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Introduction
As nascent polypeptides enter the ER lumenal space, N-linked 

glycans modify asparaginyl residues in the context Asn-Xaa-

Ser/Thr (Kornfeld and Kornfeld, 1985). This is catalyzed by 

oligosaccharyltransferase (OT), which transfers a preformed 

oligosaccharide unit, glucose3mannose9GlcNAc2 (G3M9Gn2), 

from the lipid-linked oligosaccharide (LLO) glucose3mannose9  

N-acetylglucosamine2-P-P-dolichol (G3M9Gn2-P-P-Dol). Syn-

thesis of G3M9Gn2-P-P-Dol starts with dolichol-P (Dol-P), and 

sequentially requires 2 residues of GlcNAc from UDP-GlcNAc 

(the first transfer also forming the pyrophosphate linkage), 

5 residues of mannose from GDP-mannose, 4 residues of man-

nose from mannose-P-Dol (synthesized from Dol-P and GDP-

 mannose), and 3 residues of glucose from glucose-P-Dol 

(synthesized from Dol-P and UDP-glucose). During biosynthesis,  

Dol-P and G3M9Gn2-P-P-Dol are oriented at the cytoplas mic 

and lumenal faces, respectively, of the ER membrane, with 

fl ipping of the key intermediate M5Gn2-P-P-Dol (Snider and 

Rogers, 1984; Helenius et al., 2002). Upon transfer of G3M9Gn2 

by OT, Dol-P-P is released, and is recycled to Dol-P for addi-

tional rounds of glycosylation (Schenk et al., 2001).

N-linked G3M9Gn2 is sequentially digested by ER gluco-

sidases and mannosidases to generate high-mannose processing 

intermediates with functions in protein folding, quality control, 

and degradation (Sayeed and Ng, 2005; van Anken and Braakman, 

2005). Inhibition of LLO synthesis by tunicamycin, accumu-

lation of LLO intermediates such as M2-6Gn2-P-P-Dol caused 

by glucose deprivation, mutations affecting mannosyl precursor 

synthesis, and interference with ER-processing glycosidases all 

disturb ER homeostasis (Lehrman, 2006). To minimize dam-

age, mitigate the source of stress, and restore ER homeostasis to 

normal, the resulting ER stress activates a set of coordinated 

signals known collectively as the unfolded protein response 

(UPR). UPR signaling uses resident ER membrane proteins 
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 E
ndoplasmic reticulum (ER) homeostasis requires 

transfer and subsequent processing of the glycan 

Glc3Man9GlcNAc2 (G3M9Gn2) from the lipid-linked 

oligosaccharide (LLO) glucose3mannose9N-acetylglucos-

amine2-P-P-dolichol (G3M9Gn2-P-P-Dol) to asparaginyl 

residues of nascent glycoprotein precursor polypeptides. 

However, it is unclear how the ER is protected against dys-

function from abnormal accumulation of LLO intermedi-

ates and aberrant N-glycosylation, as occurs in certain 

metabolic diseases. In metazoans phosphorylation of 

eukaryotic initiation factor 2α (eIF2α) on Ser51 by PERK 

(PKR-like ER kinase), which is activated by ER stress, atten-

uates translation initiation. We use brief glucose depriva-

tion to simulate LLO biosynthesis disorders, and show that 

attenuation of polypeptide synthesis by PERK promotes 

extension of LLO intermediates to G3M9Gn2-P-P-Dol under 

these substrate-limiting conditions, as well as counteract 

abnormal N-glycosylation. This simple mechanism requires 

eIF2α Ser51 phosphorylation by PERK, and is mimicked by 

agents that stimulate cytoplasmic stress-responsive Ser51 

kinase activity. Thus, by sensing ER stress from defective 

glycosylation, PERK can restore ER homeostasis by 

balancing polypeptide synthesis with fl ux through the 

LLO pathway.
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with lumenal stress-sensing domains that control activation of 

their respective cytoplasmic effector domains (Schröder and 

Kaufman, 2005). Of particular signifi cance here, the cytoplas-

mic domain of the stress-sensor PKR-like ER kinase (PERK; 

Harding et al., 1999), also termed PEK (Sood et al., 2000), is a 

kinase activated by transautophosphorylation that phosphory-

lates eukaryotic initiation factor (eIF)-2α. The resultant eIF2α-P 

interferes with translation initiation, which is suffi cient to 

inhibit protein synthesis by 70–90% after robust ER stress. 

