modulates the spatial and/or temporal modules 
depending on the required tasks. It is thus essential to quantify the spatial modules, the temporal 
modules, and the task-dependent modulation of these modules. Although previous attempts at such 
quantification have been made, they considered modulation either only in spatial modules or only in 
temporal modules. These limitations may be attributable to the constraints inherent to conventional 
methods for quantifying the spatial and temporal modules. Here, we demonstrate the effectiveness 
of tensor decomposition in quantifying the spatial modules, the temporal modules, and the task-
dependent modulation of these modules without such limitations. We further demonstrate that tensor 
decomposition offers a new perspective on the task-dependent modulation of spatiotemporal modules: 
in switching from walking to running, the CNS modulates the peak timing in the temporal modules 
while recruiting more proximal muscles in the corresponding spatial modules.

How the central nervous system (CNS) controls the human body is a fundamental question. The CNS controls the 
body while somehow resolving a significant number of degrees of freedom (DoFs), in fact, more than is necessary 
to achieve the desired motions1. For example, during walking and running in daily life, large numbers of joints 
and muscles should be controlled in an orchestrated manner. The module hypothesis is an influential proposal 
regarding how such a tremendous number of DoFs can be managed2–6. According to this hypothesis, the CNS 
effectively reduces the number of DoFs to be managed by controlling groups of joints or muscles, referred to as 
spatial modules, rather than single joints or muscles separately. Accordingly, the time-varying motor commands 
sent to the spatial modules are referred to as temporal modules.

How the brain constructs various repertoires of motions is another fundamental question. One possible solu-
tion is that the brain modulates the spatiotemporal modules depending on the task at hand. On the one hand, 
temporal modules, rather than spatial modules, may be modulated for specific tasks, such as walking, running, 
executing various types of gaits, or responding to unpredictable perturbations while walking7,8. On the other 
hand, task-dependent modulation may be applied to spatial modules rather than to temporal modules for certain 
tasks, such as responding to unpredictable perturbations to maintain balance while standing9 and performing 
arm-reaching movements10, as well as in various types of movements of frogs11. According to our recent findings, 
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a number of modules show task-dependent modulation during walking and running at various speeds12. In 
summary, there are several seemingly different perspectives on how the spatiotemporal modules are modulated 
depending on the task.

One possible reason why there is no agreed-upon perspective on the task-dependent modulations of the spati-
otemporal modules is the limitations inherent to conventional methods. Conventional methods, such as principal 
component analysis (PCA)13 and non-negative matrix factorization (NNMF)14, are classified as matrix decom-
position methods. Although matrix decomposition is suitable for investigating the dependence of joint angle and 
electromyographic (EMG) data on only two factors (i.e., spatial and temporal modules), there can be limitations 
when considering three or more factors, such as spatial modules, temporal modules, and the task-dependent 
modulations of those modules. For example, with matrix decomposition, the task-dependent modulation of a 
temporal module between two tasks has been discussed under the constraint of the same spatial module; sim-
ilarly, the modulation of a spatial module has been discussed without considering the modulation of the cor-
responding temporal module. To overcome these constraints and enable the investigation of task-dependent 
modulations while extracting both spatial and temporal modules, methods for appropriately considering (more 
than) three factors can be suitable. In contrast to matrix decomposition, which is inherently suitable for analyzing 
two factors because of the dimensionality of matrix data (i.e., rows and columns), tensor decomposition has been 
proposed as a generalized version of matrix decomposition for analyzing (more than) three factors, consistent 
with the dimensionality of tensor data (i.e., rows, columns, and stacked matrices in the third dimension, in the 
case of a three-dimensional tensor)15. Tensor decomposition thus enables us to consider three factors simultane-
ously, i.e., we can investigate task-dependent modulations while extracting both spatial and temporal modules at 
the same time.

Here, we demonstrate the effectiveness of tensor decomposition in extracting spatial modules, temporal mod-
ules, and the task-dependent modulations of these spatiotemporal modules. Throughout this study, we rely on 
CANDECOMP/PARAFAC (CP) decomposition15,16 because it is a natural extension of conventional methods 
(i.e., PCA and NNMF). Concretely, CP decomposition extracts spatial and temporal modules in a similar man-
ner to conventional methods; additionally, CP decomposition generates task-dependent modulations of these 
modules. Another important feature is that CP decomposition does not require orthogonality among the spatial 
modules, in contrast to PCA. Because the orthogonality in PCA is a matter of mathematical convenience rather 
than a requirement for the analysis of joint angles, CP decomposition can generate more plausible spatial mod-
ules than PCA can. Furthermore, CP decomposition is applicable to non-negative data (e.g., EMG data) with 
non-negativity constraints. For the reasons discussed above, we utilize CP decomposition, a tensor decompo-
sition algorithm, to extract spatial modules, temporal modules, and the task-dependent modulations of these 
spatiotemporal modules.

A few previous studies have attempted to demonstrate the effectiveness of tensor decomposition in analyzing 
joint angle and EMG data17–21. In a previous study, tensor decomposition was applied to wrist EMG data, and 
the results demonstrated the task-dependent modulation of the spatiotemporal modules17. That study relied on 
a variant of Tucker decomposition, which is a more general type of tensor decomposition that subsumes CP 
decomposition. In Tucker decomposition, there are three free parameters: the number of spatial modules, the 
number of temporal modules, and the number of factors describing task-dependent modulations. Although this 
method offers high flexibility and generality, the determination of these three parameters requires considerable 
computational time. In general, several different combinations of parameters can provide the same performance 
in reconstructing the original data. It is thus difficult to determine the optimal parameters.

