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High parameter imaging is an important tool in the life sciences for both discovery

and healthcare applications. Imaging Mass Cytometry (IMC) and Multiplexed Ion Beam

Imaging (MIBI) are two relatively recent technologies which enable clinical samples to be

simultaneously analyzed for up to 40 parameters at subcellular resolution. Importantly,

these “Mass Cytometry Imaging” (MCI) modalities are being rapidly adopted for studies of

the immune system in both health and disease. In this review we discuss, first, the various

applications of MCI to date. Second, due to the inherent challenge of analyzing high

parameter spatial data, we discuss the various approaches that have been employed for

the processing and analysis of data from MCI experiments.

Keywords: imaging cytometry, analysis, multiplexed ion beam imaging, imaging mass cytometry (IMC), mass
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INTRODUCTION

Multiplexed imaging methods are becoming an increasingly important tool for both basic science
and clinical research (1–10). Recently, mass cytometry imaging (MCI) approaches, which enable
imaging at subcellular resolution have been described (11, 12). MCI enables up to 40 parameters
to be visualized in a single tissue section and is being rapidly adopted for various applications,
including studies in cancer, diabetes and the definition of complex immune subsets during
development and homeostasis (13–21).

Mass Cytometry Imaging Technologies
There are two approaches for MCI—Imaging Mass Cytometry (IMC) (11) and Multiplexed Ion
Beam Imaging (MIBI) (12). In both methods, the first step is the labeling of tissue sections with
up to 40 different antibodies conjugated to stable isotopes, mostly from the lanthanide series
(Figure 1A). In IMC, the tissue is then ablated using a laser with a 1µm spot size, which rasterizes
over a selected region of interest. Plumes of tissue matter are then aerosolized, atomized, and
ionized, and then fed into a time-of-flight mass spectrometer for analysis of isotope abundance
(Figure 1B). In MIBI, an oxygen duoplasmatron primary ion beam rasterizes over the tissue,
ablating a thin layer of the tissue surface, which then liberates antibody-bound metal isotopes as
ions. Similar to IMC, these secondary ions are then fed into a time-of-flight mass spectrometer for
the estimation of isotope abundance [Figure 1C; (13)]. In both methods, the isotope abundance of
each “spot” can then be mapped back to the original co-ordinates, producing a high dimensional
image qualitatively similar to a fluorescence microscopy image (Figure 1D).
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FIGURE 1 | Workflow for Mass Cytometry Imaging. (A) Tissue sections are first labeled with a cocktail of metal-isotope-tagged antibodies. (B) In Imaging Mass

Cytometry the tissue is ablated using a laser with 1µm spot size. Plumes of tissue matter are then aerosolized, atomized and ionized, and then fed into a time-of-flight

mass spectrometer, where metal ions are separated based on mass. (C) In Multiplexed Ion Beam Imaging a thin layer of the sample surface is ablated using an

oxygen-based primary ion beam. Metal isotypes are liberated from antibodies as secondary ions which are then delivered to a time-of-flight mass spectrometer. (D) A

high dimensional image is generated, which when combined and visualized, resembles a traditional fluorescence microscopy image. Parts of this figure were

made Biorender.

The differences between IMC and MIBI have previously
been reviewed (2). However, MIBI has undergone extensive
improvements since its initial description, overcoming many of
the limitations relating to speed of acquisition and multiplexing
capacity (13). Accordingly, there are no up-to-date published
comparisons of these two technologies. Both have recently been
used to successfully analyse 30–40 parameters in situ in patient
tissue samples (13, 17, 18). Two important differences we will
mention relate to sample ablation and image resolution. IMCuses
a laser for sample acquisition and is designed to ablate the entire
sample with a fixed lateral resolution of 1,000 nm. However,
MIBI utilizes a tuneable ion beam which can be adjusted for
varying depth of sample acquisition and also ion spot size (image
resolution). This means that the same area can be scanned at a
lower resolution to gain an overview and then potential areas

of interest rescanned at a higher resolution, reportedly as low as
260 nm, though with a trade-off of longer acquisition times. A
comparison of features between IMC and MIBI is summarized
in Table 1.

Significance of Mass Cytometry Imaging
MCI is a landmark development because it allows for upward
of 40 markers to be simultaneously stained, acquired and
visualized, enabling a variety of distinct cell types to be
analyzed concurrently in their native microenvironment. The
microenvironment consists of a complex matrix of fluids,
proteins and cells which provide signals that shape a given cells
phenotype and function within an organ in both health and
disease (22–26). Indeed, there is increasing evidence that cellular
functions are programmed not just by cell ontogeny but also
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TABLE 1 | Highly multiplexed imaging technologies.

Serial staining immunofluorescence Metal tagged antibodies

Examples CycIF, GEMultiOmyx, 4i, CODEX IMC MIBI

Resolution ∼200 nm ∼1,000 nm ∼260 nm*

Simultaneous detection limit 1–5 40 40

Max number of epitopes imaged per section** ∼60 40 40

Throughput*** Hours or 1 day per cycle per tissue section 1 mm2/2 h 1 mm2/5 h (500 nm resolution)

References (3, 4, 6–8) (11) (12, 13)

*A smaller spot size (resolution) results in longer acquisition times. A lower limit of 260 nm is referenced in a recent publication, but the actual data acquired in the study was at a

resolution of 500 nm (13).
**There is no hard upper limit for serial staining protocols, but published data has shown approximately 60 markers per section (4, 7, 8). A limit of 40 markers for IMC and MIBI is derived

from interpretation, based on both the indicated references and current reagent availability.
***The rate-limiting step for serial staining protocols is the antibody incubation period which can take hours and is often performed overnight. Throughput for IMC is listed in the Fluidigm

product specification sheet for acquisition at 200Hz. Throughput for MIBI is based on correspondence with IONpath and is expected to be published later this year in a paper describing

the current specifications of MIBI.

by signals from the surrounding microenvironment. Examples
include Monocytes and Dendritic Cells and T cells which exist
in several functionally diverse subsets, which vary across tissues
so as to meet the requirements of their local environment (27–
31). Specific subsets of Dendritic Cells, Innate Lymphoid Cells
and T cells can carry out distinct functions at a given point
in time, inducing either tolerance or inflammation depending
on a host of signals derived from both cytokines and direct
cell contact (32–35). In the context of disease pathogenesis,
the tumor microenvironment is now appreciated as a complex
signaling network between transformed and non-transformed
cells, with the latter being corrupted to promote tumor function
(36, 37). The importance of the microenvironment for cell
function is clear. The major contribution of MCI is that it
provides spatial data for a large number of parameters at
subcellular resolution. As such, we are now positioned to discover
interdependencies between complex cell subsets in health and
disease. These interactions can be further investigated ex vivo
to determine their functional outcome and contribution to
disease progression.

MCI is also an important development for practical reasons as
it enables complete studies to be performed on archival samples.
This is particularly useful as research questions evolve with
time and it is invaluable to be able to repeatedly interrogate
the same sample for different parameters. This feature will be
particularly helpful for investigations of inflammatory disorders
where significant heterogeneity can exist, making it difficult
to accurately characterize the cell types involved and thus the
immune motifs underlying the disease; such is the case for
dendritic cell subsets which are partly defined by surface markers
that are labile during inflammation (38). Furthermore, many
studies can only be performed using small biopsies or precious
post-mortem samples, as in brain and pancreatic tissues, with
samples typically curated through biobank networks (39, 40).
As such large gaps remain in our understanding of disease
pathogenesis in these tissues; a gap which MCI is poised
to fill.

Other Approaches for Highly Multiplexed
Imaging
Serial Staining Immunofluorescence
Other approaches exist which are fluorescence-based and
involve iterative rounds of staining, imaging, and removal
of fluorescent signals (3, 4, 6–9). In these serial staining
approaches, typically 2–3 parameters are acquired per round,
thus requiring 13–20 rounds to acquire 40 parameters which
is the current limit for MCI. Advantages of this approach
relate to broad compatibility with many fluorescence-based
imaging systems and the capacity to acquire large areas across
multiple tissue sections in a short period of time, which allows
parallel processing of many slides. However, there are several
disadvantages including lengthy acquisition times which can
span weeks, extensive tissue manipulation and perturbance of
antigens between staining cycles, autofluorescence, and the lower
dynamic range of fluorescence compared to MCI (3, 8, 41,
42). Further, considerable expertise and computing power is
required to process the resultant large images, which if acquired
at a high resolution in multiple Z planes, can form gigabytes
and even terabytes of raw data, which must be deconvolved,
projected and registered prior to analysis. For basic science
research, our evaluation is that these methods could complement
each other; where MCI captures a global overview and serial
staining immunofluorescence could be used to quickly answer
targeted questions with fewer parameters, using a large cohort
of samples. However, in the clinical setting, a serial staining
method that relies on chemically induced signal removal is
unlikely to be adopted, as there will always be questions relating
to incomplete signal removal and also antigenic stability over
time. A comparison of features between serial staining and MCI
methods is provided in Table 1.

