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Abstract. Epithelial cells polarize not only in response 
to cell-cell contacts, but also to contacts with a substra- 
tum composed of extracellular matrix molecules. To 
probe the role of specific matrix constituents in epithe- 
lial cell polarization, we investigated the effects of an 
adhesion-blocking mAb, 12B12, on initial polarization 
of MDCK cells. The 12B12 antibody, raised against 
whole MDCK cells, blocks adhesion to laminin by 65 % 
but has no effect on adhesion of cells to collagen type I. 
Taking advantage of this antibody's function-blocking 
activity, as well as the fact that MDCK cells secrete 
laminin, the role of endogenous laminin in polarization 
was examined by plating cells on collagen-coated sub- 
strata in the presence of the antibody. Under these con- 
ditions, cell spreading was reduced 1.5 h after plating, 

and cells were flatter and had fewer microvilli after 24 h. 
Even though lateral cell membranes were closely ap- 
posed, transepithelial resistance in the presence of the 
antibody was significantly reduced relative to controls. 
When the polarization of specific apical and basolateral 
markers was examined both biochemically and immu- 
nocytochemically in the presence of the antibody, we 
observed that the apical marker polarized at normal 
rates while basolateral markers did not. Surprisingly, 
the 12B12 antibody was not directed against any known 
cell adhesion protein but reacted specifically with 
Forssman antigen, a glycosphingolipid. These results 
suggest that glycolipids may play a significant role in cell 
adhesion via laminin and in epithelial cell polarization. 

C 
OMPLEXITY of organisms is made possible in part by 

epithelia, which organize the body by partitioning 
it structurally and functionally. To accomplish 

their many roles, epithelia are morphologically, biochemi- 
cally, and functionally polarized. Simple epithelial cells 
have three discrete membrane domains: apical, lateral, 
and basal, each of which has a specific protein and lipid 
composition. Apical surfaces interact with the organism's 
exterior, regulating access to the interior body compart- 
ments. Lateral domains communicate with and adhere to 
neighboring cells by forming cell-cell junctions. The tight 
junction (zonula occludens) divides the apical domain 
from the basal and lateral ("basolateral") membrane do- 
mains (Marlin and Caplan, 1992), prevents intermixing of 
lipids (Dragsten et al., 1981; van Meer and Simons, 1986; 
Gumbiner, 1993) and (most likely) proteins (Gumbiner, 
1993), and unites cells to form a barricade to passive ex- 
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change via the paracellular pathway. Basal domains inter- 
act with the substratum, usually a basement membrane, 
which consists of extracellular matrix (ECM) 1 proteins 
such as laminin (LN), collagen IV, and heparan sulfate 
proteoglycans. 

The biogenesis of the polarized phenotype is a complex 
multistep process that is contingent on many extracellular 
cues that exert specific effects on polarization (Simons and 
Fuller, 1985; Rodriguez-Boulan and Nelson, 1989; Matlin 
and Caplan, 1992; Eaton and Simons, 1995). These extra- 
cellular cues include cell-substratum and cell-cell inter- 
actions. In the polarized MDCK cell line, cell-substratum 
interactions are necessary to establish the apical pole 
(Vega-Salas et al., 1987). Basolateral proteins localize only 
after cell-cell contacts are allowed to form, suggesting that 
cell-cell contacts are necessary for basolateral polarization 

1. Abbreviations used in this paper: CI, collagen type I; ECM, extracellular 
matrix; t-gin, L-glutamine; LN, laminin; PAP, peroxidase anti-peroxidase; 
PBS ÷, PBS containing 1 mM CaCI~ and 0.5 mM MgC12; PBS-, PBS with- 
out CaCI2 or MgCI2; PLP, periodate-lysine-paraformaldehyde fixative. 
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(Vega-Salas et al., 1987). Further studies of MDCK cells 
cultured as cysts in suspension have also elucidated the im- 
portance of different cell contacts. Cell-cell contacts de- 
fine "free" surfaces from those in physical contact with 
other cells, but cell polarity is believed to be consolidated 
upon ECM deposition into the cyst lumen (Wang et al., 
1990b). Although each type of contact exerts specific ef- 
fects, the sum of these signals culminates in the polarized 
phenotype. 

Proteins that participate in ceU-ceU interactions, such as 
E-cadherin, have been intensively studied (McNeil et al., 
1990; McNeil and Nelson, 1992; Hodivala and Watt, 1994). 
The molecules that mediate cell-substratum interactions, 
however, have been examined less thoroughly for their 
role in epithelial polarity. While epithelial cells in vivo 
principally interact with ECM in the form of a basement 
membrane, cells in vitro interact with artificial substrata 
that may be coated with serum factors and other medium 
constituents that may themselves affect cell growth and 
adhesion. In addition, the substratum itself may influence 
cellular characteristics because of its impermeability or 
electrical charge. For example, MDCK cells cultured on 
permeable supports are able to import nutrients from the 
basal surface, as they do in vivo, which results in a "more" 
polarized phenotype than when cultured on plastic (Si- 
mons and Fuller, 1985). The cells themselves may secrete 
components onto the substratum; for example, MDCK 
cells in culture synthesize and basally secrete components 
of the basement membrane, including LN, heparan sulfate 
proteoglycans, and possibly collagen type IV (Caplan et 
al., 1987; Wang et al., 1990b; Boll et al., 1991; Taub, 1991; 
Ecay and Valentich, 1992). 

The response of MDCK cells to ECM can be dramatic, 
affecting cell polarity, morphology, and behavior. When 
apical membranes of MDCK cysts in suspension contact 
collagen type I (CI) gels, the cells "reverse" their polarity, 
forming apical domains that face the lumen and basal do- 
mains at the cell-CI interface (Wang et al., 1990a; Ojakian 
and Schwimmer, 1994). When MDCK cells, whether sub- 
confluent and on plastic (Hall et al., 1982) or confluent 
and on permeable supports (Zuk and Matlin, 1996), are 
overlaid with CI, the cells respond first by reorganizing 
into a bilayer and then a tubulocyst. During bilayer devel- 
opment, apical proteins are absent from cell surfaces and 
basolateral proteins are randomly distributed on plasma 
membranes. After lumen formation, apical markers are 
again expressed on free surfaces, and basolateral proteins 
relocalize to cell-cell and cell-substratum contacts (Zuk et 
al., 1996). Further evidence that the ECM modulates 
MDCK polarity, morphology, and behavior is provided by 
culturing explants of MDCK cells on CI gels. When cells 
contact the CI matrix, they break away from the explant, 
exchange their apical-basal polarity for front-end/back- 
end polarity, become fusiform in shape, and migrate over 
the matrix (Zuk et al., 1989). 

Although CI can dramatically modify epithelial cell 
morphology, polarity, and behavior, even more fundamen- 
tal cues for cell differentiation and polarization are pro- 
vided by LN. LN-1 (Burgeson et al., 1994) is a large (1,000- 
kD) molecule with a cruciform structure (Timpl et al., 
1979) that influences cell adhesion, spreading, growth, and 
migration (reviewed in Yamada, 1991; Tryggvason, 1993; 

Timpl and Brown, 1994). LN is also necessary for the dif- 
ferentiation and maintenance of epithelia (Klein et al., 
1988; Ekblom et al., 1990; Sorokin et al., 1990, 1992). If 
cell-LN interactions are perturbed during the mesenchy- 
mal-epithelial transformation in renal development, ei- 
ther by anti-LN or anti-LN receptor antibodies, the forma- 
tion of an epithelium is inhibited (Klein et al., 1988; 
Sorokin et al., 1990, 1992). 

While LN can affect differentiation, its specific role in 
MDCK cell polarity has not been directly addressed. We 
have been investigating the role of the ECM in the biogen- 
esis of epithelial cell polarity using the MDCK cell line as 
a model system (Schoenenberger et al., 1994; Zuk et al., 
1989; Zuk and Matlin, 1996). We hypothesize that LN, 
which is synthesized and secreted by MDCK cells, pro- 
vides essential extracellular cues that polarize MDCK cells 
in culture. To test our hypothesis, we raised mAbs to 
whole MDCK ceils and selected one that immunolabeled 
cell membranes and specifically inhibited MDCK cell ad- 
hesion to LN but not to CI. Cells treated with this anti- 
body delay tight junction formation and the polarization 
of a basolateral marker but not of an apical marker. Al- 
though we have previously reported that MDCK cells ad- 
here to ECM via the integrins (Schoenenberger et al., 
1994), a superfamily of cell-surface receptors (Hynes, 
1992), the antibody is directed against a neutral glyco- 
sphingolipid, the Forssman antigen. 

Materials and Methods 

Cell Culture 

MDCK I1 HD cells were used (passages 7-33; Matlin and Simons, 1984). 
The suffix "HD" (Heidelberg) designates the place where this substrain 
was originally cloned (Louvard, 1980); this substrain has been extensively 
used in previous studies (see Matlin et al., 1981; Matlin and Simons, 1983; 
Schoenenberger et al., 1994; for review see Simons and Fuller, 1985). The 
clarification of the MDCK II substrain has recently become an important 
point since different substrains occasionally yield contradictory results 
(see Discussion and Mays et al., 1995). The cells were grown in Dulbecco's 
modified minimal essential media (DMEM; Mediatech, Herndon, VA) in 
5% FBS (Hyclone Laboratories, Logan, UT), 2 mM L-glutamine (L-gin), 
and 10 mM Hepes, pH 7.4, at 37°C/5% CO2. Confluent cultures were sub- 
cultured twice a week at a 1:5 dilution with trypsin-EDTA (GIBCO BRL, 
Gaithersburg, MD). 