Other studies18–21 have relied on the application of matrix tri-factorization, a reduced version of Tucker 
decomposition (a detailed description is given in17), to EMG data to reveal the task-dependent modulation of 
individual spatiotemporal modules. The matrix tri-factorization algorithm is closely related to CP decomposi-
tion. Tri-factorization enables the estimation of spatial modules, temporal modules, and how those modules are 
recruited in each task. It has two free parameters: the number of spatial modules and the number of temporal 
modules. Again, several different combinations of parameters may provide the same performance in reconstruct-
ing the original data. Although it remains unclear how best to determine the optimal parameters, previous studies 
have proposed an a posteriori method of parameter determination using linear discriminant analysis (LDA)18–21. 
Although LDA worked well in those studies18–21, it generally requires certain assumptions about what informa-
tion is inherent to either (both) the spatial or (and) temporal modules that are extracted (e.g., the direction in 
arm-reaching movements20). One advantage of tensor decomposition is its ability to enable the investigation 
of task-dependent modulation (i.e., a third factor) without any a posteriori analysis. CP decomposition is the 
simplest version of tensor decomposition and has only one free parameter to be determined (i.e., the number of 
combinations of spatial modules, temporal modules, and factors for describing the task-dependent modulations 
of those modules). Due to its simplicity, CP decomposition enables the investigation of task-dependent modula-
tions without any a posteriori analysis while saving computational time. Because CP decomposition has not yet 
been applied to joint angle or EMG data, it may provide novel perspectives in task-dependent modulations of 
spatiotemporal modules in a more effective manner.

Here, we apply CP decomposition to joint angle and EMG data to investigate both speed-dependent and 
mode-dependent (walking vs. running) modulation, on which no consensus has yet been achieved, although 
various perspectives on the corresponding modulations have been presented. Joint angles and muscle activities 
exhibit a speed dependence, and this dependence differs for each joint angle and muscle3,22. These findings were 
reported without the extraction of any modules. One interesting result is that independent of speed, the three 
angles of the thigh, shank and foot are confined to a two-dimensional space3; similarly, there are only five basic 
EMG patterns associated with human locomotion4. These examples of dimensional reduction inherent in kin-
ematic data and EMG data indicate the involvement of spatiotemporal modules in human locomotion. A later 
study suggested that the manner in which the dimensionality is reduced in kinematic data depends on the speed 
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of movement23—specifically, fewer dimensions are sufficient to explain the original data at higher speeds—and 
that this tendency is diminished in Parkinson’s disease. Thus, it can be inferred that fewer spatiotemporal mod-
ules may be recruited at higher speeds than at lower speeds. In contrast, our previous study indicated that the 
number of spatiotemporal modules evident in EMG data increases with an increase in speed12. Other studies 
have reported that only temporal modules, rather than spatial modules, may be modulated depending on the 
mode of movement4,24. In particular, the peaks in some temporal modules can exhibit mode-dependent temporal 
shifts24. In summary, no consensus has yet been reached regarding the speed-dependent and mode-dependent 
modulation of spatiotemporal modules in human locomotion. In this study, we apply CP decomposition to joint 
angle and EMG data collected during walking and running at various speeds to elucidate how the spatiotemporal 
modules are modulated depending on both speed and mode.

We demonstrate that tensor decomposition enables us to clarify the task-dependent modulations of spatio-
temporal modules inherent in joint angle and EMG data; in particular, we demonstrate the effective analysis of 
human walking and running at various speeds. From the joint angle data, we extract two types of modules: (1) 
modules that show increasing recruitment with increasing speed and (2) modules that are recruited mainly dur-
ing running. Based on the EMG data, we demonstrate three types of modules: (1) modules that show increasing 
recruitment with increasing speed, 2) modules that are recruited mainly during walking, and (3) modules that are 
recruited mainly during running. By comparing the second and third types of modules evident in EMG data, we 
present a new perspective on how the recruitment of spatiotemporal modules depends on the movement mode 
(walking or running): the CNS switches between walking and running not only by modulating the temporal 
modules, as reported in previous studies4,24, but also by recruiting spatial modules involving more proximal mus-
cles during running compared with walking.

Results
Our program code can be downloaded from the website of the corresponding author.

Tensor decomposition.  We apply tensor decomposition to investigate the task-dependent modulation of 
the spatiotemporal modules extracted from joint angle and EMG data. The differences between tensor decompo-
sition and matrix decomposition lie in how one prepares the original data for analysis and the obtained results. 
For tensor decomposition, the original data considered in the current study are arranged in 3-dimensional arrays. 
Notably, tensor decomposition can also be applied to arrays with more than 3 dimensions. Each array consists of a 
joint or muscle sequence (S columns in Fig. 1a), a temporal series (T rows in Fig. 1a), and a task sequence (K slices 
of S × T matrices in Fig. 1a). Throughout this paper, the word “task” broadly refers to motion under all types of 
conditions (i.e., walking or running at different speeds as shown in Fig. 2) for all subjects. Tensor decomposition 
enables the extraction of not only spatial and temporal modules but also the task-dependent modulations of these 
modules (Fig. 1a). Throughout this study, we use bar graphs to represent spatial modules, line plots to represent 
temporal modules, and circular dots to indicate task-dependent modulations, as shown in Fig. 1, following a 
previous study16.

We focus on CP decomposition throughout this paper. In CP decomposition, the (i, j, k)th element of the data 
tensor X ∈ RS×T×K, Xi,j,k, is approximated as
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where S, T, and K denote the number of joint angles or muscles, the number of time frames, and the number 
of tasks, respectively; R is the number of modules, to be determined a priori; wi,r denotes the i th element of the r 
th spatial module, wr ∈ RS×1; pj,r denotes the j th element of the r th temporal module, pr ∈ RT×1; tk,r denotes the k 
th element of the task-dependent modulation of the r th spatiotemporal module, tr ∈ RK×1 (Fig. 1a); and λr ≥ 0 
denotes the scaling factor for the combination of the r th spatial module, the r th temporal module, and the 
task-dependent modulation of the r th spatiotemporal module under the conditions w w 1r
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r = . λr represents the contribution of the r th combination to explaining the original tensor data. A spatial 
module represents a group of joints or muscles to be controlled synchronously, and the associated temporal mod-
ule represents the time-varying signal sent to this spatial module. The associated task-dependent modulation 
indicates the extent to which the corresponding spatiotemporal module is recruited in each task. This concept is 
closely related to dynamic motor primitives: time-varying motor commands are sent to muscles, the magnitude 
of such a motor command can change depending on task at hand, and the temporal width of such a motor com-
mand can change via the systems responsible for controlling movement time25.