Mass Spectrometry Imaging
It is worth noting that MCI differs significantly from other
Mass Spectrometry Imaging (MSI) approaches such as Matrix
Assisted Laser Desorption/Ionization (MALDI)MSI. InMALDI-
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MSI, a laser and mass spectrometer are used to ablate and ionize
molecules on the surface of a sample and the mass spectrum
of each pixel on the section is collected. This is performed in
a label-free manner, whereby the identity of molecules, such as
proteins and metabolites, is determined either by fragmentation
of ionized species at each pixel, or by comparing the intact mass
to a database of known molecules (43–45). In this way, MALDI-
MSI has much greater coverage compared to MCI techniques.
However, MALDI-MSI has several limitations compared to MCI,
such as lower resolution, lower sensitivity (often limiting analysis
to larger proteins) and compatibility issues with common sample
preservation methods such as formalin fixation or embedding
in optimal cutting temperature compound (OCT) (46–49). The
MSI community is currently at work to address these limitations
and this has recently been reviewed (46). In particular, once
limitations in resolution and sample preparation requirements
are bridged, this could offer exciting opportunities for multi-
modal imaging protocols which combine the breadth ofMSI with
the sensitivity of MCI, allowing for in-depth molecular profiling
of targeted cell subsets.

The purpose of this review is two-fold. First, we provide
an overview of the published applications of MCI. Second, as
analysis is a significant challenge in MCI projects, we provide
an overview and evaluation of the data processing and analysis
strategies that have been successfully employed. The reader will
take away an understanding of the applications and questions
that can be answered with MCI, as well as the various possible
approaches for analysis to address these.

APPLICATIONS OF MASS CYTOMETRY
IMAGING

In this section we will discuss all applications of MCI to date
which are summarized in Table 2 with associated references
and also graphically represented in Figure 2. MCI has been
primarily used in the fields of cancer research and more recently
in studies of autoimmune disorders such as type 1 diabetes
mellitus and multiple sclerosis. MCI has also been used for
immunophenotyping studies to define complex cell types, their
interactions and also location in situ. Additionally, there have
been many recent expansions, which include a counterstaining
method, RNA detection, drug discovery, and also 3D imaging.
For each study we will refer to the specific technology applied—
IMC or MIBI—and also to the application of these technologies
generally, as MCI.

Cancer
The first published examples using primary cancer tissues were
the original papers describing IMC andMIBI (11, 12). These were
more proof of principle studies largely confirming pathologist
observations and findings from the literature. Subsequent studies
in cancer research adapted IMC for the analysis of very small
clinical samples (14, 15) (Figure 2A). Gerdtsson et al. showed
that IMC can be effectively integrated into the established high
definition single cell analysis (HD-SCA) assay for liquid biopsies.
HD-SCA involves coating glass slides with millions of cells from

a blood draw and using immunofluorescence to identify and
characterize very rare tumor cells among millions of leukocytes
(60). The major advantages of performing microscopy in this
context, is that it allows small samples to be analyzed and is
an almost lossless strategy capturing cells that might otherwise
be missed using suspension cytometry (60). The HD-SCA assay
has been shown to generate useful data for clinical decision
making (61). Gerdtsson et al. used a combination approach
where immunofluorescence identified regions with tumor cells,
which were then acquired by IMC for in-depth phenotyping.
This approach was later used by the same group on touch
preparations of bone marrow and prostate tissue from a patient
with polymetastatic prostate cancer (14). A key finding from their
IMC analysis was the lower expression of EpCAM on tumor cells
in the bonemarrow compared to the prostate. This would suggest
that for the patient under study, anti-EpCAM therapies may have
limited effect on metastatic tumor cells in the bone marrow.
Therefore, these studies highlight the utility of MCI to examine
multiple clinically relevant markers in small samples, which can
be used to guide therapeutic interventions. The identification
of biomarkers of metastases is an active field of research and
combined genomics andMCI data would be a powerful approach
for discovery analysis in limited patient samples (62, 63).

IMC has also been used to investigate the spatial distribution,
and effect on relevant cell populations, of platinum-based drugs
in situ, which are used to treat solid tumors (50). In this study
the drug cisplatin was detected by its atomic mass of 195, in
a patient-derived pancreatic ductal adenocarcinoma xenograft
model (Figure 2A). Traditionally, cisplatin distribution has been
measured using inductively coupled plasma mass spectrometry
which does not allow cellular resolution (64, 65). However, the
use of IMC has overcome this limitation, successfully showing
differential cisplatin entry into tissue compartments as well as
cell-type dependent effects on DNA damage and proliferation
(50). Furthermore, a recent pre-print from the Nolan lab has
described an expansion of MIBI capable of super-resolution 3D
imaging (discussed further below) (51). This technology was
used to map the intracellular distribution of cisplatin in an
ovarian cancer cell line. Together, these MCI modalities offer
complementary approaches to studying the effects of cisplatin on
both tumor and normal host cells. This will be particularly useful
for the development of therapeutic interventions targeting the
kidney and cochlea tissues where cisplatin accumulation often
leads to loss of kidney function (66) and hearing, respectively
(67, 68).

Recent studies have used MCI to analyse the tumor
microenvironment for patterns of prognostic value. The first such
study was performed by Keren et al., who published a landmark
paper using MIBI to profile the tumor immune landscape in
archival samples from 41 triple-negative breast cancer patients
(13). Importantly, this study was the first to use MCI as a
standalone technique for the comprehensive profiling of immune
cells and their spatial orientation in situ. As such, this study
provides a framework for the analysis of MCI data which is
discussed throughout the section below on “Image Processing
and Analysis.” Through the innovative use of spatial analysis
techniques, the authors found that patients could be stratified
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TABLE 2 | Summary of MCI applications and associated publications.

Application Description of applications References

Original papers Landmark papers describing IMC and MIBI (11, 12)

Cancer Phenotyping cancer cells in Liquid Biopsies & tissue touch preparations (14, 15)

Distribution and cellular effects of platinum-based drug Cisplatin (50, 51)

Analyzing tumor-microenvironment to predict patient outcomes (13, 52, 53)

Autoimmune disorders Immune system involvement in type 1 diabetes progression (17, 18)

Profiling immune cells in lesions at different stages of lesion progression (54)

Landscape of microglia and astrocytes in MS lesions (55)

Immunophenotyping Resolving phenotype, location and function of murine kidney myeloid subsets (19)

Demonstration of interactions between antigen presenting cells and memory T cells in the fetal small intestine (20)

Mapping location myeloid subsets in human tonsil tissue (56)

Mapping location of memory and marginal zone B cells in human appendiceal tissue (21)

Other applications and expansions Counterstaining method for IMC, generating H&E like image. (57)

Simultaneous detection of RNA transcripts and protein by IMC. (16)

3D super-resolution MIBI (51, 58)

High content drug screening (59)

into two groups defined as either “mixed,” with extensive tumor
and immune cell mixing, or “compartmentalized,” in which
regions comprised mostly of either tumor or immune cells
(Figure 2A). This stratification turned out to be meaningful and
was predictive of many differences between patients, including
immune cell composition, immunoregulatory protein expression
and even patient survival, where “compartmentalized” patients
were significantly more likely to survive compared to their
“mixed” counterparts (Figure 2A). Importantly, this example
demonstrates how sophisticated computational tools can be
used to model high dimensional spatial data, revealing immune
network patterns which are predictive of disease outcome.

Another recent study by Carvajal-Hausdorf et al. used an
IMC panel to investigate the tissue microenvironment in breast
cancer patients and risk of relapse following trastuzumab (HER2
extracellular domain-targeted) treatment (52). They showed
that the ratio of the HER2 extracellular/intracellular domain
expression correlated with benefit from trastuzumab treatment,
and were able to relate this to CD8T cell proximity to tumor cells.
Worth noting, the authors mention that they were previously
unable to generate a reliable predictive ratio using fluorescence
microscopy due to difficulty normalizing for variable quantum
yield between fluorophores, an issue overcome through the use
of IMC, again highlighting its potential for clinical applications.

In all, MCI is an emerging and powerful tool for applications
in clinical management, and also preclinical studies examining
drug effects and the tumor microenvironment.

Autoimmune Disorders
Diabetes
Two papers recently published back-to-back in Cell Metabolism,
have set the scene for the use of IMC to investigate the immune
correlates of type 1 diabetes mellitus (T1DM) progression
(17, 18). These studies compared the pancreas of healthy
organ donors to that of T1DM patients at various times since
diagnosis (Figure 2B). To date human T1DM studies have been

limited by both sample availability and the availability of highly
multiplexed imaging methods to comprehensively analyse these
archival tissue samples. Here we highlight a few key results
from these studies which used IMC as a standalone tool for
their investigations.

A hallmark of T1DM is the progressive loss of beta cells in the
islets of the pancreas and we are only beginning to understand
the role the immune system plays in this loss which includes
the generation of islet-reactive CD8T cells (69, 70) and how
their function is promoted by (71, 72) or inhibited (73) by other
resident immune cell subsets. In their study, Damond et al.
developed a 35 parameter panel to investigate the correlates of
beta cell loss. They showed that at the time of T1DM onset, beta
cell levels are similar to that of healthy pancreata, but that the
expression of beta-cell markers varies widely across islets of the
same donor, with only some resembling that of late stage disease
(>8 years) (Figure 2B). In essence, this revealed that at the time
of initial diagnosis beta cells, which normally produce insulin,
are present but look different; thus, highlighting the possibility
of therapeutic interventions to rescue beta cells during early
stage disease.

Both studies found a temporal correlation between beta
cell destruction and CD4/CD8T cell infiltration into the islets
(Figure 2B). Considering the coincident downregulation of beta
cell markers, it has been hypothesized that this may be a
form of “immunological camouflage” in an attempt to escape
immune attack (74). Furthermore, alpha cells, which are also
resident within islets, were shown to upregulate the beta-cell
transcription factor NKX6, which supports the idea of alpha cell
trans-differentiation into beta cells in the case of beta cell loss.
Together these studies illustrate the enormous utility of MCI
for understanding the causes of T1DM and for developing new
strategies for prevention and cure.