Importantly, translation attenuation by PERK reduces stress by 

diminishing the load of ER client protein (Harding et al., 2000b).

Several lines of evidence suggest that metabolic defi cien-

cies affecting G3M9Gn2-P-P-Dol synthesis or N-linked glyco-

sylation might be compensated for by ER stress responses, 

implying homeostatic adaptation (Lehrman, 2006). The goal of 

this study was to investigate the potential role of PERK in such 

adaptation. To do so, we took advantage of the fact that, for 

many cell types normally maintained in physiological (≥4 mM) 

glucose, brief incubations with 0.3–0.5 mM glucose hinder con-

version of undermannosylated LLO intermediates to G3M9Gn2-

P-P-Dol. This is distinguished from the glucose-starvation 

effect, which requires glucose-free medium and causes a rather 

discrete shift from G3M9Gn2-P-P-Dol to M5Gn2-P-P-Dol 

 (Chapman and Calhoun, 1988). We focused on our prior fi nding 

that dermal fi broblasts incubated 20 min in medium with 0.5 

mM glucose accumulated M2-6Gn2-P-P-Dol. Although the im-

properly glycosylated proteins that resulted were expected to 

compromise ER function, the treatment by itself was too brief 

to activate an ER stress response. Signifi cantly, ER stress in-

duced by dithiothreitol (DTT), thapsigargin (TG), castanosper-

mine, azetidine-2-carboxylic acid, or geldanamycin all restored 

G3M9Gn2-P-P-Dol levels in the fi broblasts to normal (Doerrler 

and Lehrman, 1999; Shang et al., 2002). The underlying mecha-

nism was not determined, although regulated glycogenolysis 

was later proposed (Gill et al., 2002). The brief treatments used 

argued against considerable contributions of UPR transcrip-

tional programs (Schröder and Kaufman, 2005).

In this study, we identify a surprisingly simple protec-

tive mechanism by which the ER stress response modulates 

G3M9Gn2-P-P-Dol synthesis and N-linked glycosylation. It is 

known that ER stress from aberrant G3M9Gn2-P-P-Dol produc-

tion activates PERK. PERK is shown to reduce LLO consumption 

by attenuating synthesis of glycoprotein precursor polypeptides. 

This facilitates extension of undermannosylated intermediates to 

G3M9Gn2-P-P-Dol, restoring correct N-linked glycosylation. In 

this way, PERK balances glycoprotein synthesis with LLO fl ux.

Results
Evaluation of G3M9Gn2-P-P-Dol synthesis
Most mammalian cells in conventional media containing physio-

logical glucose concentrations synthesize G3M9Gn2-P-P-Dol 

 effi ciently, a state we operationally term unrestricted LLO syn-

thesis. However, as we already mentioned, brief incubations with 

low glucose concentrations can hinder extension of underman-

nosylated intermediates. We categorize conditions such as these, 

which impede extension of LLO intermediates, as restricted LLO 

synthesis (Fig. 1, A). Consequently, the fl ux of LLO intermedi-

ates through the LLO pathway is reduced. We distinguish 

LLO fl ux from two other factors, LLO capacity (total LLO that 

can be synthesized, dependent on availability of Dol-P) and LLO 

consumption (dependent on transfer of glycan to polypeptide). 

Defi cits in neither capacity nor consumption would be expected 

to cause LLO intermediates to accumulate. As presented below, 

restricted conditions were used to determine whether ER stress-

activated PERK could compensate for reduced LLO flux. 