The data corresponding to the k th task X:,:,k∈ RS×T can be approximated as
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which indicates that the spatiotemporal modules are independent of k, meaning that they are common across 
all tasks, and that the recruitment patterns of these modules are modulated depending on tk,r. The spatial mod-
ules, temporal modules, and task-dependent modulations are estimated so as to minimize the squared error 
between the original tensor data and the decomposed data:
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with some constraints on λr(≥0), wi,r, pj,r, and tk,r. For wi,r, pj,r, and tk,r, there are no constraints for the analysis of 
the joint angle data, and there are non-negativity constraints for the analysis of the EMG data (i.e., wi,r ≥ 0, pj,r ≥ 0, 
and tk,r ≥ 0).

Throughout this study, we choose R to be the minimum number of modules that explain more than 70% of the 
variance in the original data (Figs. 3-5). Equivalently, we choose R to be the minimum number required to exceed 
a value of 0.7 for the uncentered coefficient of determination. This 70% criterion for the analysis of all subjects can 
be considered to approximately correspond to an 80% criterion in the analysis of individual subjects because these 
conditions yield similar results (Figs. 5 and 6). Notably, we do not find an intrinsic difference between the R values 
necessary to explain more than 70% and more than 90% of the original variance in the analysis of the joint angle 
data (Fig. S1) and the values necessary to explain more than 70%, more than 75%, and more than 80% of the 
original variance in the analysis of the EMG data (Figs. S2–S4). Because the tensor decomposition with R = 4 
explains more than 70% and that with R = 5 explains more than 90% of the original variance in the joint angle 
analysis, no specific R results can be presented to explain more than 80% of the original variance. Although we 
rely on the variance as the measure for determining R, following previous studies using matrix decomposition, we 
also demonstrate a common measure for determining R in tensor decomposition, with the fitting error defined as 

λ∑ − ∑

∑

=X w p t

X

( )i j k i j k r
R

r i r j r k r

i j k i j k

, , , , 1 , , ,
2

, , , ,
2

 (Figs. 3b and 5b).

The 70% threshold for the explained variance is lower than the threshold used for matrix decomposition in 
previous studies6,8,12. Notably, the amount of variance explained in CP decomposition is generally lower than that 
in matrix decomposition due to the number of parameters. In the analysis of K conditions, for example, common 

Figure 1.  The concepts of tensor and matrix decomposition. (a) Tensor decomposition and CP decomposition, 
our focus in the current study. For decomposition, we construct a 3-dimensional array of data consisting of 
S columns, T rows, and K slices. After decomposition, we obtain spatial modules, as shown by the bar graph 
in the blue frame; temporal modules, as shown by the line plot in the green frame; and the task-dependent 
modulations of these modules, shown as circular dots in the red frame. (b) Matrix decomposition. To analyze K 
task datasets simultaneously, we need to establish an S × (T × K) matrix. After applying matrix decomposition, 
we obtain the spatial modules and the task-dependent modulations of the temporal modules.
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spatial modules and temporal modules are estimated across all conditions in CP decomposition, as represented 
in Eq. (2). The fitting power for each condition is controlled by a third factor (i.e., tr in the equations mentioned 
above). In total, the number of fitting parameters is S × R + T × R + K × R. In contrast, for matrix decomposition 
in the form shown in Fig. 1b, the number of fitting parameters is S × R + T × K × R. When the data for each con-
dition are analyzed separately, the number of fitting parameters is S × T × R × K. In our EMG analysis, S is equal 
to 16, T is equal to 200, and K is equal to 696. Thus, for CP decomposition, the number of parameters is 912 × R, 
whereas for matrix decomposition, the number of parameters is 139,216 × R for the case illustrated in Fig. 1b 
or 2,227,200 × R for the case of separate analysis for each condition. Consequently, the fitting power in matrix 
decomposition is markedly better than that in CP decomposition due to the large difference in the number of 
parameters.

In contrast to tensor decomposition, matrix decomposition (e.g., PCA or NNMF) enables the extraction of the 
spatial modules and the task-dependent modulation of only the temporal modules when we analyze S × (T × K) 
matrices (Fig. 1b). In the decomposition process, the matrix Z ∈ RS×(T×K) is decomposed as

�Z w p ,
(4)r

R

r r
T

1
∑
=

Figure 2.  Joint angles of a representative subject at five representative speeds (0.56, 1.39, 1.94, 2.22, and 
3.33 m/s). (a) Positions of the right hip, knee, and ankle every 20 time frames, normalized to their positions in 
the 200th time frame. At time 1, the right foot took off from the ground, and it returned at time 200. (b–d) Raw 
joint angle data for the ankles (panel (b)), knees (panel (c)), and hips (panel (d)) at each speed. The dotted lines 
indicate the angles for the left leg, and the solid lines indicate the angles for the right leg. The lines represent the 
joint angles averaged across 27 cycles, and the shaded areas represent the standard deviations of these angles. 
For tensor and matrix decomposition, we focus on the average joint angles after appropriate standardizations 
(see the Methods section for details). Table 1 summarizes the meanings of the positive and negative values for 
each joint.
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where S, T, and K denote the number of joint angles or muscles, the number of time frames, and the number 
of tasks, respectively; R is the rank, to be determined a priori; wr ∈ RS×1 denotes the r th spatial module; and 
pr ∈ R(T×K)×1 denotes the r th temporal module modulated in a task-dependent manner (Fig. 1b). Similar to tensor 
decomposition, we determine R as the minimum number of modules and components that explain more than 

Figure 3.  CP decomposition for joint angle data. λ denotes the scaling factor for each tensor. (a) The relation 
between the number of modules and components and the variance explained by the tensor decomposition. (b) 
The relation between the number of modules and components and the fitting error of the tensor decomposition. 
(c1–c3) Extracted spatial modules. LA, LK, LH, RA, RK, and RH denote the left ankle, left knee, left hip, right 
ankle, right knee, and right hip, respectively. (d1–d3) Extracted temporal modules. (e1–e3) Extracted task-
dependent modulations.
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70% of the variance in the original data (Fig. 4). In PCA, there are orthogonality restrictions among the spatial 
modules: wwi