Multiple Sclerosis
Multiple sclerosis is a progressive disease characterized by the
appearance of demyelinating lesions in the central nervous
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FIGURE 2 | Applications of Mass Cytometry Imaging. (A) MCI has been utilized for cancer studies examining rare circulating tumor cells in liquid biopsies, the

distribution and effects of anti-cancer drugs such as cisplatin, and for profiling the tumor-immune landscape in tripe-negative breast cancer. (B) IMC has been used to

investigate the immune correlates of autoimmune disorder progression, including type 1 diabetes mellitus and multiple sclerosis lesion formation in the central nervous

system. (C) Some studies have begun to use MCI for immunophenotyping so as to discriminate cell subsets, their interactions and anatomical distribution. (D) Several

recent expansions of MCI, including the development of a counterstaining method, simultaneous RNA and protein detection, 3D super-resolution imaging of single

cells, and applications for drug screening. Parts of this figure were made Biorender.

system (75). The formation of these lesions occurs in stages
which have been formally characterized (76). Importantly,
lesion formation is considered an immune-mediated pathology.

However, similar to T1DM, dissecting the role of the immune
system has been challenging, due to both difficulty obtaining
samples and the lack of technologies to simultaneously
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characterize the repertoire, functional state and spatial location of
lesion-associated immune cell populations (77–79). Accordingly,
two recent pre-prints by Ramaglia et al. and Park et al. have
utilized IMC to characterize the immune environment of post-
mortemMS brain tissue which we discuss in this section (54, 55).

The study by Ramaglia et al. was specifically purposed as a
proof of principle as to the utility of IMC to profile the immune
landscape of MS lesions (54). Accordingly, their results largely
recapitulate previous literature, but importantly demonstrate that
a wealth of information from previous studies can be captured
in a single section. One specific example is the finding that
the majority of demyelinating macrophages are derived from
the resident microglial pool and not activated blood-derived
macrophages. Such information may be useful to guide therapy
design, as it suggests existing therapies, which block the influx of
inflammatory cells, may need to be complemented with therapies
targeting the factors that drive microglia activation (80–82).

Park et al. used a panel of 13 markers to perform a
targeted examination of myeloid and astrocyte phenotypes in
MS lesions (55). A key strength of this study is the employment
of sophisticated computational tools which demonstrate both
diversity and specific ordering of immune networks within MS
lesions. They were able to identify five subtypes of astrocytes
and six subtypes of myeloid cells within MS lesions, the latter
of which were shown to localize to different areas of the lesion,
suggesting distinct functional states. Further they were able to
show there were significant cell-cell interactions between specific
immune subsets in hypercellular regions of lesions indicating
that cell to cell communication within the lesion is ordered and
not random. However, the limited parameters in this study did
not allow for the assessment of the functional consequence of
these interactions. Furthermore, they were able to quantify the
influence of cell intrinsic and extrinsic factors on cellular marker
expression. This showed that microglia on the edge of the lesion
are more responsive to cues from the extracellular environment,
whilst microglia within the lesion aremore driven by cell intrinsic
programs potentially instigated by myelin phagocytosis.

Together, these studies provide a strong rationale for follow-
up MCI studies with increased parameters and patient samples
to further characterize the immune networks that are active in
various stages of lesion development. The use of complementary
technologies such as laser-capture microdissection and RNA-
sequencing may aid in this characterization through the selective
capture and in-depth profiling of selected areas of interest (83).

Immunophenotyping of Cell Subsets
The definition of distinct immune cell subsets is an important
area of research for the study of human diseases. For
example, cells that are ontogenically and therefore phenotypically
closely related, can have distinct immunological functions and
consequently play very different roles in disease pathogenesis
(38, 84). Furthermore, these many and varied subsets will have
their own specific interaction networks, which adds another layer
of complexity. Accordingly, some studies have begun to use
MCI for the definition of complex cell subsets, their anatomical
location and potential interacting neighbors (Figure 2C).

The deep phenotyping enabled byMCI enables phenotypically
similar cell types to be distinguished. This was demonstrated
by Brahler et al. who used IMC to define Dendritic Cell
and Macrophage subsets in the murine kidney. In this work,
contrary to previous studies, it was shown that CD11c-expressing
Macrophages and not Dendritic Cells form a dense dendritic
network throughout the kidney (19). Additionally, they defined
two Dendritic Cell subsets, characterized as expressing either
CD103 or CD11b and localizing to large and small blood
vessels, respectively. Follow-up depletion studies showed that
in models of kidney inflammation CD11b+ Dendritic Cells
played a pro-inflammatory role, whilst CD103+ Dendritic
Cells were regulatory in nature. Importantly, previous studies
which depleted CD11c-expressing Dendritic Cells showed
attenuation of local inflammatory responses in mouse models
of inflammation (85, 86). The high parameter characterization
enabled by IMC demonstrated that among Dendritic Cells, it
was likely the depletion of the CD11b-expressing Dendritic Cell
subset that led to mitigation of local inflammation.

In its early adoption IMC has proven a useful tool for making
qualitative observations of the location of multiple cell subsets
and their interactions. In particular it has been used to show
clustering of activated memory CD4+ T cells with specific
antigen presenting cells in the fetal small intestine, potentially
indicative of immune priming by antigen presenting cells (20).
This helped cement the results from their ex vivo data which
demonstrated a diverse and active memory T cell compartment
within the fetal small intestine, a site previously considered to be
protected from foreign antigens (87). Another study by Durand
et al. investigated the role of myeloid cell subsets in CD4+
T follicular helper (Tfh) cell priming, which is critical for the
generation of effective humoral responses (56). IMC analysis
was used to map the anatomical location of myeloid cell subsets
in human tonsil tissue. Critically, Macrophages were shown to
cluster with Tfh cells which supported ex vivo data showing that
Macrophages are potent inducers of Tfh cells. Finally, a study
by Zhao et al. investigated the relationship between memory
B cells and their marginal zone counterparts which are related
but reported to play distinct roles in memory responses and the
generation of innate responses independent of T cell antigens,
respectively (21, 88, 89). In their study, IMC revealed that class
switched memory B cells (CD27+IgM-) are located toward the
periphery of appendiceal lymphoid tissue, closer to the follicle
associated epithelium, and surround their marginal zone B
cell (CD27+IgM+IgD+) counterparts. The differential location
supports the notion of differing functional roles of these subsets,
however the significance of the differential localization observed
here remains to be elucidated (19, 20).

With increased adoption, MCI will likely become an
indispensable tool for atlas studies of immune cell composition,
interactions, and anatomical location in health and disease.

Other Applications and Expansions
The first adaptation of IMC was its aforementioned use for
phenotyping liquid biopsies from cancer patients (14, 15).
Beyond this, several techniques have been developed which either
add to, or extend on, IMC and MIBI (Figure 2D).
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In histology, counterstaining, most commonly using
haematoxylin, is useful as it provides an overview of tissue
architecture and can assist in the assessment of tissue pathology.
Accordingly, Catena et al. developed a counterstaining method
for IMC using ruthenium tetraoxide, which achieves good
uniformity, paralleling that of a haemotoxylin stain (57). In
combination with the DNA intercalator, iridium, the output
images, when pseudo-colored appropriately, are similar to that
of a traditional H&E stain (Figure 2D). Importantly, this method
was shown to not interfere with detection of signals due to
metal-tagged antibodies. Furthermore, H&E images have been
shown to provide sufficient information for Dermatologist-level
classification of skin cancer using deep neural networks (90).
Accordingly, the counterstaining method described here could
provide useful textual information for automated classification
of anatomically distinct structures.

IMC has been used for the detection of proteins and
compounds with appropriate atomic mass. However, Schulz
et al. have described an extension of IMC which includes
the detection of RNA transcripts in situ (16). This entailed a
modification of the popular RNAscope technique where the final
amplification steps use lanthanide-tagged, rather than enzyme-
tagged, oligonucleotides [Figure 2D; (91)]. The authors show a
good correlation of both protein and RNA signals between the
modified and usual fluorescence-based version of the RNAscope
assay. However, they note a lower limit of detection of 6–14
transcripts per cell, which is significantly lower than the single
transcript sensitivity of the original assay. This lower sensitivity
is likely due to the loss of enzyme-substrate amplification present
in the original assay. This could potentially be improved through
the use of lanthanide-tagged substrates, or using lanthanide-
tagged antibodies targeting the deposited substrate.

The capacity to detect RNA transcripts by IMC represents
a significant extension of this technique. For example, many
pathogens, such as HIV, cannot reliably be detected in situ
using antibodies and require RNA-based detection (92). This
opens the door to the investigation of host-pathogen interactions
in a high parameter setting. In addition, difficult to target
or lowly expressed proteins, such as cytokines, can now be
detected in situ, and mapped to the cell types producing these
functional molecules (93–95). Indeed, this was demonstrated
by Schulz et al., where they assessed CXCL10 expression in
breast cancer tissues. They found that CXCL10-expressing cells
clustered together and that their frequency correlated with T
cell presence. CXCL10 expression has been associated with poor
survival in various cancers (96–98). As such, further profiling
of the specific T cell subsets recruited, their phenotype and
localization in the tumor microenvironment, could help explain
the oncogenic effects of CXCL10 in driving metastasis and poor
clinical outcome.