In most experiments, cells were cultured on Transwell polycarbonate 
permeable supports (0.4 p.m pore size, 12 mm diameter; Costar, Cam- 
bridge, MA). Cells released by trypsin-EDTA were seeded onto prewet- 
ted permeable supports at a density of 1.5 x 105 cells/cm 2 and were fed ev- 
ery 2-3 d with growth medium (DMEM with 5% FBS, 10 mM Hepes, pH 
7.4, 2 mM L-gin, and 100 U/ml penicillin-100 p~g/ml ampicillin-0.25 Ixg/ml 
amphotericin B [antibiotics/antimycotic from GIBCO BRL]). 

Antibodies 

Production ofAnti-MDCKAdhesionAntibodies. To study LN's role in 
MDCK cell polarization, function-blocking rat mAbs were raised (Harlow 
and Lane, 1988) against whole MDCK ceils that had been nonenzymati- 
cally harvested. The resulting hybridoma supernatants were screened for 
their ability to stain MDCK cell membranes by immunofluorescenee and 
for their ability to interfere with MDCK cell adhesion to Matrigel, an LN- 
containing, basement membrane-like preparation from EHS sarcomas 
(Collaborative Research Inc., Bedford, MA). 

MDCK cells were subcultured at a 1:5 dilution using trypsin-EDTA 24- 
30 h before use. For the initial immunization of 22-d-old CD (caesarian 
derived) rats (Charles River Laboratories, Wilmington, MA), cells were 
harvested from the subconfluent cultures by rinsing twice with PBS- (PBS 
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that does not contain CaCI 2 or MgCI2) , once with 4 mM EDTA/1 mM 
EGTA in PBS-, and incubating for 40 min with EDTA/EGTA/PBS-  at 
37°C/5% CO2. The cells were centrifuged for 6 min at 1,000 rpm at 4°C 
and resuspended in media modified for suspension cultures (S-MEM; 
GIBCO BRL) containing 2 mM L-gin, 10 mM Hepes, pH 7.4, and antibiot- 
ics/antimycotic. Harvested cells (5 x 106) were emulsified in complete 
Freund's adjuvant (GIBCO BRL) and injected intraperitoneally. A 
booster injection of 1.5 × 107 cells emulsified in incomplete Freund's adju- 
vant (GIBCO BRL) was administered 21 d later. After 1 mo, a second 
booster injection was given. Sera from tail bleeds were tested for their 
ability to prevent MDCK cells from adhering to Matrigel when compared 
to preimmune bleeds (using the adhesion assay in Schoenenberger et al., 
1994; see below) and by their reaction with MDCK cells by indirect immu- 
nofluorescence (according to Schoenenberger et al., 1991, and Zuk et al., 
1989). Spleenocytes were fused to murine NS-1 myeloma cells (American 
Type Culture Collection, Rockville, MD). Hybridomas were selected with 
HAT (hypoxanthine, aminopterin, thymidine) media and were grown in 
DMEM supplemented with 20% FBS (hybridoma tested), 0.015% oxalo- 
acetate, 0.005% pyruvate, 0.00082% bovine insulin 2 mM L-gin, 10 mM 
Hepes, pH 7.4, and antibiotics/antimycotic. Hybridomas were cloned in 
soft agar. Culture supernatants were screened as for the sera (see above). 
Clone 12B12, which reduced MDCK cell adhesion to Matrigel and immu- 
nolabeled MDCK cell membranes by immunofluorescence, was selected 
for further study. The 12B12 mAb is an IgG based on SDS-PAGE analy- 
sis of radiolabeled hybridoma supernatants. For routine culture, the 
12B12 hybridoma was grown in DMEM with 10% FBS (complement inac- 
tivated by incubating at 56°C for 30-45 min), 10 mM Hepes, pH 7.4, 2 mM 
L-gin, and antibiotics/antimycotic. 

Antibodies to Apical and Bnsolateral Antigens. The antiapical gp135 mAb 
producing hybridoma (3F21DS) and supernatant (Ojakian and Schwim- 
mer, 1988) were supplied by Dr. George Ojakian (SUNY, Brooklyn, NY). 
The antibasolateral p58 mAb, 6.23.3, has been described elsewhere (Bal- 
carova-Stander et al., 1984). The antibasolateral E-cadherin (uvomorulin) 
mAb (rrl, [Gumbiner and Simons, 1986]) was obtained from the Develop- 
mental Biology Hybridoma Bank (University of Iowa, Iowa City, IA). 
The anti-ZO-1 hybridoma (R40.76; Anderson et al., 1988) was supplied 
by Dr. Lynn Jesaitis (Harvard Medical School, Boston, MA). This rat 
mAb recognizes an intracellular epitope of the ZO-1 protein. The anti- 
Forssman antigen mAb, 33B12 (Sonnenberg et al., 1986), was from Dr. 
Arnoud Sonnenberg (Netherlands Cancer Institute, Amsterdam, The 
Netherlands). 

Adhesion Assay 
To identify antiadhesion mAbs, the same colorimetric adhesion assay de- 
scribed previously was used (Schoenenberger et al., 1994). In brief, 
MDCK cells in suspension were treated with hybridoma supernatants at a 
1:1 dilution before plating onto ECM-coated 96-well plates (Immulon 2; 
Dynatech Laboratories, Chantilly, VA) at 105 cells/well. After 1.5 h incu- 
bation, nonadherent cells were washed away with PBS + (PBS containing 
l mM CaC12 and 0.5 mM MgCl2), and adherent cells were fixed, stained, 
and quantitated with a microplate reader (Molecular Devices, Menlo 
Park, CA). Adhesion was calculated by subtracting the background of 
coated wells to which no cells had been added from the values that were 
obtained from coated wells with cells. 

To visualize the mAb's  effects on cell spreading, the same procedure 
was followed, except that 16-well Nunc chambers on glass slides (Nunc 
Inc., Naperville, IL) replaced the 96-well plates. Adherent cells were 
washed with PBS + and fixed in 2% paraformaldehyde (Electron Micros- 
copy Sciences, Fort Washington, PA)/75 mM lysine/10 mM sodium-m-peri- 
odate in 37.5 mM phosphate buffer (PLP; McLeane and Nakane, 1974) for 
20-30 rain at 24°C (room temperature). The ceils were then mounted in 
50% glycerol/PBS- and viewed with Nomarski optics on an Axioplan mi- 
croscope (Carl Zeiss, Inc., Thornwood, NY). Images were recorded on 
T-MAX or Technical Pan film at ASA 100 (Eastman Kodak Co., Roches- 
ter, NY). 

Immunocytochemistry 
Immunoperoxidase staining (Zuk and Hay, 1994) was used to localize api- 
cal and basolateral markers during the polarization assay (see below). 
Cells cultured on permeable supports were fixed in PLP and permeabi- 
lized for 4 min with 0.1% Triton X-100/PBS-. Endogenous peroxidase 
was quenched with 1% H202 (Fisher Scientific, Fair Lawn, NJ)/PBS- for 
10-15 min. After blocking with 10% normal goat serum/PBS-, the perme- 
able supports were incubated with 25-35 ~1 of antibody basally and 50- 

100 Ixl antibody apically for I h at room temperature or overnight at 4°C in 
a humidified chamber. After incubations with the appropriate link anti- 
body (goat anti-mouse or goat anti-rat, both human and mouse IgG ad- 
sorbed; Cappel-Organon Teknika, Durham, NC) diluted I:10 in blocking 
solution, followed by incubation with peroxidase-antiperoxidase (PAP) 
antibodies (mouse PAP [Sigma Immunochemicals, St. Louis, MO] at 1:100 
or rat PAP [Calbiochem; San Diego, CA] at 1:300, both diluted in block- 
ing buffer), the peroxidase was reacted with a fresh solution of 0.05% 
3-3'-diaminobenzidine tetrahydrochloride (DAB) dissolved in 0.01% 
H202 in 50 mM "Iris, pH 7.5. Some cultures were postfixed with 1% OsO4 
(Electron Microscopy Sciences) in 0.1 M sodium cacodylate buffer, pH 
7.4. Cells were dehydrated in a series of ethanols (50% [vol/vol], 75%, and 
95%) at -20°C, rinsed three times in 100% room temperature ethanol, 
and incubated 20-30 min at room temperature (22-24°C) in fresh 100% 
ethanol. Polycarbonate membranes were excised from their plastic sup- 
ports and infiltrated successively with 100% propylene oxide (Poly- 
sciences, Warrington, PA), 50% propylene oxide/50% plastic (dodecenyl- 
succinic anhydride [DDSA]-Poly/Bed 812-Araldite 6005 [2.4:1:1] with 2% 
2,4,6-Tri[dimethylaminomethyl] phenol [DMP-30] [Polysciences]), and 
then 100% plastic. The cultures were embedded by polymerizing the plas- 
tic overnight at 60°C. Sections (0.5-1 I~m) were cut on an ultramicrotome 
(Reichert-Jung, Vienna, Austria) and stained with 0.05% toluidine blue in 
0.1% sodium borate before viewing them on a Zeiss Axioplan micro- 
scope. Images were photographed with Technical Pan film at ASA 100. 