T
j = 0 when i ≠ j. In NNMF, there are no such orthogonality restrictions, but there are non-negativity 

constraints (i.e., wi,r ≥ 0 and pj,r ≥ 0). After this analysis, we are able to consider how to evaluate the task-dependent 
modulations of the temporal modules (Fig. 1b). Matrix decomposition can also be separately applied to the S × T 
matrix for each task. In that case, however, we generally obtain different spatial and temporal modules for each 
task; thus, a problem arises in determining how to evaluate the task-dependent modulation of the spatiotemporal 
modules. A common measure used for this purpose is the pairwise correlation of the spatial modules among the 
tasks, without considering the task-dependent modulation of the temporal modules6. Thus, in matrix decompo-
sition, task-dependent modulation is quantified for either the spatial modules or the temporal modules rather 
than for both the spatial and temporal modules simultaneously.

In summary, tensor decomposition enables the evaluation of the task-dependent modulations of spatiotempo-
ral modules without being restricted to considering only spatial or only temporal modules.

Figure 4.  Matrix decompositions for joint angle data and EMG data. (a1–a3) Spatial modules extracted via 
PCA from the joint angle data. LA, LK, LH, RA, RK, and RH denote the left ankle, left knee, left hip, right ankle, 
right knee, and right hip, respectively. (b1–b3) Representative temporal modules extracted via PCA from the 
joint angle data. The gray horizontal line in b1 indicates the speed range in which all subjects switched from 
walking to running. (c1–c4) Spatial modules extracted via NNMF from the EMG data. The abbreviations for 
the muscle names are summarized in Table 2. (d1–d4) Representative temporal modules extracted via NNMF 
from the EMG data. The gray horizontal line in d1 indicates the speed range in which all subjects switched from 
walking to running.

Angle Positive value Negative value

Ankle Dorsiflexion Plantar flexion

Knee Flexion Extension

Hip Flexion Extension

Table 1.  Calculated joint angles and definitions.
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Tensor decomposition for joint angle data.  The current study focuses on the hip, knee, and ankle angles 
of the right and left legs in the sagittal plane, as listed in Table 1, during walking or running on a treadmill (Fig. 2 
shows the temporal variations of these six angles at six representative speeds). We set 11 different belt speeds and 
requested participants (N = 15, ages 23–31 years, all male) to walk when the belt speed was 0.56, 0.83, 1.11, 1.39, 
1.67, or 1.94 m/s and to run when the belt speed was 2.22, 2.50, 2.78, 3.06, or 3.33 m/s.

We applied CP decomposition to the joint angle data of all subjects at all speeds (Fig. 3). We extracted the 
spatial modules (Fig. 3c), the temporal modules (Fig. 3d), and the task-dependent modulations of those mod-
ules (Fig. 3e). Here, the term “task” refers to locomotion at one of the 11 different speeds for one of the 15 sub-
jects—thus, in total, we analyzed 165 “tasks”. Hereafter, we refer to each group consisting of one pair of spatial and 
temporal modules and the associated task-dependent modulation as a tensor (e.g., an example of a tensor is the 
combination of a spatial module, a temporal module, and the task-dependent modulation of these modules that 
is shown in Fig. 1a). An essential consideration in tensor decomposition, or CP decomposition, is that all tensors 
are unrelated to each other. In other words, the spatial module presented in Fig. 3c1 is associated with the temporal 
module indicated in Fig. 3d1 and the task-dependent modulation presented in Fig. 3e1; however, that spatial mod-
ule is not related to any other spatial modules, temporal modules, or task-dependent modulations. Throughout 
this study, we indicate associated modules and components using the same color, such as blue, green, or red, for CP 
decomposition. For the case of matrix decomposition (Figs. 1b and 4), color does not always indicate association.

In tensor #1 (Fig. 3c1-f1), the spatial module primarily consists of the left ankle (LA), left knee (LK), right ankle 
(RA), and right knee (RK). The contributions of the left and right legs are opposite because of their opposite signs 
in the spatial module. The temporal modulation was minimal when the right foot took off (at time 1) and returned 
(at time 200) and was maximal when the left foot was on the belt (at approximately time 100). These results indi-
cate that at the contact of the right foot with the belt, the left ankle showed plantar flexion, the left knee showed 
flexion, the right ankle showed dorsiflexion, and the right knee showed extension. These results similarly indicate 
that at the contact of the left foot with the belt, the left ankle showed dorsiflexion, the left knee showed extension, 
the right ankle showed plantar flexion, and the right knee showed flexion. As seen from the task-dependent mod-
ulation (Fig. 3e1), this spatiotemporal module was recruited to a greater extent at higher speeds.

In tensor #2 (Fig. 3c2-f2), the left hip (LH) and right hip (RH) are additionally recruited in comparison to 
tensor #1. The temporal module shows the opposite sign, and the peak timings are slightly different from those in 
tensor #1. These results indicate that the corresponding temporal variation of the joint angles is opposite to that 
represented by tensor #1. Tensor #2 was recruited at higher speeds; however, its recruitment slightly and discon-
tinuously decreased when the subject switched from walking to running.

In tensor #3, all joints are cooperatively activated, with two positive and negative peaks in the temporal mod-
ule. This spatiotemporal module was recruited mainly during running (Fig. 3e3). To our knowledge, although 
CP decomposition can extract this running-specific spatiotemporal module from joint angle data, PCA cannot.