Two recent pre-prints from the Nolan lab have described an
extension of MIBI which allows three-dimensional imaging at
sub 100 nm resolution (51, 58). This technique involves taking
multiple axial scans of single cells using a cesium ion beam,
which can then be reconstructed to form a 3D image with
lateral (XY) and axial (Z) resolutions of approximately 30 and
5 nm, respectively (Figure 2D). One drawback of this approach is

that the cesium beam cannot efficiently ionize lanthanide-tagged
antibodies. Accordingly, the authors developed a novel antibody
tagging method, where stable isotopes (for example 19F, 81Br,
127I) are embedded into single-stranded DNA oligonucleotide-
tagged antibodies, which can be efficiently ionized by the cesium
ion beam. The inutility of lanthanides suggests a trade-off
of resolution for multiplexing capacity. This form of “super-
resolution” MIBI is designed for the analysis of single cells rather
than large fields of view containing thousands of cells, as in IMC
andMIBI. Accordingly, the types of questions which can be asked
and answered differ vastly. As such, we will not further discuss the
use of “super resolution” MIBI for remainder of this review.

Finally, a recent preprint by Bouzekri et al. has described a
workflow for the use of IMC for high content drug screening
[Figure 2D; (59)]. A key challenge of these screens is the
labor and cost of testing thousands of compounds across many
cell lines. However, it has been shown that high-dimensional
profiling of drug responses in a single cell line can help select
a subset of compounds with diverse biological performance,
which by definition is a good library for screening drug effects
(99). Accordingly, as the speed and resolution of IMC improves,
it could become a useful tool for the improved screening of
preclinical drug candidates (100).

Summary of MCI Applications
Despite its recency, MCI has already proven a useful tool for
various applications, particularly in the domain of clinical and
translational research (Figure 2, top panel). As outlined here,
several recent studies have begun to use MCI as a primary
research tool for the systems level interrogation of patient
samples (13, 16–18). Accordingly, a variety of techniques for
image processing and analysis were employed to identify changes
in cell composition, phenotype and spatial organization, which
we have comprehensively reviewed here. A common feature
of these studies was the use of panels to define canonical
cell types (Macrophages, T cells, B cells etc.) along with a
selection of disease-relevant markers such beta cell markers in
the diabetes studies (17, 18) and immunoregulatory protein
markers in the breast-cancer cohort study (13). This provided
a valuable overview of the distinct lineages that may play a role
in disease pathogenesis and is therefore a good approach for
pilot studies seeking to understanding the role of the immune
system in disease etiology. Going forward, however, we anticipate
studies that will become more tailored, examining specific
lineages and functional markers which are known players in a
specific disease context. Indeed, as discussed here, data from
the few comprehensive MCI studies to date have provided a
rationale for the detailed examination of specific subsets of T
cells (16–18) in the patient samples studied. In the context of
translational research, these targeted investigations are necessary
as interventions that enhance or inhibit the activity of specific cell
types require their precise definition (53, 101–106).

Finally, it is important to discuss the potential of MCI in
deciphering the nature of unknown targets. This relates to
the definition of “novel cell subsets” and “novel phenotypes,”
respectively. In terms of cell subsets, with the large number
of parameters offered by MCI, it may be tempting to
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characterize potential “novel” cell subsets. However, caution
should be exercised as cell segmentation will always be imperfect,
potentially leading to the erroneous classification of new cell
types. In saying that, information gleaned fromMCImay provide
a useful hint at phenotypes which could be validated using more
robust single-cell techniques such as flow or mass cytometry
(15). MCI will likely be more useful in defining the relative
spatial distribution of cell subsets classified using unbiased
approaches such as single-cell RNA-seq (107). Regarding novel
phenotypes, disease often accompanies phenotypic changes in
known target cells, which has been demonstrated in several
MCI papers discussed in this review (13, 16–18). Markers of
known relevance to each disease were studied, however it is
possible for MCI to be combined with other multi-omics tools
in donor matched samples to screen for differentially expressed
molecules in health and disease (101, 108, 109). This form of
guided panel design would potentiate novel discoveries through
the mapping of functionally relevant markers to specific target
cells or spatial niches.

IMAGE PROCESSING AND ANALYSIS

Due to its ease of use, MCI is poised to be a useful tool in clinical
research. However, a key bottleneck in MCI is related to both
image processing and the inherent difficulty of analyzing up to
40 parameters with added spatial dimensions. In this section,
we first cover all techniques that have been used for processing
MCI data. Broadly, this includes image denoising, single-cell
segmentation and finally tissue and cell-type annotation. Next,
we discuss approaches for the analysis of MCI images that have
been implemented in MCI studies at present for studying disease
models. The analysis section is formatted as a series of general
biological questions which can be answered using image analysis.
For each question we discuss both its clinical significance and the
specific techniques used in MCI studies to answer each question.

Processing
In this section, we outline the steps taken to process MCI images,
allowing downstream analysis with a single-cell approach.

Denoising
An important issue common to all image analysis is the presence
of noise and artifacts which must be removed prior to analysis
(Figure 3A, left). Robust and stable methods for denoising
will become increasingly important if MCI is to be applied
within the clinical setting, allowing for accurate patient sample
characterization. There are noise profiles that are specific toMCI,
in contrast to other imaging technologies, and may be specific
to tissue types (13, 17, 18, 102). To comprehensively analyse the
images obtained, various computational methods for denoising
to preserve real signal and remove technical artifacts have been
proposed (13, 17, 18, 102). At present there is no consensus
on the most appropriate way to denoise images with research
to date employing homebrew approaches based on the level
and composition of noise observed by the investigators. Such
approaches include correcting for channel cross-talk (18, 102),
removing objects that differ from real signals in terms of size

and pixel distributions (13, 18), and by using image filters to
identify artifacts (13, 18). Here, we describe methods proposed
to eliminate noise and artifacts in MCI images.

Crosstalk is the phenomenon in which signals from one
channel are introduced into adjacent channels. This has been
observed when comparing channels within ± 3 atomic masses
from each other, occurring due to the presence of contaminating
isotopes of similar masses (103–105). Crosstalk can even
occur within 16 atomic masses due to oxidation (105). This
confounding phenomenon needs to be corrected as it can lead
to the misidentification of real signal within a single channel,
particularly if adjacent channels correspond to markers that may
be co-expressed. To correct for crosstalk, two methods have been
proposed. Wang et al. observed a linearly correlated increase in
pixel intensities at high pixel values for adjacent channels when
plotting the intensities for two channels (18). They classified
these pixels as crosstalk, and compensation was performed
by resampling their intensity values in the given channel,
providing a post-acquisition method for correcting for crosstalk.
Chevrier et al. presents a bead-based compensation workflow
to account for crosstalk, made available as the CATALYST
R/Bioconductor package (102). Damond et al. implements this
solution, measuring channel crosstalk using a slide with themetal
isotopes used. There are trade-offs between using a fully post-
acquisition approach, as opposed to a bead-guided approach.
The post-acquisition method by Wang et al. is advantageous
as it minimizes IMC acquisition time and resources required.
However, it is unclear if their approach is valid for other images,
and it is difficult to assess if real signals are removed. Additionally,
correction may not be necessary if the marker panel employed
is well-designed and titrated. If certain markers are expressed at
vastly different levels across samples, panel design alone may not
eliminate crosstalk. Hence, users should make a judgement as to
whether crosstalk correction is necessary for their study.

Background noise and the corrections required can be
specific to certain tissue types and experimental setups. As
such, several “homebrew” computational methods have been
developed to identify and remove noise in MCI images. Wang
et al. observed horizontal streak artifacts within their image
(18). The authors accounted for this by using a 5 × 5 µm2

median filter which excludes the middle row. For each pixel,
the median pixel value within this filter is measured, and the
central pixel is removed if it is brighter than this median
and is in the top 2% of pixel intensity values, characteristic
of these streaks. Keren et al. observed a background artifact
in areas of the slide outside of tissue in all channels (13).
To correct for this, a background channel, not containing
antibody derived signals, was obtained. The area corresponding
to background was identified with a threshold, and the pixel
intensities were reduced in all other channels within this
area. The authors also observed that low density pixel signals
(those with few neighboring pixel signals) were associated
with noise, while real signals tended to aggregate together,
corresponding to cellular staining. To remove the interfering
low density pixels, each pixel in the image was assigned a
score by calculating the average distance to the 25 nearest
positive counts. A bimodal distribution was obtained, and pixels
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above the crossing point of the distributions were removed,
corresponding to the low-density noise. This background
removal method complements wet-lab based optimizations of
blocking methods and antibody concentrations. Indeed, it can

be very challenging to address all signal-to-noise issues for large
antibody panels. As such, computational methods, as described
here, are an important preprocessing step to ensure reliable
downstream analysis.