Polarization Assay 
Polarization of MDCK cells plated onto ECM-coated permeable supports 
was assessed biochemically by domain-specific biotinylation (Gottardi 
and Caplan, 1992) of antigens that are normally found on the apical and 
basolateral domains in fully-polarized cells. Signal was detected by prob- 
ing blots of immunoprecipitated proteins with streptavidin. Tight junction 
formation was monitored by recording electrical resistance. 

Preparation of  ECM-coated Perraeabie Supports. 12-mm diameter Co- 
star Transwell polycarbonate permeable supports were coated with either 
10 p.g/cm 2 of CI (from rat tail,/>85% pure; Upstate Biotechnologies, Inc., 
Lake Placid, NY) in PBS- or 20 p,g/cm 2 of LN (LN-1; purified from EHS 
tumors, ~>90% pure; Upstate Biotechnologies, Inc.) in 0.1 M sodium bi- 
carbonate, pH 8.3, in 200 pal/permeable support. After incubation at 37°C/ 
5% CO2/100% humidity for 2 h, nonspecific binding sites were blocked 
with 500 Ixl/permeable support of 1% heat-treated BSA/PBS- at 4°C for 
2 h to overnight. The filters were then washed twice with cold PBS ÷. For 
experiments without function-blocking antibodies, 250 p~l of 1% heat- 
treated BSA/serum-free growth medium was added to the apical compart- 
ment, and 1.5 ml of serum-free growth medium (without BSA) was added 
to the basal compartment. For experiments that used hybridoma superna- 
tants, 250 p~l of 50% supernatant/1% BSA/49% serum-free growth medium 
was added to the apical compartment and 1.5 ml of 50% supernatant/50% 
serum-free growth medium was added to the basal compartment. 

Preparation andPlatingofMDCKCells. MDCK cells that had been 
subcultured at a 1:5 dilution with trypsin-EDTA 24-30 h before were non- 
enzymatically detached as described in "Production of Anti-MDCK Ad- 
hesion Antibodies." A suspension of 1.4 × 106 trypan-blue excluding cells/ 
ml was diluted in S-MEM, and 3.5 × 105 cells (250 IM) were plated into the 
apical compartments of the prepared permeable supports and incubated 
at 37°C/5% CO2/100% humidity. Cultures were fed 2-3 h after plating 
with prewarmed growth medium. For experiments that examined anti- 
body perturbations, cells were diluted to 2.8 x 106 cells/ml in S-MEM and 
then diluted 1:1 with hybridoma supernatants and incubated 30 min on ice 
before plating 3.5 × 105 cells (250 ~l)/permeable support. These cultures 
were not fed after plating. 

Measurements. To ascertain functional cell-cell junction formation, we 
measured electrical resistance of the developing monolayers using an epi- 
thelial voltohmmeter (World Precision Instruments, Inc., Sarasota, FL). 
Cultures were equilibrated at room temperature for 10 rain before mea- 
surements were taken; coated permeable supports without cells were used 
for background readings. 

Cell-surface biotinylation (Gottardi and Caplan, 1992) of marker pro- 
teins was used to assess polarization of the developing monolayers. Cul- 
tures were washed three times with cold PBS + on ice and once with 
10raM triethanolamine, pH 9.0/150 mM NaCI/2 mM CAC12/0.5 mM 
MgC12. All subsequent steps were carried out at 4°C, unless otherwise 
stated. Surface proteins were selectively biotinylated with 0.5 mg/ml sulfo- 
succinimidobiotin (sulfo-NHS-biotin; Pierce Chemical Co., Rockford, IL) 
in triethanolamine buffer as described by Gottardi and Caplan (1992). Af- 
ter biotinylation, the cells were washed twice with cell culture medium 
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and then twice with PBS ÷. If the cultures had been treated with antifunc- 
tional antibodies, bound antibody was stripped from the cell surface by 
washing three times for 5 min with 50 mM sodium borate, pH 11/2 mM 
CAC12/0.5 mM MgCI 2 on ice. The cultures were washed twice with PBS + 
before removing them from their supports and extracting them in 0.5% 
sodium deoxycholate (added fresh)/1% Triton X-100/0.5% SDS/20 mM 
Tris, pH 7.5/150 mM/NaCI/2 mM EDTA/10 mM L-gly with the following 
protease inhibitors: 0.2 mg/ml iodoacetamide, 200 mM PMSF, 10 p,g/ml 
aprotinin, 17.5 p,g/ml benzamidine, 1 I~g/ml antipain, 1 p,g/ml pepstatin. 
Extracts were filtered through Centrex 0.45-1~m cellulose acetate filter 
units (Schleicher & Schuell, Inc., Keene, NH). After immunoprecipitating 
overnight, the samples were incubated with washed protein A-trisacryl 
beads (Pierce) for 1-2 h with rotation. Bound antibody-antigen com- 
plexes were washed three times with 0.5% sodium deoxycholate/l% Tri- 
ton X-100/0.5% SDS/20 mM Tris, pH 7.5/500 mM NaCI/2 mM EDTA, and 
once with 10 mM Tris, pH 8.6. Samples were solubilized in 200 mM Tris, 
pH 8.8/5 mM EDTA/0.1% bromophenol blue/12% glycerol/20 mM DTT 
(Fisher Scientific) at 95°C for 3-5 min. After alkylation with 0.1 M iodo- 
acetamide at 37°C for 15-30 min, the proteins were resolved by 6% SDS- 
PAGE at 200 V (Laemmli, 1970). 

Visualization ofBiotinylatedProteins. According to the method of 
Lisanti et al. (1989), gels were equilibrated in transfer buffer (20% metha- 
nol (Fisher Scientific), 39 mM glycine, 0.038% SDS, and 48 mM Tris base) 
for 10-15 min. A semidry blotting device (Bio Rad Laboratories, Her- 
cules, CA) was used to blot proteins for 30 min at 90 mA to polyvinyldiflu- 
oride membranes (Millipore, Bedford, MA). After blocking nonspecific 
binding sites with 3% BSA/1% nonfat milk in TGG buffer (1 M D-glucose 
[Mallincrockrodt, Paris, KY]/10% glycerol [J.T. Baker, Inc., Phillipsburg, 
N J]/0.5% polyoxyethylene-sorbitan monolaurate [Tween 20]) for 1 h, the 
blots were washed with 0.5% Tween 20/PBS and then probed with 80 ng/ 
ml streptavidin-HRP (Pierce) for 20 rain. The membranes were washed 
four times for 5 min with 0.5% Tween 20/PBS- before reacting the HRP 
with Renaissance chemiluminescence reagents (DuPont, Wilmington, 
DE). The membranes were exposed to Reflection autoradiography film 
(DuPont) and developed in a Kodak X-OMAT apparatus. 

Blotting of MDCK Glycolipids 
Lipids were extracted and blotted as previously described (van Genderen 
et al., 1991). Briefly, cellular lipids were extracted in a single phase (Rose 
and Oklander, 1965) and resolved by TLC on aluminum-backed silica 
sheets (SG 60; Merck, Darmstardt, Germany) that had been prerun in the 
resolving solvent (chloroform/methanol/0.22% CaCI2, 60:35:8 [vol/vol]). 
After developing the TLC sheets for 45 min, they were dried with a hair 
dryer for 30 min. The chromatograms were then incubated in 0.4% poly- 
isobutyl methylacrylate (300,000 mol wt; Aldrich, Brussels, Belgium) in 
hexane for 1 min. After drying, nonspecific binding sites were blocked 

with 5% nonfat milk in 50 mM Tris, pH 7.8/2 mM CaCI z for 30 min. The 
blots were incubated with hybridoma supernatants with agitation for 1 h 
and washed four times for 1 rain with 5% nonfat milk in 50 mM Tris, pH 
7.8/2 mM CaClz. After incubating for 1 h with 125I-protein A, blots were 
washed as before and then washed twice in ice-cold PBS-.  The TLC 
sheets were air-dried and exposed to x-ray film at -70°C (Magnani et al., 
1987). 

Unless otherwise specified, reagents were obtained from Sigma (St. 
Louis, MO). 

Resul t s  

The Kinetics of MDCK Cell Polarization Are Similar on 
Cl and LN 

As a first step toward understanding how the ECM can in- 
fluence MDCK cell polarity, we assayed the kinetics of po- 
larization in cells plated onto LN- and CI-coated permeable 
substrata. Cells were only able to interact with the coating 
ECM, since nonspecific binding sites were blocked with 
BSA. We plated MDCK cells at confluent density and used 
domain-specific biotinylation of an apical and basolateral 
marker protein to assess cell polarity. Because differential 
labeling of cell membrane domains depends on functional 
tight junctions to prevent the biotin reagent leaking from 
one compartment to the other, we also measured electrical 
resistance in the developing monolayers. Biotinylated pro- 
teins were detected by probing blots of immunoprecipi- 
tated markers with streptavidin-HRP and chemilumines- 
cence. 