In summary, CP decomposition enables the extraction of spatial modules, temporal modules, and 
task-dependent modulations of those modules. To enable a comparison with matrix decomposition, we also 
applied PCA, a matrix decomposition algorithm mainly used for extracting spatiotemporal modules from joint 
angle data, to the same data (Fig. 4a,b). When we applied PCA, as demonstrated in Fig. 1b, we obtained com-
mon spatial modules across all speeds and subjects (Fig. 4a) and task-dependent modulated temporal modules 
(Fig. 4b). One difference between tensor decomposition and PCA lies in their orthogonality characteristics. In 
PCA, the spatial modules are required to be orthogonal to each other; however, this orthogonality restriction 
originates from mathematical convenience rather than from any true properties of the spatial modules. By con-
trast, tensor decomposition yields spatiotemporal modules without this restriction. Another difference between 
tensor decomposition and PCA is the quantification of the task-dependent modulations. In PCA, we need some 
means of quantifying the task-dependent modulations in the extracted temporal modules shown in Fig. 4b. On 
the other hand, tensor decomposition can quantify the modulation across all tasks without requiring any a poste-
riori analysis. A simple a posteriori analysis approach is to compare the peak values in the temporal modules8,24. 
Although such a comparison can provide useful insights when the peak timings have significant meanings, it 
is unclear how to evaluate more than two local peaks, especially in the case of Fig. 4b3. It is also unclear how to 
evaluate the speed-dependent modulation of the temporal modules within the same movement mode (walking 
or running) (Fig. 4b3). Another simple method of quantifying the task-dependent modulation is to calculate 
correlation coefficients—correlation analysis can often be applied to generate pairwise similarities. By contrast, 
tensor decomposition can quantify the task-dependent modulations in a global rather than pairwise manner 
while considering all tasks simultaneously. This global evaluation enables us to reveal both the linear increase in 
the recruitment patterns in tensors #1 and #2 and the running-specific recruitment pattern in tensor #3.

Tensor decomposition for EMG data.  Tensor decomposition can be applied not only to joint angle data 
but also to EMG data with non-negativity constraints. We measured 16 muscles on the right side of the body, 
listed in Table 2, as 16 subjects (ages 20–31 years, all male) walked or ran on the treadmill. The belt speed was 
gradually increased from 0.3 to 5.0 m/s for the well-trained college runners (N = 8) and from 0.3 to 4.3 m/s for the 

TA: tibialis anterior MG: medial gastrocnemius LG: lateral gastrocnemius SOL: soleus

PL: peroneus longus RF: rectus femoris VL: vastus lateralis VM: vastus medialis

BF: biceps femoris (long head) ST: semitendinosus AM: adductor magnus GM: gluteus maximus

Gmed: gluteus medius TFL: tensor fasciae latae RA: rectus abdominis ES: erector spinae

Table 2.  Measured muscles and abbreviations.
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non-runners (N = 8). The belt speed was gradually increased following a constant acceleration profile (0.01 m/s2). 
The subjects were instructed to walk or run as they chose. As a result, the subjects switched their motion patterns 
from walking to running within a speed range of approximately 1.9–2.3 m/s. The details of the measured data 
were described in a previous study12.

Figure 5.  Tensor decomposition for EMG data with non-negativity constraints. λ denotes the scaling 
factor for each tensor. (a) The relation between the number of tensors and the variance explained by the 
tensor decomposition. (b) The relation between the number of tensors and the fitting error of the tensor 
decomposition. (c1–c6) Extracted spatial modules. The abbreviations for the muscle names are summarized in 
Table 2. (d1–d6) Extracted temporal modules. (e1–e6) Extracted task-dependent modulations.
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We applied tensor decomposition and extracted six tensors (Fig. 5). Each tensor has a different functional role. 
In tensor #1 (Fig. 5c1-f1), all muscles in the lower legs, the quadriceps muscles, and all hip muscles are activated 
(Fig. 5c1) upon contact of the right foot (Fig. 5d1). This spatiotemporal module was recruited to a greater extent 
at higher speeds (Fig. 5e1), as identified based on the quantification of the task-dependent modulation of the 
extracted modules enabled by CP decomposition. Similar task-dependent modulations can be observed in ten-
sors #3, #4, and #5. Despite the similarities in the task-dependent modulations, the spatial and temporal modules 
in these tensors differ from those in tensor #1.

In tensors #2 and #6, the task-dependent modulations show discontinuous changes between walking and run-
ning (Fig. 5e2,e6); tensor #2 appears to be related to running, tensor #6 appears to be related to walking. Because 
these tensors likely provide the neural mechanisms facilitating switching between the two modes, we further 
investigated the properties of these tensors.

To investigate tensors #2 and #6 in detail, we applied tensor decomposition to the EMG data for each subject 
individually. We chose R to be the minimum number of modules and components that explained more than 80% 
of the variance in the original data. With this criterion, the most suitable R value was estimated to be six across 
all subjects, in agreement with the R value estimated for the analysis performed across all subjects simultaneously 
(Fig. 5). After identifying the two tensors whose task-dependent modulations show the largest and second largest 
changes between walking and running, we plotted the corresponding spatial modules (Fig. 6a), temporal mod-
ules (Fig. 6b), and task-dependent modulations (Fig. 6c). The task-dependent modulations show discontinuous 
changes between walking and running. In particular, the tensor whose properties are shown in black was recruited 
mainly for walking, and the tensor whose properties are shown in green was recruited mainly during running 
(Fig. 6c). Regarding the temporal modules, the peak timings are different between these tensors, supporting the 
previous hypothesis reported on the basis of matrix decomposition4,24. In addition, different spatial modules were 
extracted through CP decomposition (Fig. 6a). A single asterisk denotes a significant difference with p < 0.05, and 
double asterisks denote a significant difference with p < 0.01 (p = 2.36 × 10−9 [F(15,225) = 5.44] for the interac-
tion between the muscle factor and the mode factor [walking or running], with p = 0.0200 for PL, p = 0.00847 
for RF, p = 0.00987 for VL, p = 0.0318 for VM, p = 0.000218 for BF, p = 0.00990 for ST, and p = 0.0416 for RA). 
The details of the statistical analysis are given in the Methods section. Several significant differences are evident 
between the spatial modules related to walking and running. In particular, the thigh muscles are more activated 
in the spatial module that is recruited mainly in running than in the spatial module that is recruited mainly in 
walking. Although the higher recruitment of the thigh muscles in running compared with walking seems evident 
from the analysis of each single muscle, it is unclear from this analysis whether similar recruitment patterns also 
appear in the related spatial modules. CP decomposition enables us to clarify the involvement of the modulation 
of thigh muscle activity in the spatial modules while globally comparing locomotion at several speeds.