Figure 1. Restricted and unrestricted LLO synthesis, and the effect of CHX. 
(A) Hypothetical high-pressure liquid chromatograms of LLO glycans illustrate 
effi cient (unrestricted) synthesis of G3M9Gn2-P-P-Dol versus accumulation of 
M2-7Gn2-P-P-Dol intermediates under restricted conditions that simulate meta-
bolic dysfunction. The dashed lines indicate the mannosyl residues that vary in 
the respective intermediates (Helenius and Aebi, 2004). (B) Dermal fi broblasts 
were treated with the indicated concentrations of CHX for 50 min. Medium 
with 0.5 mM glucose was used. For the fi nal 20 min, 40 μCi/ml [3H]mannose 
was added. [3H] LLO glycans were isolated and characterized by HPLC. The 
positions of standards are shown. Note that addition of CHX converts the 
 pattern of LLO glycans from restricted to unrestricted. For comparison, an 
 experiment is shown with 2 mM DTT added for 30 min instead of CHX.
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Unrestricted conditions were used to determine whether any 

such compensation was related to attenuated consumption of 

LLO, altered LLO capacity, or enhancement of LLO fl ux. LLOs 

in cultured cells are conveniently labeled with [2-3H]mannose. 

Established solvent extraction procedures can then recover the 

entire [3H] LLO pool (i.e., LLO intermediates plus G3M9Gn2-P-

P-Dol), or HPLC can be used to examine glycans of individual 

[3H] LLOs. Effi cient incorporation of [3H]mannose requires low-

glucose medium, resulting in restricted or unrestricted LLO syn-

thesis, depending on the cell type and the glucose concentration.

Treatment with cycloheximide (CHX) 
suggests that translation attenuation 
can modulate LLO synthesis
As discussed in the Introduction, LLO synthesis in dermal fi bro-

blasts is restricted with 0.5 mM glucose, and ER stress promotes 

extension of the accumulated LLO intermediates to G3M9Gn2-P-

P-Dol. To simulate the contribution of translation attenuation by 

PERK during the ER stress response we used CHX. We found 

that mild treatment (4 μM; inhibiting protein synthesis by 

25–30%; unpublished data) reduced accumulation of [3H] LLO 

intermediates and greatly shifted the LLO profi le in favor of 

[3H]G3M9Gn2-P-P-Dol (Fig. 1 B). Treatment with 100 μM CHX 

(inhibiting translation by �50%) caused even greater enhance-

ment, comparable to the effect of 2 mM DTT. Because CHX 

slows consumption of LLOs for protein N-glycosylation (Gao 

and Lehrman, 2002b), we surmise that 4–100 μM CHX may have 

allowed more time for extension of LLO intermediates, thereby 

compensating for reduced fl ux. This also implicated translation 

attenuation by PERK as a key factor in the ER stress response–

mediating extension of undermannosylated intermediates.

Specifi c activation of PERK’s 
kinase activity drives extension 
of LLO intermediates
To assess PERK’s potential contribution to LLO synthesis, the 

transfected CHO-K1 line “Fv2E-PERK” was used. This line 

expresses a cytoplasmic fusion protein with the PERK kinase 

domain joined to dual FKBP12-derived domains that bind 

AP20187, a cell-permeant bifunctional “dimerizer.” Such 

fusion proteins are normally monomers, and are inactive. Addi-

tion of dimerizer oligomerizes the Fv2E-PERK fusion proteins, 

resulting in transautophosphorylation and activation of the 

 kinase domains. The kinase domains then phosphorylate Ser51 

of eIF2α, inhibiting translation (Lu et al., 2004).