The polarization kinetics of an apical marker, gp135, 
were determined first. Acquisition of electrical resistance 
is shown in Fig. 1 A. Between 1.5 and 6 h, the cells exhib- 
ited a resistance of 25 12.cm2; after 12 h, resistance in- 
creased sharply to 350 f~.cm 2. Regardless of matrix, trends 
of resistance in six trials were similar, although resistance 
tended to be slightly lower in cells on LN-coated perme- 
able supports (data not shown). 

Biochemical results are shown in Fig. 1 B. A band corre- 
sponding to gp135 was detected at lower levels in cells on 
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Figure 1. Polarization assay of  an apical surface 
membrane  marker ,  gp135. Rest r ic t ion to the  api- 
cal domain  occurs within 12 h after plating 
M D C K  cells onto  CI or  LN. Fil ter  suppor ts  were  
coated with 10 ~g/cm 2 of  CI or 20 ixg/cm 2 of  LN 
before  blocking nonspecif ic  binding sites with 
hea t - t rea ted  BSA.  Cells were  then  pla ted at con- 
f luent  density. (A) Resis tance  of  cells p la ted 
on to  CI (O) or  LN (11) was recorded  during the  
polar izat ion assay r ep resen ted  in B to moni to r  
tight junct ion format ion.  Litt le to no resistance is 
de tec ted  f rom 1.5 to 6 h; at 9 h, resis tance in- 
creases to 100 l ) .cm 2, and at 12 h, to 275 (LN) 
and to 350 (C/)  lq.cm 2. Electrical  resis tance of  
cells on CI or LN are similar. Values  represen t  
mean  +- SD. (B) A t  the indicated t ime points,  a 
sul fo-NHS-biot in  solut ion was appl ied to the  api- 
cal (a) or  basolateral  (b) c o m p a r t m e n t  of  the  fil- 
ter  chambers .  Biot inylated cells were  extracted,  
the  gp135 pro te in  was immunoprec ip i ta ted ,  re- 
solved by S D S - P A G E ,  and t ransfer red  to mem-  

branes.  Biot inylated pro te ins  were  de tec ted  with s t r ep tav id in -HRP complex  and chemi luminescent  substrates.  The  marke r  is differen-  
tially labeled  at 3 h in cells p la ted on  CI (lanes I a and 2 b) and at 9 h in cells p la ted on LN (lanes 3 a and 4 b). The  marker  appears  fully 
polar ized by 9 h on  CI and by 12 h on  LN. 
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LN-coated permeable supports (Fig. 1 B, lanes 3 and 4) 
when compared to CI-coated supports at 1.5 h (Fig. 1 B, 
lanes 1 and 2), but signal strength for the cells on LN 
quickly attained that of  cells on CI at 3 h (Fig. 1 B, com- 
pare lanes 3 and 4 to lanes 1 and 2). At  3 h, more signal 
was seen apically than basally in cells on CI (Fig. 1 B, lanes 
I and 2), while the signal in cells on LN was approximately 
the same in both apically and basally biotinylated cultures 
(Fig. 1 B, lanes 3 and 4). Between 9 and 12 h, the signal in 
cultures on CI was detected almost exclusively apically 
(Fig. 1 B, lane 1). This observation indicated that the 
marker  protein was localized to the apical surface at this 
time. In monolayers that initially interacted with LN-coated 
substrata, however, the marker  signal was not detected 
primarily in apically derivatized cultures until 9 h (Fig. 1 B, 
lanes 3 and 4), and it was detected only in apically biotiny- 
lated cells at 12 h (Fig. 1 B, lanes 3 and 4), indicating an 
apical localization for this protein. Even though this partic- 
ular experiment indicated that cells plated onto CI-coated 
substrata polarize this marker more quickly than cells on 
LN, the 9-h time point was not easily reproducible. Over- 
all, the data indicate that gp135 polarizes within 9-12 h, re- 
gardless of  substratum. 

We also examined the polarization kinetics of a basolat- 
eral marker, E-cadherin. At  9 h, the first time point when 
polarization of basolateral markers begins (see below), the 
resistance of  cells on CI reached 150 fbcm 2 (Fig. 2 A, open 
circles), while cells on LN lagged at 50 l).cm 2 (Fig. 2 A, 
closed squares). At 15 h, regardless of substratum, mono-  
layer resistance peaked at ~525 ll-cm 2 and subsequently 
declined. Trends were similiar in a total of three trials. 

When the basolateral marker was assayed biochemically, 
little difference was observed between cells that initially 
interacted with LN or CI. Between 1.5 and 9 h, distribu- 
tion of  the marker  was not polarized, regardless of coating 
matrix (data not shown). At  9 h, the cells on CI have 
mostly polarized the marker  (Fig. 2 B, compare lanes 1 
and 2). Cells plated onto LN began to restrict the basolat- 
eral marker  at 9 h (Fig. 2 B, lanes 3 and 4); at 12 h, a more 

asymmetric labeling was seen. Cells interacting with exog- 
enous LN required more time than those on CI to maxi- 
mally polarize the marker, between 15 and 18 h (Fig. 2 B, 
compare lanes 3 and 4 to lanes 1 and 2). Based on three tri- 
als, our data suggest that cells interacting with CI require 
15 h to polarize the basolateral E-cadherin protein, while 
cells on LN require 15-18 h. 

In summary, when M D C K  cells were plated at confluent 
density onto LN- and CI-coated substrata, an apical marker 
polarized more rapidly than a basolateral marker, regard- 
less of  ECM  coating. The apical marker, gp135, localized 
within 9-12 h, while the basolateral marker, E-cadherin, 
required 15-18 h. Electrical resistance, a measure of  func- 
tional tight junctions, became measurable between 3 and 6 h 
after plating. These resistance profiles are similar to those 
observed by Cereijido et al. (1978) and Matlin and Simons 
(1984). Resistance of  25-75 ~ .cm 2 correlated with consis- 
tent asymmetric biotinylation seen between 6 and 9 h (Fig. 
1 B) in all polarization assays of the apical marker,  indicat- 
ing that at this time, monolayers were impermeable to the 
labeling reagent. 

The 12B12 mAb  Inhibits M D C K  Cell Adhesion to 
Laminin but  Not  to Collagen Type I 

To test the role of LN in M D C K  cell polarization, a func- 
tion-blocking mAb,  12B12, was generated by injecting 
whole M D C K  cells into rats. In an adhesion assay, this an- 
tibody inhibited cell adhesion to Matrigel, a matrix resem- 
bling basement membranes (see Materials and Methods 
for details). Because Matrigel is rich in LN (~60%;  Col- 
laborative Biomedical product literature), we wished to 
determine if 12B12 specifically inhibited M D C K  cell adhe- 
sion to LN. M D C K  cells were challenged to adhere to LN 
or CI in the presence of the antibody. After 1.5 h of incu- 
bation, M D C K  cell adhesion to CI was unaffected by the 
antibody when compared to controls with no antibody 
(Fig. 3, solid bars). In contrast, the antibody reduced adhe- 
sion to LN to 34.6% of controls (Fig. 3, open bars), indicat- 
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Figure 2. Polarization assay of a basolateral 
marker, E-cadherin. Restriction to the basolat- 
eral domain occurs within 18 h after plating 
MDCK cells onto CI or LN. MDCK cells were 
plated onto filter supports coated with 10 i~g/cm 2 
of CI or 20 i~g/cm 2 of LN and processed as de- 
scribed in Fig. 1 and in Materials and Methods. 
(A) Electrical resistance of cells plated onto CI 
((3) and LN ( I )  was recorded during the polar- 
ization assay represented in B to monitor tight 
junction formation. At 1.5 h, resistance is nomi- 
nal for both plating conditions. At 9 h, resistance 
has increased to 150 (CI) and to 75 (LN) fbcm 2. 
Resistance peaks at 15 h for both matrices then 
declines. Resistance of cells on CI or LN are sim- 
ilar. Values represent mean ± SD. (B) The po- 
larization kinetics of basolateral E-cadherin. 
E-cadherin is differentially biotinylated by 9 h in 
cells on CI (lanes 1 and 2) and slightly so for cells 
on LN (lanes 3 and 4). At 15 h, the marker ap- 
pears fully polarized in cells on CI whereas it re- 
quires 18 h to attain a similar distribution in cells 
that initially contact LN. 
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Figure 3. The 12B12 mAb specifically blocks the adhesion of 
MDCK cells to LN but not to CI. Plates (96 wells) were coated 
with 3 ixg/well LN or CI in the presence or absence of the 12B12 
hybridoma supernatant diluted 1:1 with serum-free media. Cells 
were incubated for 30 min before plating with or without the 
12B12 mAb (1 vol of cells to 1 vol of supernatant). At 1.5 h after 
plating, nonadherent cells were washed away. The remaining 
cells were fixed, stained with crystal violet, and quantitated with a 
microplate reader. In the presence of 12B12, cell adhesion to LN 
is reduced to 34.6% of controls (open bars), but adhesion to CI is 
unaffected (solid bars). Values represent mean -+ SE of three ex- 
periments. A U, arbitrary units. 

ing that  it specifically interfered with M D C K  cell adhesion 
to this molecule.  