Figure 6.  Further analysis of the tensors whose task-dependent modulations show discontinuous changes 
between walking and running. CP decomposition with non-negativity constraints was applied to the EMG data 
for each subject. We chose R to be the minimum number of modules and components that explained more than 
80% of the variance in the original data. Then, we identified the tensors whose task-dependent modulations 
show the most and second-most substantial discontinuous changes between walking and running. The tensor 
that shows more significant task-dependent modulation for walking than for running is presented in black, and 
the tensor that shows more substantial task-dependent modulation for running than for walking is presented in 
green. (a) Spatial modules for each subject. Each dot indicates the recruitment pattern for one spatial module 
and one subject. Each bar shows the average value of the recruitment pattern across all subjects. Single asterisks 
and double asterisks associated with certain muscles indicate significant differences in the recruitment patterns 
between the two tensors, with p < 0.05 and p < 0.01, respectively. The abbreviations of the muscle names are 
summarized in Table 2. (b) Temporal modules for each subject. (c) Task-dependent modulations for each 
subject.
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One difference between CP decomposition and NNMF is how task-dependent modulation is quantified. Via 
NNMF (Fig. 4c,d), we obtained common spatial modules across all tasks and temporal modules modulated in 
a task-dependent manner. NNMF requires some a posterior analysis to evaluate the modulation. A simple a 
posteriori analysis approach is to compare the peak values in the temporal modules8,24. Although such a compar-
ison can provide useful insights when the peak timings have significant meanings, it is unclear how to evaluate 
subtle peaks, such as in the cases of Fig. 4d1,d4. The peak timings enable us to distinguish between walking and 
running; however, it is again unclear how to evaluate the speed-dependent modulation of the temporal modules 
within the same mode (walking or running) (Fig. 4d2). Another popular method is to utilize correlation coeffi-
cients. Although this method is convenient, it has limitations; correlation coefficients are often suitable only for 
evaluating local pairwise relations. Moreover, NNMF in the form illustrated in Fig. 1b assumes common spatial 
modules across all tasks. By contrast, tensor decomposition enables us to globally quantify the task-dependent 
modulations of spatiotemporal modules without requiring any a posteriori analysis.

Discussion
The current study has demonstrated the effectiveness of CP decomposition, a tensor decomposition method, for 
analyzing the task-dependent modulations of spatiotemporal modules extracted from joint angle data (Fig. 3) 
and EMG data with non-negativity constraints (Fig. 5). CP decomposition is closely related to dynamic motor 
primitives25 and enables the extraction of time-varying motor commands (i.e., temporal modules) sent to groups 
of muscles (i.e., spatial modules). Although the temporal widths of these time-varying motor commands were 
addressed by means of temporal normalization in the current study, these widths can be modulated appropriately 
via the systems responsible for controlling movement time in the framework of dynamic motor primitives. Matrix 
decomposition methods, such as PCA and NNMF, are a popular approach for quantifying spatial modules, tem-
poral modules, and task-dependent modulations of either spatial or temporal modules when combined with a 
posteriori analysis7–9,11,12. By contrast, as shown in this study, tensor decomposition enables the quantification of 
task-dependent modulations in both spatial and temporal modules simultaneously, with little a posteriori analysis 
required (Figs. 3, 5 and 6). Additional statistical analyses provide further information about the neural control of 
walking and running movements (Fig. 6). Tensor decomposition can thus be used to evaluate the task-dependent 
modulations of spatiotemporal modules in a straightforward manner.

The current study simultaneously focused on both the task- and subject-dependent modulations of spatio-
temporal modules. Tensor decomposition considering a third (“task”) factor enabled us to quantify how each 
spatiotemporal module was recruited at each speed in each subject. In general, tensor decomposition can enable 
the consideration of more than three factors; thus, it would also be possible to define speed as the third factor and 
subject as the fourth factor. In such a four-factor analysis, we could investigate how each combination of a spatial 
module, a temporal module, and the task-dependent modulation of these modules is recruited in each subject. 
In other words, common combinations would be extracted for all subjects to evaluate the recruitment pattern 
in each subject. For example, if one subject switched from walking to running at approximately 2.0 m/s and 
another subject performed the walk-run transition at approximately 2.1 m/s, higher fitting performance could be 
achieved in tensor decomposition by either fitting subject-specific combinations or neglecting the data near the 
speed range of the walk-run transition. In the case of fitting subject-specific combinations, the four-factor analysis 
approach would not be as meaningful; we would need to analyze the data for each subject separately to discuss 
task-dependent modulation. In the case of neglecting the data near the speed range of the walk-run transition, 
we would not be able to evaluate the task-dependent modulations of the spatiotemporal modules in this speed 
range. In our experimental setting, the subjects showed different walk-run transition speeds during the measure-
ment of the EMG data. We thus would be likely to overlook some aspects of the task-dependent modulations in 
a four-factor analysis.

In contrast to a four-factor analysis, the current three-factor analysis allows us to evaluate the “task”-dependent 
modulations of the spatiotemporal modules while considering diverse individual differences in speed for the 
walk-run transition. In this case, the “task” dimension (the third dimension) includes both the task and subject 
factors. This analysis thus enables the evaluation of how each spatiotemporal module is recruited in each task 
and subject while considering individual differences in the walk-run transition. Because these individual differ-
ences were smaller than the speed-dependent modulations between walking and running in our experimental 
setting, we obtained similar results in the analysis of all subjects together (Fig. 5) and each subject individually 
(Fig. 6). The current three-factor analysis enabled us to clarify how the spatiotemporal modules were modulated 
with respect to speed. To focus on the details of the task-dependent modulations, it was necessary to analyze the 
tensor data collected under all conditions for each subject individually, such as in the analysis of the EMG data 
(Fig. 6). On the other hand, if we wished to focus on the details of the individual differences, we would need to 
analyze the tensor data collected for all subjects under each condition individually. Due to the flexibility of the 
tensor decomposition approach, it is necessary to carefully structure the tensor data in accordance with the main 
purpose of the analysis.