FIGURE 3 | Continued
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FIGURE 3 | Summary of Image Processing and Analysis Techniques in MCI. (A) Following the acquisition of MCI, image processing is performed to denoise the

images, perform single-cell segmentation to identify cell outlines, and to classify these cells based on marker expression. (B) One way of exploring cell composition

between groups is to compare the change in the cell fractions. (C) Another way to explore cell composition is to classify patients as being positive and negative for a

particular cell population. The co-occurrence of cells can be presented similar to what is presented here, and significance of co-occurrence can be identified using a

chi-square test. (D) Differences in marker expression between patients can be visualized using a heatmap. (E) Cell morphology measurements can be used to explore

cell phenotypes. (F) Cell-cell interactions can be measured using neighborhood analysis or point-process analysis. With a neighborhood analysis, percentage of

significant images (i) or Z-scores (ii) of the cell-cell interactions can be represented as a heatmap, with significant associations associated with a more positive Z-score

and significant avoidance is associated with a more negative Z-score. With a point-process analysis, an L function can be used to assess the significance of cell-cell

interactions. The L function being above or below the gray envelope generated by bootstrapping corresponds to association and avoidance, respectively (iii). (G) One

way of measuring cell or marker association with a marker is to classify cells as being near or far away from the border. A cell composition analysis can be used to

explore differences, or differences in marker expression can be explored, as shown here. Parts of this figure were made Biorender.
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While various custom algorithms have been successful for
denoising in previous studies, the application of MCI within a
clinical setting will require an improved understanding of the
sources of noise for specific samples. The standardization of
“best practice” procedures for sample processing, staining, and
acquisition in addition to image post-processing methods will be
necessary going forward.

Cell Segmentation
Fundamental to the study of tissues in health and disease is
the identification and characterization of individual cells. In
microscopy this is achieved through single-cell segmentation,
which involves identifying the boundary of individual cells
(Figure 3A, middle). While single-cell segmentation has been
applied to higher resolution fluorescence images, MCI images
present a unique challenge because of its lower resolution,
making the identification of cell boundaries more difficult both
visually and computationally. Accordingly, this section discusses
several approaches which have been applied for segmenting MCI
data (summarized in Table 3).

Pipelines for single-cell segmentation established for other
imaging modalities are also popular for MCI. These pipelines
typically apply a threshold to a nuclear image and implement
watershed segmentation to identify nuclear boundaries. Dilation
of the cells, or the use of a cell-membrane marker, identifies the
remaining cell body. The popular CellProfiler software (53) is
often used for single-cell segmentation, with the user being able
to provide inputs on the size filters, smoothing, and thresholding
applied among other parameters to achieve segmentation. This
is implemented by Wang et al., taking advantage of the many
parameters used in IMC by using a range of non-immune
and immune cell membrane markers for cell segmentation
(18). This approach has the advantage of not requiring user
training, requiring few user inputs for implementation. However,
CellProfiler may not be able to segment cells that are packed
tightly, as in tumors and lymphoid tissues, especially when the
resolution is low as in the case of MCI. Schüffler et al. proposes
a method in which multiple membrane proteins are weighted
together to define the cell membrane (106). The proposed
method performs an exhaustive search for an appropriate
weighting and smoothing of all cell membrane channels, and
provides a score based on how successful segmentation is
performed. This self-reflective scoringmay be useful for assessing
the success of segmentation, but it is unknown whether it is
successful for difficult, high-density images. Finally, Durand et al.
employs an in-house-developed segmentation pipeline to achieve
single-cell segmentation of tonsil tissue (56). First, a Laplacian-
of-Gaussian filter is applied, which resolves nuclei as spots with a
local minimum. A h-minima transform is then applied to identify
these local minima (115). Finally, a single-cell segmentation
mask is obtained by applying a watershed transformation to the
linear combination distance map obtained from the h-minima
transform and the average image of all membrane-bound marker
proteins. The cellular regions are restricted by a defined radius
of 8 pixels around each local minimum to avoid oversized cells.
Ultimately, these pipelines allow cell boundaries to be identified
without user training.

For more precise single-cell segmentation in MCI, supervised
classifiers have been successful. These approaches require
humans outlining single-cells to produce a set of well-annotated
cells that can be used to train machine learning algorithms,
with the advantage that humans may be better at identifying the
subtle details that separate cells. Schulz et al. (16) and Damond
et al. (17) implement the popular Ilastik toolkit (112, 113),
employing a random forest classifier for cell segmentation, while
Keren et al. (13) implements DeepCell (116), which employs
deep-learning for cell segmentation. With both tools, training
sets are developed using nuclear, cytoplasmic, and membrane
markers, and a probability map is produced describing whether
a pixel is nuclear, cytoplasmic, or background. CellProfiler, or
conventional thresholding and watershed segmentation is then
used to identify cells and their bodies based on the probability
maps. This workflow of performing segmentation on probability
maps was first demonstrated by Schapiro et al. (53). These
supervised methods have been successful at separating cells
that are clustered together, and can be advantageous to using
CellProfiler in a standalone manner. However, these techniques
require users to generate substantial training data with a new
classifier needing to be generated for each experimental panel and
tissue type which can be time consuming.

In general, if the outline of cells is obvious, using CellProfiler
may be sufficient for performing single-cell segmentation.
However, if cell shapes are more complex, as in the case of
neural tissue, or if dense cell structures are present within tissue
structures, then the use of classifiers will be more suitable.
In fluorescence images, these classifiers have been shown to
outperform classical methods for segmentation (117), but an
extensive comparison using MCI has not yet been performed.
As the use of MCI becomes more universal and applied within
a clinical setting, there will be an increased need for more precise
segmentation. It is likely that themost appropriatemethodwill be
to use a well-trained classifier. For generally applicable classifiers,
users may have to contribute to an existing online classifier,
creating a diverse training set to perform cell segmentation.Much
investigation will hence be necessary in the future for improved
and more generalized segmentation.

Tissue and Cell Annotation
Immune cells exist in great diversity within both healthy and
diseased contexts. Along with canonical cell types such as
Dendritic Cells, Macrophages, T cells, and B cells, each cell type
is comprised of diverse subsets which differ throughout the body.
Importantly, specific subsets can play a crucial role in disease
manifestation, even when their prevalence is extremely low. As
such, accurate and high throughput methods for the annotation
of cell types (Figure 3A, right) and the tissue compartments
in which they reside, are essential. Here we discuss several
approaches that have been employed for the annotation of MCI
data (summarized in Table 2).

The simplest approach for identifying cells is by selecting
manual gates based on scatter plots of marker expression, similar
to other single-cell technologies such as flow cytometry. Marker
expression is typically quantified by summing the ion counts
within a single cell as outlined by segmentation and dividing by
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TABLE 3 | Software for cell segmentation and cell classification.

Technique Description References

Cell Segmentation CellProfiler Identify primary object with nuclear marker, secondary object with

membrane marker

(110)

Weighted sum of membrane markers Segments using a weighted sum of membrane markers (111)

Ilastik Uses a random forest classifier, defining pixels as nuclear, cytoplasm, and

background based on user training data. Probability maps can be used as

an input for segmentation in CellProfiler

(112, 113)

DeepCell Identifies cell nuclei based on training data, using deep-learning (114)

Cell Classification Manual gating Users manually identify their cells based on marker expression

Hierarchical Clustering Identifies clusters in a hierarchical cluster by grouping together cells or

clusters that are most similar to each other

Phenograph Models cells as a nearest-neigh graph in high-dimensional space (115)

FlowSOM Self-organizing maps used to identify cell populations. Meta-clustering is

then performed to find a given number of populations

(116)

Ilastik Uses a trained random forest classifier to classify identified single cells (112, 113)

the area of the cell. The histoCAT package (53) provides a tool
which allows users to gate on cells and visualize the presence
of these cells within their image. Furthermore, the single cell
data can be exported from histoCAT for downstream analysis
using commercial platforms such as FlowJo or Cytobank, and
also open source platforms such as Flowing Software. However,
a key advantage of histoCAT is that cell selections can be
visualized on the image in real-time, which facilitates greater
accuracy when selecting gates. However, while manual gating
provides a user with full control over the cells being classified,
this can be time consuming, especially when many markers
are considered. Nevertheless, manual gating may be useful for
exploratory analysis of image data.

One approach for semi-automated gating is by using amixture
model, such as the implementation by themclust R package (106).
This package is used to classify cells as being positive or negative
for a marker, based on the mean pixel intensity in that specific
marker channel. Another approach is by Boolean rules based on
whether cells are positive or negative for these markers to classify
cell types. Wang et al. implement this method, but set additional
manual cutoffs as informed by the mixture models to identify
positive and negative populations (18). This approachwill only be
applicable for markers with which cells can be discretely positive
and negative for, but not when cell-type definition relies on a
continuum of marker expression (e.g., low, mid, and high).

Automated gating strategies employing clustering techniques
to group cells by similarities in marker intensity have become
popular in all high-parameter imaging assays. This provides a
quick and unbiased approach for classifying cells in tissue. Schulz
et al. (16) employs PhenoGraph (115) to cluster cells, employing
a nearest-neighbor graph to identify phenotypically coherent
subpopulations. Here, they use both marker expression as well as
RNA expression to cluster cells. Durand et al. use a hierarchical
clustering approach on all markers, obtaining 60 clusters which
was arbitrarily chosen to overclassify cells (56). This allowed the
authors to identify smaller yet distinct clusters with some similar
clusters manually merged when the clusters were annotated
based on known cellular phenotypes. Keren et al. (13) clusters

cells into immune and non-immune cells using FlowSOM (116),
which employs a self-organizing map to identify cell populations.
Lineage marker expression was used to cluster cells. This was
applied iteratively, first to distinguish between immune and non-
immune cells, then to classify non-immune cells into epithelial,
mesenchymal, endothelial, and unidentified cells, and finally to
classify immune cells into specific subsets. The approach taken
by Keren et al. employs only canonical cell markers, leading
to the identification of canonical cell subsets. Expression of
functionally significant markers was then assessed on the defined
cell subsets in different tissue compartments. In contrast, Schulz
et al. clusters using all markers, leading to canonical cells being
divided by marker expression. For example, two CD3 high T cell
clusters were obtained, one of which expressed CD3 only, and
the other being a potential memory T cell subset. Importantly,
this clustering revealed the identification of rare cells that express
CXCL10 RNA. Durand et al., however, merges clusters with
a similar phenotype. Hence, a choice needs to be made as to
whether to include all markers or only lineage markers when
investigating cell phenotypes.