M D C K  cells synthesize and secrete their  own LN (Cap- 
lan et al., 1987; Wang  et al., 1990b; Boll et al., 1991; Taub,  
1991; Ecay and Valentich,  1992; Zinkl ,  G.M. and K.S. Mat-  
lin, unpublished observat ion) .  Given that  this ant ibody 
specifically inhibited adhesion to LN, we hypothesized that  
the 12B12 m A b  would also interfere with the cells '  abili ty 
to interact  with endogenously  secreted LN. To test if the 
12B12 m A b  interferes with M D C K  ce l l -endogenous  LN 
interactions,  the morphology  of cells p la ted  at confluent 
density onto CI in the presence of the ant ibody was exam- 
ined. M D C K  cells t rea ted  with the 12B12 m A b  or a con- 
trol rat  mAb ,  R40.76 (which recognizes an intracellular  
epi tope of ZO-1,  a tight junct ion protein) ,  were p la ted  
onto CI-coated  tissue culture chamber  glass slides and al- 
lowed to adhere  for 1.5 h. Cells adhered  under  these con- 
ditions, since the 12B12 m A b  has no effect on M D C K  cell 
adhesion to CI (see Fig. 3). Most  cells t rea ted  with the 
12B12 m A b  (Fig. 4 A)  exhibi ted a rounded  morphology  

Figure 5. The 12B12 mAb alters cell morphology. Cells were pre- 
pared with 12B12 and R40.76 mAbs as described in Fig. 4, but 
were plated onto CI-coated filters at confluent density. Filters 
were embedded in plastic, sections (0.5 p~m) were cut, and cells 
were stained with 1% toluidine blue. When the cells are grown 
for 24 h with 12B12 (A), cells are flat and have few microvilli. In 
contrast, cells treated with the control mAb (B) are cuboidal- 
shaped, and microvilli are well developed (arrows). Cell density 
is higher in control cultures (B) than those treated with 12B12 
(A). Note the mitotic figures (*) in A. f, filter. Bar, 20 Ixm. 

(arrowhead); only a few cells have begun to spread (ar- 
row). In contrast,  cells t rea ted  with a control  rat  m A b  
were flat and well spread (Fig. 4 B). Cells p la ted  at conflu- 
ent  densi ty onto CI-coated  pe rmeab le  supports  and grown 
in the presence of the 12B12 m A b  for 24 h formed a con- 
fluent monolayer ,  al though some clumps of  cells were ob- 
served (not shown) (Fig. 5 A).  The cells were flatter, had 
fewer microvilli ,  and less wel l -developed lateral  borders  
when compared  to ceils cul tured in the presence of the 
control  m A b  (Fig. 5 B). Control  cells were cuboidal shaped, 
had wel l -developed microvilli  (Fig. 5 B, arrows), and well- 
defined lateral  borders.  Overall ,  the monolayer  appeared  
more  dense with the control  ant ibody (compare  ~ 1 6  nu- 
clei in Fig. 5 B to 8 nuclei in Fig. 5 A).  

The 12B12 mAb Does Not Affect the Polarization 
o f  an Apical Marker 

W e  next asked if disrupting ce l l -endogenous  LN interac- 

Figure 4. The 12B12 mAb reduces spreading of 
MDCK cells on CI. Tissue culture chamber glass 
slides were coated with 3 txg/well CI, and non- 
specific sites were blocked with BSA. After a 30- 
min incubation with antibody supernatants (1 vol 
cells to 1 vol supernatant), cells were plated into 
the wells with 12B12 mAb or R40.76 (anti-ZO- 
1), a control rat mAb, diluted l : l  with serum-free 
media. Nonadherent cells were washed away 1.5 h 
after plating. The remaining cells were fixed and 
viewed using Nomarski optics. (A) MDCK cells 
incubated with the 12B12 mAb show a rounded 
morphology (arrowhead); some cells have begun 
to spread (arrow). (B) Cells treated with the con- 
trol mAb are well spread and flatter. Bar, 10 ~m. 
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Figure 6. Polarization assay examining the apical 
marker, gp135 in MDCK cells treated with the 
12B12 mAb or a control mAb. (A) Cells treated 
with 12B12 mAb slowly acquire electrical resis- 
tance (A), while the control mAb does not affect 
the acquisition of resistance (D). At 24 h, 12Bl2 
mAb-treated cells achieve a resistance of ,'.-50 
fFcm z while resistance reached 250 l~-cm 2 in con- 
trol cells. Values represent mean -+ SD. (B) To 
determine differences in the polarization kinetics 
of gp135 in cells treated with the 12B12 mAb, 
MDCK cells were plated onto filter supports 
coated with 10 i~g/cm 2 of CI and processed as 
previously described. Expression levels of the 
marker protein are less in cells treated with the 
12B12 mAb when compared to controls (com- 
pare 12 h, +12B12 mAb to +control mAb). At 
12 h, the marker is almost equally labeled on 
cells treated with the 12B12 mAb (lanes I and 2), 
while control cells have polarized the marker, as 
indicated by principally apical signal (lane 3). 

Control cells maintain the polarized distribution of the marker for the remainder of the experiment (lanes 3 and 4). At 18 h, the 12B12 
mAb-treated cells polarize the marker, and at 24 h, signal strength increases; the cells have maintained an asymmetric distribution of 
the marker. Despite the low resistance of the 12B12 mAb-treated monolayers (A), differential labeling of the apical gp135 marker is ob- 
served at 18 and 24 h when resistance is 25 and 50 lbcm 2, respectively. 

tions with this antibody also affected the biogenesis of 
MDCK cell polarity. MDCK cells were plated at confluent 
density onto CI-coated permeable supports in the pres- 
ence of the 12B12 mAb or the control rat mAb R40.76 
(anti-ZO-1). To verify that tight junctions formed in 12B12 
mAb-treated cultures, transmonolayer electrical resistance 
was measured. As indicated in Fig. 6 A, resistance of 12B12 
mAb-treated monolayers (closed triangles) did not paral- 
lel that of the control cells (open squares); resistance was 
reduced at all time points. Monolayers treated with the 
12B12 mAb achieved a maximum resistance of 50 O.cm 2 at 
24 h, while control monolayers peaked and diminished to 
250 fbcm:. Similar trends were observed in three separate 
trials. 

When polarization of apical gp135 was assayed under 
these conditions by biotinylation, a low signal was detected 
in 12B12 mAb-treated cultures at all time points when com- 
pared to controls (Fig. 6 B, compare lanes ! and 2 with 
lanes 3 and 4). At 12 h, the control cells localized the 
marker to the apical surface as expected (Fig. 6 B, lanes 3 
and 4; see also Fig. 1 B, lanes I and 2). In cells treated with 
the 12B12 mAb, however, the antigen was detected almost 
equally on the apical as well as the basal surfaces (Fig. 6 B, 
lanes 1 and 2) at 12 h. At 18 and 24 h, 12B12 mAb--treated 
cultures apically restricted the marker (Fig. 6 B, lanes 1 
and 2), as did the control antibody cultures (Fig. 6 B, lanes 
3 and 4). 

Because the 12B12 mAb reduced the electrical resistance 
of the monolayer during these experiments, it was possible 
that the apparent lack of polarization of gp135 at 12 h (see 
Fig. 6 B, lanes I and 2) was caused by "leaky" monolayers. 
To verify that gp135 was randomly distributed on the cell 
surface at 12 h, cells were plated in the presence of 12B12 
or control mAbs onto CI-coated permeable supports as 
done for the polarization assay, but were fixed at 12 h and 
the gp135 marker was immunolocalized by the PAP tech- 
nique. When treated with the 12B12 mAb, the apical marker 

localized exclusively to the apical cell surface (Fig. 7 A,  ar- 
rowhead) in a monolayer of cells, as did controls (Fig. 7 B, 
arrowhead). Based on these results, 12B12 does not inhibit 
polarization of gp135, even though it does perturb electri- 
cal resistance. 

The 12B12 m A b  Prevents Polarization o f  a 
Basolateral Marker  

To examine the effects of the 12B12 mAb on localization 
of basolateral membrane proteins, we repeated the bio- 
chemical assay of cell polarization for the basolateral marker, 
E-cadherin. We assayed later time points (24 and 48 h) to 
assure that the cells had ample opportunity to polarize ba- 
solateral surface proteins. Electrical resistance of 12B12 
mAb-treated monolayers exhibited a gradual increase that 
was much lower than controls until 48 h (Fig. 8 A,  closed 
triangles). In control mAb-t reated cells, resistance peaked 
at 24 h and decreased at 48 h (Fig. 8 A, open squares). 

When examined biochemically, the basolateral marker 
protein was equally labeled in the apical and basal com- 
partments in the presence of the 12B12 mAb at 1.5, 24, 
and 48 h after plating (Fig. 8 B, lanes 1 and 2). In control 
mAb-treated cells, the marker polarized by 24 h (Fig. 8 B, 
lanes 3 and 4), as expected (see Fig. 2 B, lanes 1 and 2); the 
cells maintained this distribution through 48 h. Unlike 
12B12 mAb--treated cultures examined for the apical anti- 
gen, where signal strength was much less than controls 
(see Fig. 6), signal strength was comparable to that of con- 
trols for this marker. 