Following the proper selection of the third factor to be considered in the analysis (in addition to the spatial 
and temporal factors), CP decomposition enables the investigation of several features inherent in joint angle and 
EMG data. A promising possibility is to utilize CP decomposition to investigate individual differences. For exam-
ple, for comparing the walking patterns of young and elderly people, the third dimension can be subject number. 
In this case, the third factor tk,r can illustrate how different spatiotemporal modules are recruited between young 
and elderly walkers. Another promising possibility is to apply CP decomposition to investigate task-dependent 
modulations in various kinds of walking and running, such as walking on a slippery surface, race walking, or 
walking with one’s eyes closed. One potential approach is to apply CP decomposition to joint angle or EMG data 
recorded in response to perturbations8,26, which would enable the evaluation of how spatiotemporal modules 
are recruited to compensate for perturbations. A third promising possibility is to apply CP decomposition to 
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kinematic and EMG data related to motor adaptation, motor learning, development, or rehabilitation27–29. In 
this case, the third factor can be the trial number or day. In this case, the third factor tk,r can illustrate how spati-
otemporal modules are modulated depending on adaptation, learning, development, or rehabilitation. Because 
several studies have focused on both adaptation27–35 and spatiotemporal modules2–6 in detail but only separately, 
the relationship between those concepts has been investigated in only a few studies10,16. Investigating the link 
between motor adaptation and spatiotemporal modules via tensor decomposition may be a promising direction 
for future work.

The proper way to determine the number of modules depends on the user requirements. There is no unified 
method of doing so, as in the case of matrix decomposition15. The only general requirement is that the number of 
modules should not be set so high that they explain almost 100% of the variance. In such an overfitted scenario, 
the fitted results will include noise in many cases15. Notably, our current findings are invariant across several con-
ditions (see Figs. 3, 5, and S1–S4). Using various criteria, we confirmed (1) the linear increases in the recruitment 
patterns of the spatiotemporal modules in proportion to speed, independent of the movement mode (walking 
or running) (see, e.g., Figs. 3e1,e2, 5c1,c3,c4, S1c1, S1c2, S2c2, S3c1,and S3c3); (2) the discontinuous change in 
the recruitment patterns when switching between walking and running (see, e.g., Figs. 3e2,e3, 5e2,e6, S1c3, S1c4, 
S2c3, S2c6, S3c2, and S4c8); and (3) the low recruitment of thigh muscles in walking-specific spatiotemporal 
modules and the high recruitment of thigh muscles in running-specific modules (see, e.g., Figs. 5c2,c6, S2a3, 
S2a6, S3a2 and S4a8).

Another variant of matrix decomposition has been proposed in a previous study5. This sophisticated method 
enables the consideration of spatiotemporal modules without separating the spatial and temporal aspects. The 
separation of the spatial and temporal modules that is inherent in PCA, NNMF, and tensor decomposition enables 
the examination of the temporal variations of groups of muscles without any time delays among individual mus-
cles. In other words, these methods enable the consideration of simultaneous and synchronous activities among 
multiple muscles. On the other hand, the method proposed in the previous study5 enables the consideration of 
delayed synchronous activities among multiple muscles. A promising direction for future work is to combine 
the advantages of the method proposed in the previous study5 with the advantages of tensor decomposition to 
evaluate the task-dependent modulations of spatiotemporal modules while considering delayed synchronization.

CP decomposition is the simplest version of tensor decomposition; it would also be possible to apply a more 
sophisticated version of tensor decomposition. A popular alternative is Tucker decomposition15, a variant of 
which has previously been applied to EMG data17–21. In Tucker decomposition, the number of spatial modules, 
the number of temporal modules, and the number of task-dependent modulations can differ from each other. 
Notably, CP decomposition is a special case of Tucker decomposition; thus, Tucker decomposition is more 
general. On the other hand, Tucker decomposition involves three free parameters (i.e., the number of spatial 
modules, the number of temporal modules, and the number of task-dependent modulations) and consequently 
consumes considerably more computational time than CP decomposition. We should note that Tucker decompo-
sition can be a powerful tool for analyzing some complex data because of its own intrinsic complexity36. However, 
CP decomposition was suitable for the current study because relatively few complicated combinations of spatio-
temporal modules are related to locomotion.

Another possible variant of tensor decomposition is to include a smoothness property37. Because the temporal 
variations of joint angle and EMG data are smooth, the smoothness property can be used to effectively denoise 
these data, such as in the state space model38–41. For the analysis of a single condition and subject, the smoothness 
property can also be effectively applied to task-dependent modulations.

Materials and Methods
Ethics statement.  A total of 31 healthy volunteers (ages 20–31 years, all male) participated in our experi-
ments, which were approved by the ethics committee of the University of Tokyo and were performed following 
the relevant guidelines and regulations. All participants were informed of the experimental procedures follow-
ing the Declaration of Helsinki, and all participants provided written informed consent before the start of the 
experiments.

Experimental setup, data acquisition, and data processing (joint angles).  A total of 15 partic-
ipants participated in our experiment for measuring joint angles. They performed walking at six speeds (0.56, 
0.83, 1.11, 1.39, 1.67, and 1.94 m/s) and running at five speeds (2.22, 2.50, 2.78, 3.06, and 3.33 m/s) on a treadmill 
(Bertec, Columbus, OH, USA). Under all conditions, we measured more than 27 strides; we thus analyzed the 
joint angles averaged across the first 27 strides for all speeds and subjects.

The joint angles were recorded at 100 Hz using 12 cameras (OptiTrack V100:R2, NaturalPoint Inc., Corvallis, 
Oregon). The measured marker positions were low-pass filtered with a zero-lag Butterworth filter (15-Hz cut-off, 
4th order) and transformed into joint angles in the sagittal plane (i.e., right and left ankle, knee, and hip angles).

Three-dimensional ground reaction force (GRF) data were recorded at 1000 Hz by force plates under each 
belt of the treadmill. The sampling rate was modified to 100 Hz to match the rate of the joint angles. The GRF 
data were low-pass filtered with a zero-lag Butterworth filter (15-Hz cut-off, 4th order). The times corresponding 
to foot contact and toe-off were determined on a stride-by-stride basis from the vertical component of the GRF.