AP20187 caused graded, regulated inhibition of protein 

synthesis in Fv2E-PERK transfectants, but not untransfected 

CHO-K1 cells (Fig. S1, available at http://www.jcb.org/cgi/ 

content/full/jcb.200607007/DC1). We used 0.5 nM AP20187 

(inhibiting protein synthesis by �35%) to replicate translation 

attenuation expected to occur with moderate ER stress. Fv2E-

PERK cells underwent restricted LLO synthesis when incu-

bated in 0.3 mM glucose medium for 20 min (Fig. 2 A), with 

AP20187 (Fig. 2 B) causing a robust effect on extension of 

[3H] LLO intermediates to [3H]G3M9Gn2-P-P-Dol. Moreover, 

N-linked glycans derived from [3H]G3M9Gn2-P-P-Dol (labeled 

x and y in Fig. 2 [C and D]) were sparse under restricted condi-

tions (C), but were increased greatly by AP20187 (D). Thus, 

moderate translation attenuation by PERK was suffi cient to 

drive extension of LLO intermediates to G3M9Gn2-P-P-Dol, and 

reestablish correct N-linked glycosylation.

ER stress inducers failed to extend 
LLO intermediates in the absence 
of phosphorylatable eIF2𝛂
Compared with mouse embryonic fi broblasts (MEFs) express-

ing normal eIF2α (eIF2αS51/S51), MEFs with alanine substitu-

tions at Ser51 (eIF2αA51/A51) have greatly reduced translation 

attenuation in response to ER stress because Ser51 is phosphory-

lated by PERK (Scheuner et al., 2001). Incubation of 

eIF2αS51/S51 or eIF2αA51/A51 MEFs with 0.3 mM glucose for 

20 min resulted in restricted LLO synthesis (Fig. 3, A and E). 

This provided an opportunity to formally demonstrate the role 

of eIF2α phosphorylation, and therefore translation attenuation, 

in stimulation of LLO intermediate extension by ER stress. We 

considered analogous experiments with PERK−/− MEFs, but 

reasonable conditions causing restricted LLO synthesis were 

not identifi ed (unpublished data). Rather, in these cells, glucose 

Figure 2. PERK’s kinase activity is suffi cient to rectify LLO bio-
synthetic defects and aberrant N-linked glycosylation. Fv2E-PERK 
cells were cultured in the absence (A and C) or presence (B and D) 
of 0.5 nM AP20187 for 60 min. Incubation with or without 
AP20187 was then continued for an additional 20 min in me-
dium containing 0.3 mM glucose (causing restricted LLO synthe-
sis), 10% dialyzed FBS, and 40 μCi/ml [3H]mannose. [3H] LLO 
glycans (A and B) and [3H]N-linked glycans (C and D) were de-
tected by HPLC. The positions of standards are indicated. x and y 
indicate N-linked glycans assigned the structures M9Gn2 and 
G1M9Gn2, respectively, and thus derived from G3M9Gn2-P-P-Dol 
rather than undermannosylated LLO intermediates (Shang and 
 Lehrman, 2004c). Because of low [3H] labeling in N-glycan experi-
ments, interference from spurious electronic noise was minimized 
by subjecting HPLC data to root-mean-square smoothing with PSI-
Plot V.8 (Poly Software International).
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deprivation diminished G3M9Gn2-P-P-Dol without accumula-

tion of intermediates, with reversal by CHX (Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200607007/DC1).

Consistent with prior results with dermal fi broblasts, treat-

ments of eIF2αS51/S51 MEFs with DTT (25 min) or TG (30 min) 

promoted extension of [3H] LLO intermediates (Fig. 3, B and C). 

However, ER stress did not enhance extension in eIF2αA51/A51 

MEFs (Fig. 3, F and G), although treatment with 20 μM CHX 

(Fig. 3, D and H) demonstrated that the LLO pathway in these 

cells could respond to translation attenuation. Splicing of XBP1 

mRNA is mediated by IRE1, and is a quantitative measure of 

ER stress (Shang and Lehrman, 2004a). Assays for this reaction 

verifi ed that TG and DTT caused robust ER stress with both 

MEF lines (Fig. 3 I).

Hence, within the fi rst 30 min of the ER stress response, 

translation attenuation via eIF2α phosphorylation appears to be 

the only factor that signifi cantly stimulates extension of LLO 

intermediates in MEFs.