To confirm that the 12B12 mAb disrupted basolateral 
polarity, we immunolocalized a basolateral antigen during 
the polarization assay. Cells treated with the 12B12 and 
control R40.76 mAbs were plated onto CI-coated perme- 
able supports at confluent density. Because an anti-E-cad- 
herin antibody that yielded consistent PAP staining was 
unavailable, another basolateral antigen, p58, was used. 
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Figure 7. The apical gp135 marker localizes to the apical cell sur- 
face at 12 h in MDCK cells treated with 12B12. Light micrograph 
of a 0.5-~m section of cells that were immunostained by PAP for 
gp135 and counterstained with 0.1% toluidine blue to visualize 
nuclei. (A) To determine the localization of the apical gp135 
membrane marker in cells treated with the 12B12 mAb, MDCK 
cells were plated onto filter supports coated with 10 i~g/cm 2 of CI 
in the presence of the 12B12 mAb. Nonspecific binding sites were 
blocked with BSA. The marker was immunolocalized by PAP; lo- 
calization is indicated by a dense precipitate, the product of the 
peroxidase reaction. The marker localizes to the apical cell sur- 
face (arrowhead). Some clumping of cells is observed where the 
signal is randomized (arrow). (B) Control cultures were treated 
with a control rat mAb (R40.76, anti-ZO-1) and then stained for 
gp135 with PAP. The apical marker localizes to the apical cell 
surface at 12 h after plating, f, filter; Bar, 10 ~m. 

At  24 h, 12B12 m A b - t r e a t e d  cells (Fig. 9 A)  were immu- 
nostained with the anti-p58 antibody.  Clear  staining of the 
apical (Fig. 9 A, arrowhead) and lateral  surfaces (arrows) 
was observed,  with some possible basal  staining. Even 
though signal s trength was low in these experiments ,  it was 

much higher than background controls (Fig. 9 B), which 
omit ted  the anti-p58 antibody.  In control  mAb-- t rea ted  
monolayers ,  p58 was localized to the basola tera l  surface as 
expected at 24 h (Fig. 9 C). 

Overal l ,  these results demons t ra te  that  if ce l l -LN inter- 
actions were per tu rbed  by the 12B12 mAb,  basola tera l  but  
not  apical polar i ty  was delayed.  In addit ion,  the ant ibody 
per tu rbed  electrical  resistance. 

The 12BI2 mAb Recognizes a Glycolipid of the 
Apical Cell Surface 

Because the 12B12 m A b  specifically interfered with M D C K  
cell adhesion to LN, we hypothesized that the ant ibody 
recognized an integrin LN receptor.  Previous work from 
our labora tory  showed that  M D C K  cell a t tachment  to LN 
was mediated by the 131 family of integrin receptors (Schoen- 
enberger  et al., 1994). Nevertheless,  mult iple a t tempts  to 
immunoprec ip i ta te  and immunoblo t  a prote in  antigen of 
12B12 m A b  under  a variety of condit ions were unsuccess- 
ful. When  M D C K  lipids were extracted and resolved on 
TLC plates and then reacted with the 12B12 mAb,  how- 
ever, a band was identif ied (Fig. 10, lane 2) that  comi- 
grated with and had a similar shape as a band that  reacted 
with an authentic  ant i -Forssman antigen m A b  (Fig. 10, 
lane 4, arrowhead). To confirm that  12B12 m A b  recog- 
nized Forssman antigen, a strain of M D C K  cells that  does 
not  express Forssman antigen, M D C K  I (a high resistance 
clone), was used (Hansson et al., 1986; Nichols et al., 
1986b; Hansson,  1988). M D C K  I lipids were extracted as 
before and probed  with the 12B12 m A b  and the anti-Forss- 
man antigen mAb.  Consistent  with previous reports ,  no 
M D C K  I lipids reacted with the ant i -Forssman antigen 
m A b  (Fig. 10, lane 3); likewise, the 12B12 m A b  also failed 
to yield a signal ( lane 1). Comparab le  data  were obta ined  
in a separate  TLC solvent system (chloroform/methanol /  
water  60:35:8 [vol/vol]), which separates  Forssman gly- 
colipid from sulfatide, a second lipid in M D C K  II cells that  
is absent from M D C K  I (Hansson et al., 1986). This supports 
the conclusion that  the 12B12 m A b  recognized Forssman 
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Figure 8. Polarization of E-cadherin in MDCK 
cells treated with the 12B12 mAb is perturbed. 
(A) Cells treated with 12B12 mAb gradually ac- 
quire electrical resistance (A) whereas the con- 
trol mAb has little effect ([3). At 24 h, 12B12 
mAb-treated cells acquire a resistance of ~50 
ft-cm 2, while the resistance of control ceils peaks 
and then declines to 100 ~.cm 2 at 48 h. The 
12B12 mAb-treated monolayers reach a resis- 
tance of 150 fl.cm 2 at 48 h. Values represent 
mean --- SD. (B) To determine differences in the 
polarization kinetics of E-cadherin in cells 
treated with the 12B12 mAb, MDCK cells were 
plated onto filter supports coated with 10 ixg/cm 2 
of CI as previously described. Whereas the 
marker is well polarized at 24 and 48 h after plat- 
ing in controls (+control mAb, lanes 3 and 4), it 
is not basolaterally segregated in cells treated 
with the 12B12 mAb (+12B12 mAb, lanes 1 and 
2). Note that despite the resistance of the 12B12 
mAb-treated monolayers at 24 and 48 h, the 
E-cadherin marker is not differentially labeled 
(lanes 1 and 2). 
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Figure 9. Light micrographs of 0.5-1~m sections of MDCK cells that are stained for p58 with PAP and counterstained with 0.1% tolui- 
dine blue to visualize nuclei. The p58 basolateral marker is randomly expressed on cell surfaces 24 h in MDCK cells cultured with the 
12B12 mAb. (A) To determine the localization of the basolateral p58 membrane marker in cells treated with the 12B12 mAb, MDCK 
cells were plated onto filter supports coated with 10 ixg/cm 2 CI in the presence of the 12B12 mAb and processed as described in Fig. 7 
and in Materials and Methods. Despite low expression of this marker, signal is found on the apical (arrowhead) and lateral (arrows) cell 
surfaces. Cells are in apposition, forming a monolayer. Apical surfaces appear "rounded." (B) Background staining for A in which the 
primary antibody was omitted from 12B12 mAb-treated cultures. (C) In cultures treated with a control mAb, R40.76 (anti-ZO-1), the 
basolateral marker p58 is localized exclusively to the basolateral cell surface at 24 h after plating. The cells are cuboidal, with "even" 
apical membranes, and are taller than their 12B12 mAb-treated (A) counterparts. (D) Background staining for C in which the primary 
antibody was omitted from R40.76-treated cultures, f, filter; Bar, 20 p~m. 

antigen and not another comigrating lipid; a different clone 
of MDCK II cells (Mays et al., 1995) also gave similar re- 
suits (data not shown). In addition, the 12B12 mAb does 
not affect MDCK I adhesion to or cell spreading on CI or 
LN (data not shown). 

Because previous immunofluorescence studies suggested 
that surface-expressed Forssman glycolipid in MDCK cells 
localizes principally to the apical membrane domain (Hans- 
son et al., 1986; Butor et al., 1991), we immunostained for 
the 12B12 mAb antigen in polarized MDCK monolayers. 
The 12B12 mAb antigen was localized on nonpermeabi- 
lized cells by PAP immunostaining. A strong signal was 
detected apically (Fig. 11 A, arrowhead), while some signal 
was detected on lateral cell surfaces (arrow). We also lo- 
calized the 12B12 mAb antigen at early times during the 
polarization assay when the antibody disrupts adhesion to 
LN. MDCK cells that were plated onto CI-coated perme- 
able supports were immunostained 1.5 h later. A random- 
ized plasma membrane distribution of the glycolipid was 
seen (Fig. 11 B); thus, the glycolipid'has the potential to in- 
teract with the substratum soon after cell plating. 

Discussion 

The results we report here indicate that an antibody that 
interferes with the adhesion of MDCK cells to LN is able 
to specifically disrupt the polarization of basolateral pro- 
teins and also perturbs the establishment of functional 
tight junctions. Surprisingly, this antibody reacts with a 
prominent glycolipid, the Forssman antigen. 

The 12B12 mAb Is Likely to Perturb Endogenous 
LN-MDCK Cell Interactions 

To study LN's contribution to MDCK cell polarization, we 

took advantage of the cells' ability to synthesize their own 
ECM and to adhere to exogenous ECM. First, in culture, 
MDCK cells synthesize and secrete LN (Caplan et al., 
1987; Wang et al., 1990b; Boll et al., 1991; Taub, 1991; 
Ecay and Valentich, 1992; Zinkl, G.M., and K.S. Matlin, 
unpublished observation). Second, while the cells may de- 
pend in part on LN for adhesion to a substratum, they are 
competent to adhere to other ECM molecules, such as CI 
(Schoenenberger et al., 1994). Thus, we are able to perturb 
MDCK cell-endogenous LN interactions in cells that are 
attached to a CI substratum. In this way, we can analyze 
the effects of inhibiting LN-cell interactions on MDCK 
cell polarization. 