Finally, users can employ supervised classifiers, providing
training data to predict cell types based on both marker
expression and the visual texture of the signals. For example,
membrane markers will be localized only to the membrane of
the cell. This can be achieved using an interactive classifier such
as Ilastik, where users can annotate cells as the cell subsets they
are interested in Ilastik uses both marker expression level and
morphology to classify cells based on the provided training data.
Damond et al. implements this classification iteratively, first to
classify cells as islet, immune, exocrine, and “other” cells. A
second round of training and classification was then performed
to classify the different immune, islet, and exocrine cells, and
“other” cells were classified as endothelial, stromal or unknown
cells. The classifier is advantageous as classification is informed
by both marker expression and texture as defined based on more
reliable human judgement. However, the training of a classifier
can be time consuming, and this approach will only be able
to identify user-defined cells. Hence, supervised classifiers will
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not identify other cell marker phenotypes that automated gating
may identify.

Following cell classification, tissue compartment
identification can be performed. This is useful for exploring the
role of tissue structures in the context of disease. Keren et al. (13)
and Wang et al. (18) use classified tumor cells and islet cells to
identify the tumor and islet areas, respectively. Damond et al.
uses Ilastik to identify islets and blood vessels by constructing
training data using a range of structural markers, while Durand
et al. uses E-Cadherin, CD19, and CD3 to identify the crypt,
B cell zone, and T cell zone of tonsil tissue. The identification
of these tissue structures is important because of their role in
disease pathology. For example, the tumor-immune boundary
has been used as a prognostic indicator for tumor progression,
and islet cell composition and morphology have been observed
to change with disease progression (118–120). Identifying these
key compartments and their borders hence allow their role to be
observed with MCI.

Similar to the segmentation of individual cells, cell-type
annotation in the clinical setting would require automated and
standardized methods for cell-type classification. At present,
classifiers used for annotation are trained on a study-by-study
basis. Although accurate, it has not been established that these
approaches are generalizable or time efficient for use in the
clinical setting. Ultimately, classifiers will need to be constructed
and trained to account for patient and experimental variation.

Analysis
In this section, the key biological questions that are answered
through image analysis is discussed (summarized in Table 4).

How to Stratify Data for Analysis?
To understand the biological processes underlying disease,
the appropriate stratification of patient data for analysis is
important. The simplest method is to group data based on
clinically defined categories such as “time since diagnosis”
or “patient survival.” This approach is implemented by both
Wang et al. (18) and Damond et al. (17) in their study of
T1DM. Here, they stratified their patient groups based on time
since diagnosis, with an additional control group. Although
this method is often appropriate, stratification based on a
biologically meaningful model of disease can offer a powerful
and complementary approach for revealing disease specific
relationships that simple clinical groupings could miss. For
example, as diabetes is a progressive disease, Damond et al.
performed pseudotime analysis (discussed below) to group islets
into three “pseudostages” of disease. This followed from their
observation that islet profiles followed a spectrum during the
early-stages of disease, resembling both healthy islets and late-
stage islets as well-intermediate stages in between. Additionally,
as tumor-immune organization is known to predict survival for
certain cancers, Keren et al. performed a spatial enrichment
analysis (discussed below), generating a metric for tumor-
immune cell mixing and allowing the investigators to stratify
patients based on tumor organization (13). The decision on how
to best group data for analysis is crucial for the discovery of
disease specific immunological motifs. In reality, this part of

the analysis stretches back to experimental design. To effectively
use MCI as a primary research tool, it is important to carefully
consider beforehand, choice of patient samples, availability of
clinical data and also MCI panel design. These three aspects
will inform the types of data stratification that are possible and
therefore the scope of questions that can be asked and answered
using MCI.

How Does Cell Composition Change With the

Disease Context?
The prevalence of specific cell subsets is associated with disease
outcomes, both in the clinical setting and in models of disease. As
such, the basic analysis of cell composition is an important first
step which can also inform downstream analyses. In present MCI
studies, this has taken two approaches. The first is to quantify cell
compositions and then compare these between different patient
groups. This is done as either absolute counts of a specific cell
subset, a measure of its proportion among a larger group of cells,
or as a cell density per mm2 of tissue. The second is to examine
the co-occurrence or anti-occurrence of cell types, providing an
insight on any causal pathways that may underlie disease. In
this section we summarize how MCI studies have explored cell
composition within tissue.

In MCI studies, the cell subset composition can be presented
as the proportion of the total cells (or all immune, tumor, islet
cells, etc.) (Figure 3B), the total number of cells, or the cell
density. There are many advantages and disadvantages to these
different approaches for quantification. Total counts can allow
for patient-patient comparisons, allowing interpatient variations
to be observed. When comparing between groups of patients,
the cell proportion may be more appropriate for comparison,
normalizing the data to account for interpatient variation. Cell
density per mm2 of tissue may be appropriate when comparing
cells within compartments, with the data being normalized by
the area of the compartment. The density measurement is also
useful for comparing small changes that are overwhelmed by
the abundance of another cell type. Ultimately, the choice of
measurements used is dependent on the question being asked.

This cell composition analysis is implemented by both
Damond et al. (17) and Wang et al. (18) in studying how the
islet cell composition changes with T1DM progression. Both
studies observed a decrease in beta cell fraction, and an increase
in gamma cell fraction with disease progression, relative to all
other islet cells. Damond et al. further observed a small decrease
between pseudostage 1 and 2 islets, followed by a significant
decrease between pseudostage 2 and 3 islets. Additionally,
Damond et al. and Keren et al. present the proportion
of immune cell subsets within their images, assessing the
composition of immune infiltration within tissue. Data obtained
from cell composition analysis can also reveal meaningful
biological relationships. For example, Keren et al. ordered
patients by number of infiltrating immune cells and found that
patients with more immune cells were more likely to have a
“compartmentalized” phenotype. Additionally, Damond et al.
found that when ordering patients by the number of islet cells,
stratified by patient diabetes status, mid-sized islets had a higher
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TABLE 4 | Summary of analytical questions with clinical examples and the techniques used to answer these questions.

Analytical question Clinical example Analytical techniques

How does cell composition change with disease

context?

How does cell composition change with type-1

diabetes progression?

(17, 18)

Measurements such as cell counts, cell proportions, or

cell densities can be used to compare between different

disease contexts

Pearson’s correlation of the above measurements can be

used to identify the co-occurrence or anti-occurrence of

cell types

Cell types can be considered present or not present

within an image if the cell count is greater than a given

cut-off (e.g., 10 cells). A chi-square test can then be

used to identify cell type co-occurrence

Does marker expression or co-expression change

with diseased context?

How does islet marker expression change with type 1

disease progression?

(17)

Heatmaps can be utilized for visualizing marker changes

across images

Markers can be considered present or not present within

an image. A chi-square test can then be used to identify

marker co-occurrence

Pseudotime analysis such as SCORPIUS (121, 122)

allow marker changes associated with cell dynamic

processes to be investigated

Does cell or structural morphology change with

diseased context?

Does islet morphology change with disease

progression?

(17)

Morphology measurements can be identified using

image analysis software such as histoCAT (53),

CellProfiler (110), and ImageJ (123)

Are there any interactions between specific cell

types, and does this change with disease context?

Are tumor-immune interactions present and significant

within tissue compared to immune-immune

interactions?

(13, 53)

Neighborhood analysis using histoCAT (53), or by setting

a distance cut-off to define neighbors (13), can be used

to identify cell interaction or avoidance, visualized with a

heatmap

Marked point process models using the R package

“spatstat” can be used to determine cell co-localization

or anti-co-localization (124, 125)

Do cells localize to histological structures and does

this vary with disease context?

In breast cancer sections that exhibit

compartmentalized structures, are there differences in

marker expression with distance from the

tumor-immune boundary?

(13)

Within binned distances away from a histological

boundary, differences in cell composition (17, 18) or

marker expression (13) can be identified

Marked point process models using the R package

“spatstat” can be used to explore the distribution of cells

as a function of distance from a histological boundary

(124, 125)

What is the role of the cell microenvironment in a

diseased setting?

In multiple sclerosis brain lesions, how does the

environment influence variations in cell marker

expression?

(55)

Spatial variance component analysis (126) can be used

to decompose the sources of variation of a marker into

intrinsic effects, environmental effects, and cell-cell

interactions

proportion of beta cells. Presentation of data in this manner can
aid in the interpretation of single-cell MCI data.

To assess cell subset co-occurrence or anti-occurrences, two
approaches have been used in present MCI studies. The first
approach is to observe whether the count or proportion of one
cell subset is correlated with that of another cell subset, assessed
using Pearson’s Correlation. This measurement is useful when
investigators want to show that an increased presence of one cell
type is accompanied by an increase or decrease of another cell
type, and is appropriate when both cell types are often or always
present within that tissue type. The second approach is to convert
cell counts into categorical data by classifying images as being
positive or negative for a given cell subset if the count exceeds
a user-defined cutoff (Figure 3C). A chi-square test is then used
to quantify the significance of co-occurrence. This measurement
is not very useful when both cell types are often or always present
within that tissue type. Hence, this measurement is suitable only
when the cell types being investigated are not consistently present
within that tissue type.