Because the stride-to-stride cycle differed depending on the speed, we normalized all cycles to 200 time frames 
for all speeds and subjects. In addition, we standardized the joint angles such that the mean and standard devi-
ation of each angle for each subject across all speeds were 0 and 1, respectively. These normalization and stand-
ardization procedures enabled us to compare different joint angles, speeds, and subjects fairly. In total, the joint 
angle data included six joint angles, 200 time frames, and 11 × 15 = 165 tasks (i.e., the number of speeds × the 
number of subjects). Throughout this study, the word “task” broadly refers to locomotion at a particular speed for 
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a particular subject. In this case, the 165 tasks included 11 speeds (i.e., 11 types of tasks) and 15 subjects. We thus 
constructed a data tensor X ∈ R6×200×165 to apply tensor decomposition to all data simultaneously.

Experimental setup, data acquisition, and data processing (EMG).  We also analyzed EMG data 
that we had collected in a previous study, the details of which can be found in12. A total of 16 participants partici-
pated in our experiment for measuring EMG data. A total of 8 of the sixteen participants were well-trained college 
runners. The runners were asked to move at higher speeds than the other participants. All participants walked or 
ran on the same treadmill, as mentioned above, with a linearly increasing speed (speed ramping conditions with 
the acceleration set to 0.01 m/s2). The speed range was adjusted to be safe for each group but to vary as widely 
as possible (0.3–4.3 m/s for the non-runner group and 0.3–5.0 m/s for the runner group). The participants were 
instructed to choose to either walk or run depending on their preference at the given speed. The speed of the 
transition from walking to running for all participants ranged from 1.9 to 2.3 m/s. Because the acceleration was 
low and the maximum speeds were considered safe for each group, the locomotive movements performed by all 
participants were always stable throughout the experiment.

Three-dimensional GRF data were recorded in the same manner described above. Surface EMG activity was 
recorded from the 16 muscles listed in Table 2 on the right side of the trunk and leg. The EMG activity was 
recorded with a wireless EMG system (Trigno Wireless EMG System; Delsys, Boston, MA, USA). The EMG 
signals were bandpass filtered (20–450 Hz), amplified (with a 300 gain preamplifier), and sampled at 1000 Hz. 
The EMG data were digitally full-wave rectified and smoothed and were also low-pass filtered with a zero-lag 
Butterworth filter.

Because the stride-to-stride cycle differed depending on the speed, we normalized all cycles to 200 time 
frames for all speeds and subjects. Accordingly, we normalized all of the EMG signals. In addition, we scaled the 
EMG signals such that the maximum value for each muscle and each subject across all speeds was 1. In the anal-
ysis, we divided the belt speed into 0.1 m/s intervals, e.g., 0.3–0.4 m/s and 0.4–0.5 m/s. After defining the speed 
ranges, we averaged the EMG activity in each speed range. In total, the EMG data for the non-runners consisted 
of 16 muscles, 200 time frames, and 40 × 8 tasks (i.e., 40 speed ranges and eight subjects). The EMG data for the 
runners consisted of 16 muscles, 200 time frames, and 47 × 8 tasks (i.e., 47 speed ranges and eight subjects). 
We thus constructed a data tensor X ∈ R16×200×696 to apply tensor decomposition to all data simultaneously. For 
the application of tensor decomposition to the data for each subject individually, the size of the data tensor was 
X ∈ R16×200×40 for each non-runner and X ∈ R16×200×47 for each runner. When applying tensor decomposition to 
the EMG data for each subject individually (Fig. 4), we set the number of tensors R to 6 to keep this number the 
same as that used in the analysis of all subjects (Fig. 3).

Tensor decomposition.  We relied on the tensor toolbox in MATLAB42,43 and used the function “cp_als” 
(alternating least squares15) to analyze the joint angles and the function “cp_nmu” (multiplicative update, similar 
to NNMF14) to analyze the EMG signals.

An important aspect of the tensor decomposition process for the joint angle data (i.e., data without 
non-negativity constraints) is that any two pairs of components can be reversed in sign but have the same approx-
imate value. For example, when wr →− wr and pr →− pr, the approximate values remain invariant. When tensor 
decomposition is applied to the joint angle data of two subjects separately, the signs of the spatiotemporal mod-
ules may be opposite even if the modules are actually similar for each subject. We therefore applied tensor decom-
position to the joint angle data for all subjects simultaneously to estimate common spatiotemporal modules and 
task-dependent modulations of these modules for each speed and each subject.

Matrix decomposition.  For comparing tensor decomposition with PCA and NNMF, we relied on the 
MATLAB functions “pca” and “nnmf ”.

For the application of matrix decomposition to the joint angle data, the size of the data matrix was Z ∈ R6×16500, 
where 6 is the number of joints and 33000 is the product of the number of time frames, the number of speeds, 
and the number of participants. For the application of NNMF to the EMG signals, the size of the data matrix was 
Z ∈ R16×139400, where 16 is the number of muscles and 139400 is the product of the number of time frames, the 
number of speed ranges, and the number of participants.

Statistical test.  To compare the task-dependent modulations of the two representative tensors in Fig. 6, we first 
extracted the two tensors of interest based on the absolute difference in the task-dependent modulations between 
walking (at 1.8 m/s) and running (at 2.3 m/s). For the case in which the task-dependent modulation was larger for 
walking than for running, all corresponding components are shown in black. For the case in which the task-dependent 
modulation was greater for running than for walking, all corresponding components are shown in green. The choice of 
these colors is based on the results depicted in Fig. 5. Tensors #2 (green) and #6 (black) in Fig. 5 exhibit task-dependent 
modulations that are larger for running than for walking and larger for walking than for running, respectively.

After separating these two tensors, we performed repeated-measure ANOVA on the recruitment values in the 
spatial modules considering two factors: the specific muscle and the movement mode (walking or running). After 
confirming the interaction between those factors, we performed Tukey’s post hoc test.

Data availability
The datasets analyzed in the current study are available from the corresponding author upon reasonable request.
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