To interfere with MDCK cell-LN interactions, we used 
the 12B12 mAb, which prevents attachment to exogenous 
LN but not to CI. While our data do not directly demon- 
strate that 12B12 perturbs MDCK cell interactions with 
endogenous LN, two pieces of evidence support this con- 
tention. First, 12B]:2 specifically inhibits MDCK cell adhe- 
sion to exogenous LN. Second, the antibody reduces cell 
spreading early in culture. Because LN not only mediates 
adhesion, but also promotes cell spreading (Tryggvason, 
1993; Timpl and Brown, 1994), these results suggest that 
the cells do not spread because they cannot interact with 
endogenous LN. It is unclear, however, whether the gly- 
colipid exerts its effect by binding directly to LN or by 
some other mechanism. 

By perturbing cell-LN interactions, the 12B12 mAb dis- 
rupts basolateral but not apical surface polarity. When 
MDCK cells are treated with 12Bl2 and plated at conflu- 
ent density onto CI-coated supports, an apical antigen po- 
larizes by 12 h, as did controls. While the results from the 
biochemical polarization assay suggested that gp135 is de- 
tected apically and basally in the presence of the 12B12 
mAb, this observation was not confirmed by immunoper- 
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Figure 10. The 12B12 mAb recognizes a glycolipid on MDCK II 
cells that comigrates with and has a similar band shape as Forss- 
man antigen. Lipids from MDCK strain I (I, lanes 1 and 3) or 
strain II (H, lanes 2 and 4), the strain used in this study, were ex- 
tracted and resolved on TLC plates (resolving solvent, chloro- 
forrn/methanol/0.22% CaCl2 60:35:8 [vol/vol]); origin, bottom; 
top, solvent front. Lipids were reacted with the 12B12 mAb 
(lanes I and 2) or an anti-Forssman antigen mAb (lanes 3 and 4) 
and protein A conjugated to 125I. A band is seen in lane 2 which 
comigrates with the anti-Forssman antigen mAb reactive band 
seen in lane 4 (arrowhead). Because MDCK strain I does not ex- 
press the Forssman antigen, strain I glycolipids fail to react with 
the anti-Forssman antigen mAb (lane 3); strain I lipids also fail to 
react with the 12B12 mAb (lane 1). 

oxidase experiments. The contradictory biochemical re- 
suits were most likely caused by leaky monolayers, an ef- 
fect that the antibody exerts on tight junction formation, 
particularly at early time points. However,  polarization of 
a basolateral antigen is significantly retarded when cells 
are cultured with the antibody, an observation confirmed 
both biochemically and immunocytochemically. Not  only 
does 12B12 specifically inhibit basolateral polarization in 
M D C K  cells, but it also deters functional tight junction 
formation. These results mimick those studies that find po- 
larization of apical markers is established without tight 
junctions, which are, however, required for polarization of 
basolateral markers (Vega-Salas et al., 1987). 

Nature of  the 12B12 mAb's Antigen and Its Effects 
on MDCK Cells 

The 12B12 m A b  recognizes a glycosphingolipid of M D C K  
cells, the Forssman antigen (Hansson et al., 1986; Nichols 
et al., 1986a,b; van Meer et al., 1986). We base this conclu- 
sion on blots of M D C K  cell lipids in which the 12B12 mAb  
recognizes a band that comigrates with a band that reacts 
with an authentic anti-Forssman antigen mAb. Previous 
work by Hansson et al. (1986) used mass spectrometric 
analysis to confirm that the band that reacted with the au- 
thentic anti-Forssman antigen is the Forssman glycolipid. 
Additionally, the 12B12 m A b  neither reacts with lipids 
from the M D C K  I cell line, which does not express the 

Figure 11. The 12B12 mAb localizes its antigen to the apical cell 
surface in confluent MDCK monolayers (A) and is randomly dis- 
tributed 1.5 h after plating (B). (A) To localize the 12B12 mAb 
antigen in confluent MDCK monolayers, cells were grown on un- 
coated filter supports for 1 wk. After fixation, they were stained 
with the 12B12 mAb using the PAP technique and the nuclei 
were counterstained with 0.1% toluidine blue. An intense dark 
precipitate is found on the apical cell surface (arrowhead), while 
very weak staining is seen on the lateral surface (arrow). (B) To 
understand how the 12B12 mAb could exert an effect on cell ad- 
hesion, its antigen was localized at 1.5 h after plating MDCK cells 
onto supports coated with 10 ixg/cm 2 CI and nonspecific binding 
sites blocked with heat-treated BSA. The PAP signal is found 
over the entire cell surface, indicating a randomized distribution 
of the 12B12 mAb antigen, f, filter; Bar, 20 I~m. 

Forssman antigen (Hansson et al., 1986; Nichols et al., 1986b; 
Hansson, 1988) nor does this antibody affect adhesion or 
cell spreading on LN or CI. Although a Forssman epitope 
has been found on a few glycoproteins (Mori et al., 1986; 
Kijimoto-Ochiai et al., 1990), we do not believe that a gly- 
coprotein with this epitope exists in M D C K  II HD cells. 
We fail to immunoprecipitate and immunoblot  proteins 
from M D C K  II H D  cells with 12B12. Although glycolipid 
polarity in epithelia is well documented (van Meer, 1989), 
it is unlikely that a particular sugar modification would be 
found only on apical proteins. The Forssman glycolipid 
has been used as a stage-specific marker for teratocarci- 
noma (Stern et al., 1978) and embryonic cells (WiUison 
and Stem, 1978). The glycolipid consists of five sugar groups 
linked to the C-1 of ceramide (N-acetylgalactosaminyi-(al- 
3)-N-acetylgalactosaminyl-(131-4)-galactosyl-(al-4)-galacto- 
syl-(IM-4)-glucosyl-(131-1)-ceramide) (Siddiqui and Hako-  
mori, 1971). While some glycolipids have been suggested 
to bind ECM  proteins (Cheresh et al., 1986; Hakomori ,  
1990; Kalb and Engel, 1991; Mecham, 1991; Jungalwala, 
1994; Kobayashi et al., 1994), they usually are charged be- 
cause of sulfate, phosphate, or other modifications to the 
head group, suggesting an electrostatic mechanism of bind- 
ing. This cannot be the case for the neutral Forssman gly- 
colipid and LN interactions in M D C K  cells. Previous work 
using a different anti-Forssman antigen antibody that re- 
acted with M D C K  cells suggested that Forssman glycolipid 
did not play a role in cell-substratum adhesion per se, but 
was necessary for the , 'establishment" of cells in culture 
(Butor et al., 1991). When this antibody was added to cul- 
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tures at cell plating, the cells often died; if added at any 
other time point, cells adhered to the filter. However, 
these studies were all performed on bare~polycarbonate 
filters, and no cell adhesion assays were used. The fact that 
cells died under these conditions and that ~cell adhesion 
was not directly measured does not prove or disprove a 
role for the Forssman glycolipid in MDCK celd adhesion. 

Our data are not the first to suggest that lipids may play 
important roles in cell differentiation, although they are 
the first to suggest that a neutral glycosphingolipid medi- 
ates both MDCK cell adhesion to LN and basolateral po- 
larization. Examining the anionic disialoganglioside GD3 
(a ganglioside is a glycosphingolipid with one or more an- 
ionic sialic acids), Sariola et al. (1988) were able to perturb 
the conversion of metanephric mesenchyme to epithelia. 
They showed that the anti-Go3 antil~odies reacted only 
with a subpopulation of metanephric,.mesenchymal cells 
and not with the inducing ureteric bud epithelium. How- 
ever, it cannot be argued that thesm, antibodies exerted 
their effects by blocking cell-LN interactions, since LN is 
not expressed until just before epithelium formation (Klein 
et al., 1988; Ekblom et al., 1990). In fact, Sariola et al. 
(1988) suggest that cell-cell interactions were inhibited, 
thus suggesting that lipids may play significant roles not 
only in cell-substratum contacts, but also in cell-cell inter- 
actions. In addition, Cheresh et al. (1986) showed that two 
disialogangliosides, GD2 and Go3, are involved in cell-sub- 
strate adhesion. When human melanoma (M21) and human 
neuroblastoma (SK-NAS) cells were plated onto fibronec- 
tin or LN in the presence of function-blocking anti-GD2 or 
-GD3 antibodies, adhesion was inhibited. This inhibition 
was detected as early as 5 min after plating, suggesting that 
these gangliosides play an early role in cell adhesion. In- 
terestingly, Szulman (1975) indicated that an anti-Forss- 
man antigen polyclonal sera was able to perturb tubule 
formation in a model of histotypic reaggregation of chicken 
mesonephric cells. He also suggested that Forssman anti- 
gen may play an important role in cell-cell interactions. 