The co-occurrence approaches mentioned above have been
applied by Keren et al. and Damond et al. In studying immune
infiltration into tumors, Keren et al. observed that there was a
correlated increase in CD4+ T cell proportion and a correlated
decrease in macrophage proportion. Similarly, when studying
immune cell infiltration into the islets, Damond et al. observed
a correlated increase in CD4+ helper, and CD8+ cytotoxic T
cells in pseudostage 2 islets. This revealed that both CD4+
and CD8+ T cells are recruited simultaneously into the islets
during the onset of diabetes, potentially co-operating to mediate
beta cell destruction. Furthermore, to assess co-occurrence of
cells in tumor infiltration, Keren et al. classified each patient
as being positive for a given immune cell if the cell count is
>10, and negative otherwise. A chi-square test subsequently
revealed relationships such as patients with B cell infiltration
into their tumors also had CD4+ and CD8+ T cell infiltration.
The relationships observed by these analyses reveal a potential
coordination in the immune response in both tumors and islets,
with the recruitment of several cell types occurring.
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Does the Expression or Co-expression of Cell

Markers Change With Disease Context?
In addition to changes in cell composition, understanding
variations in functionally relevant markers is essential for
understanding disease pathology. Indeed, many interventions
targeting cancer, infectious diseases and autoimmune diseases
use antibodies and small molecule inhibitors targeting cytokines
or cell-associated ligands/receptors (127–129). Through the
many markers afforded by MCI, these diverse markers can be
studied within the disease pathology setting. This section will
explore how marker expression is examined in IMC images.

InMCI studies so far, the exploration of cell marker expression
has taken many pathways. One approach is to compare marker
expression among canonical cell subsets, with fold-changes
being expressed as a heatmap (Figure 3D). Marker expression
can also be measured at the tissue compartment or patient
level, with expression level visualized as a heatmap for each
sample (Figure 3D). By stratifying samples into groups, direct
comparisons can be made. To assist with the analysis of the
many markers used by MCI imaging, dimensionality reduction
techniques have been used. These include principal components
analysis, t-Distributed Stochastic Neighbor Embedding (t-SNE),
and pseudotime analysis. Finally, the investigation of preferential
co-expression of markers can be assessed by classifying images as
being positive or negative for a given marker and using a chi-
square test to quantify the significance of co-occurrence. Each
of these approaches can be used to investigate differences in
marker expression within different samples, with each analysis
telling different aspects of the overall pathophysiological story.
Investigators should use the appropriate investigation required
depending on the question being asked, and the cellular pathway
being explored.

In their investigation of T1DM progression, Damond et al.
studied the change of islet marker expression within islets (17).
While the investigators observed a decrease in beta cell fraction
as described previously (120), they wanted to further investigate
whether this was a result of beta cell loss, a downregulation of
beta cell marker expression, or both. To investigate this, the
authors performed a pseudotime analysis using the trajectory
inference algorithm SCORPIUS (121, 122). This was performed
by measuring the islet marker expression profiles of each
individual islet. The algorithm finally assigns a value between
0 and 1 to each islet, relating the marker expression profile
of islets to the T1DM development timeline, and allowing
the investigators to stratify the islets into three pseudostages.
Specifically, they observed a strong downregulation of beta cell
markers between pseudostages 1 and 2, and stability between
pseudostages 2 and 3. The authors concluded that progression
from pseudostages 1 and 2 may be driven by the down regulation
of beta cell markers, while the transition between pseudostages
2 and 3 is reflective of cell death. The assessment of changes in
marker expression, combined with cell composition analysis, can
reveal the mechanisms behind a disease timeline.

Keren et al. investigated the expression of the
immunoregulatory proteins PD-1, PD-L1, IDO, and LAG3 in
their study of breast cancer (13). Through a chi-square test, they
found that patients expressing one of these proteins expressed

another, implying that multiple immunosuppressive pathways
are present within the tumor environment. Additionally, it was
found that the presence of regulatory T cells accompanied the
presence of at least one of these markers, reflecting the potential
for these proteins to induce the differentiation of naïve T cells
toward a regulatory T cell phenotype. Such results provide
insight as to the signaling pathways that are present within the
disease setting, and relate molecular expression profiles to the
histological structure of the tissue.

Ultimately, it is important to understand the distribution and
expression level of functional markers relevant to disease. These
maybe chosen based on the literature as in the MCI studies
discussed here, or alternatively using other omics technologies,
such as genomics and proteomics platforms (130, 131), to pre-
screen samples for suitable candidates. Importantly, the inclusion
of such markers allows one to infer biologically processes from
static 2D images.

Does Cell or Structural Morphology Vary With

Disease Context?
Another important aspect of cellular phenotype is its
morphology (Figure 3E). Just as with marker expression,
cell morphology can also be associated with disease context
or with drug treatment. Morphology measurements such
as area, perimeter, solidity, eccentricity, and circularity can
be made with analysis software such as histoCAT (53), as
well as most image analysis packages (110, 123). These
measurements allow structural changes to cell or tissue to
be identified with changing disease context, or with drug
treatment. However, the reliability of the measurements is
dependent on how accurately segmentation of objects are
obtained. This can be difficult with the lower resolution of
MCI images, but may be reliable when classifiers are used, as
mentioned previously.

Morphological measurements can be used to assess the
integrity of histological structures. Damond et al. applies these
measurements to their islets to assess changes with diabetes
progression (17). The authors measured the islet extent (islet
area divided by islet bounding box) and solidity (portion of
pixels in the islet convex hull that are also in the islet),
indicative of shape regularity. These two measurements were
found to decrease between pseudostages 2 and 3, indicative
of a more irregular islet shape, associated with beta cell loss
and diabetes progression. Thus, morphology measurements can
provide an unbiased quantification of tissue structure, identifying
degradation as described here, but may also be used to highlight
swelling or growth.

Cell morphology can be affected by drugs and has utility
in drug-discovery (132). Bouzekri et al. uses morphology
measurements to assess drug effects on breast cancer cell lines
as visualized by IMC. The authors found that certain drugs led
to an increase in size, with morphological measurements such as
area, perimeter, and major- and minor-axes increasing following
drug application. In combination with protein measurements,
these observationsmay allow researchers to propose transduction
pathways affected in response to drug treatment (133, 134).
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Are There Any Interactions Between Specific Cell

Types Within Tissue, and Does This Change With

Disease Context?
Within previous MCI studies, two methods have been used
to investigate cell-cell interactions. The first is through the
neighborhood analysis algorithm described by Schapiro et al.
(53). This method identifies whether a cell of type X is within a
user-defined neighborhood of cell type Y, and vice-versa. This is
performed by dilating each cell in a single-cell mask by a user-
defined number of pixels (usually 4–6) and counting the cell
types that it overlaps with. To assess significance, a bootstrapping
approach was implemented, in which the annotated cell labels
are randomly reassigned. The mean number of cells of type X
within the neighborhood of cells of type Y are calculated for each
simulation and for the real distribution. The statistic obtained for
the real distribution is then ranked against the simulated statistics
with two one-tailed permutation tests to obtain a p-value. The
upper-tailed test corresponds to interaction, while the lower-
tailed test corresponds to avoidance. When applied to a large
number of donors, this can be represented on a heatmap as the
percentage of significant avoidance or interactions for each cell
pair (Figure 3Fi). The second method was to count the number
of cells of type X within a user-set distance away from cells of type
Y. A similar bootstrapping approach was implemented, and the
number of cells was remeasured to generate a distribution from
which Z-scores are obtained. This relabeling can be performed
with all cells, providing context of global organizational patterns
of the cells, or by constraining within a specific group of cells (e.g.,
immune cells, tumor cells, T cells, etc.), providing a more context
dependent answer. A negative Z-score corresponds to avoidance,
while a positive Z-score corresponds to association, and these
values can be visualized on a heatmap (Figure 3Fii). These
two approaches are effective for identifying cell-cell interactions.
However, they do not provide any context of the cell-cell
interactions over a wider distance, and does not reveal whether
cells traffick toward a particular target. Additionally, an arbitrary
distance needs to be chosen, and the sign of the Z-score and hence
the interpretation of cell-cell interactions, can vary with scale.

This neighborhood analysis technique has been applied by
Damond et al., who observed reduced beta cell associations in
the third pseudostage, representative of beta cell destruction,
while immune cell associations with other immune cells was
increased in the second and third pseudostages, indicative of
an immune response (17). They also found that the number of
interactions of beta cells with CD4+ helper and CD8+ cytotoxic
T cells was much higher during pseudostage 2, in line with their
previous results.

Additionally, Keren et al. counted the number of cells positive
for marker X located within 39µm from marker Y. This resulted
in the identification of three distinct levels of tumor and immune
cell mixing: “cold,” with low immune infiltration, “mixed,” with
high immune infiltration, and “compartmentalized,” with tumor
and immune cells forming distinct clusters separated from each
other. The authors developed a mixing score to quantify this,
defined as the number of immune-tumor interactions divided
by the number of immune-immune interactions. Furthermore,
when plotting Kaplan-Meier curves, which showed survival as a

function of time for patients, they observed higher survivability
in patients with “compartmentalized” tumors compared to
patients with “mixed” tumors. Here, the spatial organization of
tumor was related to patient survivability.