While studies have suggested important roles for lipids 
in cell adhesion, little is known about the underlying mech- 
anisms. Do these lipids bind ECM molecules themselves, 
or do they modify the membrane microenvironment of 
surface protein receptors to enhance or discourage bind- 
ing? There is some evidence supporting both possibilities. 
Cheresh and his colleagues in their GD2/GD3 studies hy- 
pothesized that the anionic sialic acid groups bind Ca 2+, 
which is necessary for cell adhesion to ECM (Cheresh et 
al., 1986). In vitro, Kalb and Engel (1991) found that the 
phospholipids phosphatidylcholine (zwitterionic) and phos- 
phatidylglycerol (anionic) bound LN in a Ca2+-dependent 
manner, suggesting a role for lipids on the cell surface to 
aid in LN self-assembly into a matrix. Mohan et al. (1990) 
also found that some sulfated but not neutral glycolipids 
bound specifically to LN in vitro. In contrast, other studies 
suggest that the membrane microenvironment affects re- 
ceptor binding to ECM. Using purified vitronectin recep- 
tor (an integrin) incorporated into liposomes containing 
various phospholipids and cholesterol, Conforti et al. 
(1990) found that the efficiency of binding to vitronectin 
correlated with lipid composition. They also found a con- 
formational difference between receptors in liposomes 
that bound well to vitronectin and those in other lipo- 

somes that did not, suggesting that the lipid microenviron- 
ment can affect protein structure. Others have observed 
similar cases of lipids affecting the activity of ECM receptors 
(Hermanowski-Vosatka et al., 1992; Zheng et al., 1993). 

Models for 12B12 mAb Action 

Our observations suggest several models for the role of 
Forssman glycolipid in MDCK cell adhesion and polarity. 
These models take into account the observations that 
MOCK cells secrete LN and adhere to LN by [M-integrins 
(Schoenenberger et al., 1990). Although we focus on inte- 
grins in our models, other proteins that bind LN, such as a 
67-kD MDCK protein (Salas et al., 1992) or nonmuscle 
a-dystroglycan (Durbeej et al., 1995), may also be in- 
volved. One model ("glycolipid zipper") suggests that the 
glycolipid facilitates LN adhesion directly. In culture, when 
suspended MDCK cells are plated onto a substratum, elec- 
trostatic interactions may initially allow the cells to attach. 
At this stage, they do not spread. As the cells begin to se- 
crete LN at higher concentrations into the medium, some 
LN is deposited onto the substratum. The Forssman gly- 
colipid (or~related glycolipids in other epithelia, such as 
the blood~group B-like glycolipid in MDCK strain I cells 
[Hansson; 1988]), which is randomly distributed on the cell 
surface, "scouts" for this LN, zippering the cell to the sub- 
stratum, thereby aiding integrin-LN binding. This mecha- 
nism may be more efficient than allowing receptors alone 
to attach to the many sites on LN unaided, since lipids may 
be able to bind indiscriminately to the LN molecule whereas 
receptors bind to only one specific site; in addition, there 
are likely to be more molecules of the glycolipid than LN 
receptors. When cell--cell interactions develop, occupied 
integrin receptors would then initiate a signal cascade 
(Hynes, 1992; Clark and Brugge, 1995; Yamada and Miya- 
moto, 1995) to cue the cell to assemble the polarized phe- 
notype. As integrins bind LN, the glycolipid localizes to 
the apical cell surface. By perturbing these early steps in 
cell-LN adhesion, the 12B12 mAb prevents the cascade, 
and the cells do not fully polarize. 

Another model ("glycolipid context") suggests that in- 
teractions between the glycolipid and LN are not key; 
rather, the glycolipid helps to create a lipid microenviron- 
ment for integrin LN receptors Such that ligand binding is 
optimized by stabilizing an LN-binding conformation. 
When the integrin receptor binds LN, the conformation is 
stabilized, and the glycolipid is no longer necessary and lo- 
calizes apically. Since the 12B12 mAb interferes with this 
interaction, the LN integrin receptors are unable to bind 
LN efficiently, detrimentally affecting polarity. The lipid 
environment can affect integrin specificity and avidity, 
lending plausibility to this model (Conforti et al., 1990; 
Hermanowski-Vosatka et al., 1992; Zheng et al., 1993). 
Because our data do not directly demonstrate an LN-bind- 
ing role for Forssman antigen, this model is also an attrac- 
tive possibility. 

Similarly, a "glycolipid organizer" model that incorpo- 
rates the fact that glycolipids can bind LN (and other ECM 
proteins) (Hakomori, 1990; Kalb and Engel, 1991; Me- 
cham, 1991) and thus may facilitate the organization of the 
ECM network would relegate integrins as "downstream" 
players. As the cells attach to the substratum, either by 
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electrostatic interactions or by serum factors, they begin to 
secrete LN. The glycolipid, which is randomly expressed 
on the cell surface, binds the secreted LN to help concen- 
trate it at the cell surface-substratum interface. This action 
helps form a matrix "nucleus" that promotes polymeriza- 
tion of a LN/ECM network. The 12B12 mAb would then 
interfere with the three-dimensional LN network forma- 
tion, to which cells would never optimally adhere, result- 
ing in poorly polarized cells. 

Apical vs. Basolateral Polarity and Effects of  ECM 

Under normal conditions, an apical marker is fully polar- 
ized by 12 h, while a basolateral marker requires 18 h, re- 
gardless of substratum. These differences in apical and ba- 
solateral kinetics were first observed by Vega-Salas et al. 
(1987), who observed that a 185-kD apical marker polar- 
ized more swiftly than a basolateral marker, p63. Using 
semiquantitative immunofluorescence measurements of 
frozen sections of MDCK cells that were plated at "high" 
density onto CI gels on impermeable substrata, they found 
that the apical marker required 24 h to fully polarize, while 
a basolateral marker required >72 h. Our data confirm 
this trend, but with a biochemical approach. The differ- 
ences in the kinetics can be attributed to the particular an- 
tigens studied, the use of impermeable substrata, or the 
clone of MDCK cells used. Indeed, an issue that has re- 
cently become more important in the study of epithelial 
cell polarity is the clonal variations between different 
MDCK II cell lines. In a recent study, Mays et al. (1995) 
demonstrated the unexpected result that delivery of the 
Na+/K÷-ATPase was not directly targeted to the basolat- 
eral domain in a clone of MDCK II cells. This difference in 
targeting was subsequently correlated with the missorting 
of glycosphingolipids. We have observed other variations 
between subclones of MDCK cells (Zuk and Matlin, 1996). 

The observation that apical antigens polarize before ba- 
solateral ones suggests that one signaling and assembly 
pathway mediates the polarization of apical proteins and 
another pathway leads to the polarization of basolateral 
proteins. Not only is there likely to be cross-talk between 
these pathways, but each path may also have a hierarchy 
of signaling (Rodriguez-Boulan and Nelson, 1989; Mays et 
al., 1995). Full assembly of the polarized phenotype is 
therefore not realized when steps in the signaling hierar- 
chy are perturbed. Previous observations suggest that sig- 
naling hierarchies are involved in MDCK cell polarization. 
MDCK cysts in suspension culture are partially polarized 
because apical markers are found on the cyst periphery, 
while basolateral antigens are at the sites of cell-cell con- 
tact. However, not until the deposition of ECM into the 
lumen does the protein ZO-1 localize to the tight junction 
(Wang et al., 1990b). Thus, not until the appearance of 
ECM do cells in cysts finally fully polarize, suggesting that 
ECM may play a later role in cyst cell polarization. Previ- 
ous work from our laboratory also suggests that the path- 
ways for apical and basal polarity are distinct and involve a 
hierarchy of signals. We developed and examined the po- 
larity of Kirsten-ras transformed MDCK cells (Schoenen- 
berger et al., 1991). Kirsten-ras is a constitutively "on" 
small GTP-binding protein; stably transfected MDCK cell 

lines exhibit the characteristics of transformed cells, form- 
ing tumors in nude mice and multilayers in culture. These 
cells exhibit basolateral but not apical polarity. Thus, by 
perturbing a second messenger signaling pathway, a spe- 
cific aspect of cell polarity, apical polarity, can be disrupted. 
Finally, our results with the 12B12 mAb suggest that by in- 
terfering with early adhesion to LN, polarization is selec- 
tively perturbed, also arguing that a single path in polar- 
ization (basolateral) is disrupted. 

Kirsten-ras MDCK cells not only exhibit selective de- 
fects in polarity of apical proteins, but they also exhibit an 
altered pattern in ECM receptor expression. Further work 
demonstrated a correlation between ras expression and al- 
terations in the integrin profile and expression levels 
(Schoenenberger et al., 1994). These results led to the hy- 
pothesis that integrins, in conjunction with their ECM 
molecule ligands, may act as morphoregulatory molecules 
(Schoenenberger et al., 1994). Our current results support 
this notion at the level of the ECM. Although we do not 
have direct evidence linking integrins to MDCK polarity, 
we do present evidence in this report that argues that LN 
(to which at least one MDCK integrin binds) mediates an 
aspect of MDCK cell polarity. 

In summary, we have demonstrated that a glycolipid- 
binding mAb inhibits not only tight junction formation 
and adhesion to LN, but also inhibits basolateral but not 
apical polarity. These results suggest that cell-LN interac- 
tions may play an important role in the establishment of 
basolateral polarity. Future studies will concentrate specif- 
ically on the role of LN-binding integrins and MDCK cell 
polarity, and ultimately on the signal transduction cascade 
from integrin binding to assembly of the polarized pheno- 
type. 
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