To explore avoidance or association at a range of distances,
cells can be modeled as a marked point process model (135), in
which cells are represented as labeled points on a plane. One
approach is to use Ripley’s K and L functions to model cell-
cell interactions, with the variance stabilized L function being a
useful transformation to the K function (plotted in Figure 3Fiii).
Simply, Ripley’s K function is a function which models the
number of cells of type X a certain distance away from cells of
type Y, as a function of distance. Bootstrapping is once again
used to generate significance. This was used by Setiadi et al.
in fluorescence imaging to show that B cells cluster in tumor-
draining lymph nodes compared to healthy lymph nodes (136).
While applied to the same cell type in this example, this can be
applied to pairs of cells of different types, or with cells of a specific
type to a pathogen. This can provide context of the significance
of these interactions along a wider range, and to observe how
interactions can change with scale, and may give insight to any
cellular trafficking from a steady-state image. These functions,
along with other functions and methods for comparison between
samples, are readily available in the R package spatstat (124).
However, a disadvantage of these models is that no single Z-
score is given, making visualization and interpretation difficult.
Baddeley et al. (125) proposes envelope-based tests to measure
the statistical power of the interaction or avoidance, while
another strategy may be to determine the percentage of images
with which interaction or avoidance was significant, similar to
Schapiro et al. (53). An investigation on the appropriate spatial
statistic will be necessary to make robust conclusions about any
cell-cell interactions, especially in the context of MCI images
where many cell subsets are being investigated simultaneously.

With MCI, spatial analysis can be applied to a wider range
of cell subsets compared to conventional microscopy over a
range of distances. This allows a diverse range of cell-cell
interactions to be performed, with the possibility of cell-pathogen
interactions to be investigated in the future. Although these
images only provide a snapshot of the tissue environment, the
identification of significant interactions may bypass the need
for more complicated techniques using live imaging. As well,
interactions observed in the native microenvironment provide a
sound rationale for ex vivo co-culture experiments, to investigate
the functional outcome of certain cell-cell interactions. Given
that specific cell-cell interactions have already been associated
with patient outcomes (13, 17), such interactions metrics could
prove a useful prognostic indicator in a variety of disease settings.

Do Cells Localize to Histological Structures and Does

This Vary With Disease Context?
In addition to cell-cell or cell-pathogen interactions, it is
useful to understand whether cells or pathogens localize to a
specific histological structure, such as epithelium, tumors, and
islets, which have been implicated to have an involvement in
disease pathology.
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In previous MCI studies so far, the number of cells or
the amount of cell expression was measured within user-
selected binned distances from the structure to investigate cell
localization. This can be visualized as a heatmap, if 2 bins
are used to represent “near” or “far” from a border. Dividing
distance from a structure into user-selected bins essentially turns
the problem into a comparison of cell composition or marker
expression between bins. While simple, this approach discretizes
continuous data, and results can vary depending on the bins
used. In particular, it is hard to ascertain whether there truly is
a continuous trend in the change in cell composition or marker
expression toward a border. The use of a point process model
as described in the previous section may prove to be suitable
for analyzing the spatial dependence of cells or markers from
a structure, but further investigation is required to assess the
robustness of such measurements.

Keren et al. hypothesized that there are differences in the
cell phenotype near or far from the tumor-immune border
in “compartmentalized” patients (13). To investigate this, the
authors applied a cut-off of 39 um to stratify cells as being close
to or far from the border. In addition to counting cells, they
observed whether marker expression was higher or lower away
from the border (Figure 3G). The authors observed that the
ratio of H3K27me3 (methylated DNA) to H3K9ac (acetylated
DNA) increased for tumor cells that are far from the border
in two patients, indicating that cells closer to the border may
be more transcriptionally active. However, this strategy fails
to provide any insight as to how this marker ratio varied
continuously as a function of distance from the border. It
would be interesting to see whether or not the marker ratio
increased with distance, coinciding with the binned approach,
or whether it alternates between increasing and decreasing.
Furthermore, to simplify the spatial relationships observed,
a principal component analysis was performed, revealing a
subset of patients that had increased immunoregulatory protein
expression in CD11c+CD11b+ immune cells. This is suggestive
of myeloid derived suppressor cells, which may inhibit the
immune response (137). Hence, the examination of a spatial
binning to analyse the spatial dependence of marker expression
from a structure was able to reveal subgroups of patients
with unique phenotypes. An interesting progression may be to
compare how the survival varies between these subgroups.

What Is the Role of the Cell Microenvironment in a

Diseased Setting?
Multiparameter imaging provides the opportunity for cellular
microenvironments to be examined within a diseased setting.
Spatial variance component analysis (SVCA) (126) is a technique
that has been applied to MCI data which allows the sources
of variation of gene or protein markers in an image to be
identified, without the need for cell classification. The sources of
variation of cell markers are decomposed into intrinsic effects,
environmental effects, and cell-cell interactions. SVCA was
applied by Park et al. to investigate how multiple sclerosis (MS)
brain lesion environments influence variations in cell marker
expression (55). They found that toward the center of a lesion,
the relative influence of intrinsic and environmental effects
increased, while the relative influence of cell-cell interactions

had decreased. The authors suggest that cells in the lesion rim
are more responsive to cues from the microenvironment, such
as cytokines or receptor-ligand interactions, while cells respond
to cell-intrinsic programs in the lesion center. There have been
additionalmethods proposed formeasuring associations between
cell microenvironment and marker expression, however these
methods have not been applied to MCI data (7, 138). Ultimately
such analysis approaches can provide insight on the role of the
microenvironment within a diseased state.

Summary of Image Processing and
Analysis
Through image processing and analysis, researchers are in a
position to interrogate high parameter MCI data in a single-
cell manner. This approach allows key clinical and biological
questions to be explored and answered, providing insight on the
cellular dynamics that are present in the diseased context. In
addition, these results can inform further experimentation within
or outside the cytometry setting.

There is potential for the development of statistical tests to
identify associations between disease outcomes and the spatial
relationships between cells, implementing spatial information
with multiple markers. Current methods are able to classify cells,
but still perform simple spatial analysis that is implemented
in other imaging cytometry assays (135). Complex machine
learning algorithms will eventually benefit from including both
spatial and marker information provided by MCI, constructing
predictive models in a higher dimensional space.

Deep learning has become a well-established tool for image
analysis. Its consistent use in a variety of applications has been
driven by its ability to deconstruct and model highly complex
images (112, 113, 115, 116). However, deep learning methods
require many observations to train effective models. In MCI,
deep learning is ideal for cell type prediction, where thousands
of cells can be trained from a single image. Though, it is
unclear whether it will be effective for classifying heterogeneous
global spatial interactions in datasets with relatively small sample
sizes, as observed in many exploratory clinical studies. Such
approaches may become useful in large cohorts generated after
MCI has been implemented in routine clinical use, allowing for
improved accuracy.

There is still an exciting opportunity to develop analytic
algorithms for summarizing spatial cell-cell interaction
relationships into simple, easy to interpret summary statistics.
Such algorithms are characterized by the discussed methods for
tumor-immune mixing quantification and pseudotime analysis,
which stratify patients into risk groups or assigns groups to a
disease progression gradient. It is important to simplify such
complex relationships as it will allow scores or statistics to be
developed for interpretable decision making. This may also
facilitate the ability for MCI data to be included in disease
risk scores, incorporating the data with other clinical and
pathological and genetic information (13, 117–119).

Finally, to establish confidence in the use of MCI in the
clinical setting, it will be important to identify methods that are
both accurate and robust in a variety of applications. This focus
applies to both methods for quantifying differences in cell-type
compositions and spatial interactions, as well as strategies for
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image processing and quality control. Within the MCI analysis
community, there has been an established culture of making code
available on repositories such as github, as well as supplemental
information when research is published, with image data
also being openly accessible. It is important that this culture
continues, supporting methods that are well-annotated, easily
implemented, and actively maintained for reliable integration
with multiple pipelines. This will ensure that robust and
novel analytical development strengthens the potential for MCI,
pushing the technology closer toward clinical application.

CONCLUSIONS

In this review we have outlined the various applications of
Mass Cytometry Imaging for studying the immune system in
health and disease in situ. MCI is a more recent addition to
the repertoire of tools for high parameter imaging. However,
despite its recency it has already been adopted in diverse contexts
ranging from oncology to autoimmunity where it has shown
promise for predicting clinical outcome and understanding the
role of the immune system in disease progression. Underlying
these studies are common questions relating to the composition,
phenotype and location of cell subsets and how they interact.
Given the fundamental similarities, these studies also share
similar computational strategies which we have linked to the
general biological questions they answer. MCI is currently

limited by its speed of acquisition, which often restricts analysis
to smaller areas, and also the availability of commercially
available pure isotopes. The speed has improved substantially
since the initial papers describing IMC and MIBI, and will
likely continue to improve as new advancements are made. At
present, this limitation can be mitigated by using MCI with
complementary assays such as immunofluorescence microscopy
which can guide the selection of regions to be acquired by
MCI. As advancements are made in instrumentation and reagent
availability, computational tools, which are still in their infancy,
must also develop to realize the full potential of high parameter
image data. We anticipate MCI in combination with other high
dimensional assays will play an important role in furthering
our understanding of the etiology of disease and in clinical
decision making.
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