PERK’s kinase activity during the ER 
stress response inhibits G3M9Gn2-P-P-Dol 
consumption
Ostensibly, PERK could aid LLO synthesis if a labile protein 

inhibited the pathway, or if a stimulatory protein was made 

upon attenuation of translation initiation (Harding et al., 2000a). 

However, another explanation comes from work by Hubbard and 

Robbins (1980), which was extended by us (Gao and Lehrman, 

2002b), showing that under unrestricted conditions of LLO 

synthesis, the translation inhibitors CHX and puromycin pre-

vent synthesis of [3H]mannose-labeled G3M9Gn2-P-P-Dol. This 

is because G3M9Gn2-P-P-Dol consumption is inhibited in the 

absence of nascent glycoprotein precursor polypeptides, and 

the G3M9Gn2-P-P-Dol pool does not turn over. Consequently, 

Dol-P is not regenerated, so new LLO cannot be made with 

[3H]mannose. Thus, the results shown in Figs. 1–3 (under 

restricted conditions) may be explained by slowed LLO consump-

tion, with more time for extension of undermannosylated inter-

mediates to G3M9Gn2-P-P-Dol.

Two types of measurements were required to determine 

whether ER stress slows G3M9Gn2-P-P-Dol consumption. For 

inhibition of G3M9Gn2-P-P-Dol synthesis, metabolic labeling 

with [3H]mannose was used. In parallel, to detect unlabeled 

G3M9Gn2-P-P-Dol, we used fl uorophore-assisted carbohydrate 

electrophoresis (FACE), by which glycans cleaved from LLOs 

are tagged at their reducing termini with the anionic fl uorophore 

7-amino-1,3-naphthalenedisulfonic acid (ANDS; Gao and 

 Lehrman, 2002a). The negatively charged ANDS-glycan conju-

gates can be separated by electrophoresis with a high-percentage 

Figure 3. Acute ER stress does not alter LLO synthesis in 
eIF2𝛂A51/A51 MEFs. MEFs with two normal eIF2α alleles 
(eIF2αS51/S51; A–D) or two alleles with Ser51Ala replace-
ments (eIF2αA51/A51; E–H) were cultured in the absence 
(A and E) or presence of 2 mM DTT for 5 min (B and F), 100 
nM TG for 10 min (C and G), or 20 μM CHX for 10 min 
(D and H). Treatments were then continued for an addi-
tional 20 min in medium containing 10% dialyzed FCS, 
0.3 mM glucose, and 40 μCi/ml [3H]mannose. [3H] LLO 
glycans were characterized by HPLC, as described for 
Fig. 2. The causes of the somewhat different patterns of 
undermannosylated intermediates in untreated eIF2αS51/S51 
and eIF2αA51/A51 samples in this fi gure (A and E) and in 
Fig. 9 are unknown. mRNA samples corresponding to ex-
periments in A–H were tested for splicing of XBP1 mRNA 
(I). Spliced (XBP1S), unspliced (XBP1U), and hybrid (XBP1H) 
PCR products are indicated, as well as the sizes (nucleo-
tides) of the XBP1S and XBP1U fragments.
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polyacrylamide gel, and detected with ultraviolet light. FACE 

allows glycans from individual LLO species to be measured 

quantitatively, and can be used regardless of the medium’s 

glucose concentration.

CHO-K1 cells (and CHO-K1–derived Fv2E-PERK cells; 

see below) underwent unrestricted G3M9Gn2-P-P-Dol synthesis 

in 0.5 mM glucose medium (Fig. S2 C and not depicted). Syn-

thesis of total [3H] LLO in CHO-K1 cells with 0.5 mM glucose 

was inhibited by DTT and TG (Fig. 4), but no breakdown 

 products were observed (Fig. S2 C). Importantly, no losses of 

G3M9Gn2-P-P-Dol were detected by FACE (Fig. 4; increases 

were apparent, and are explored in Fig. S2 B). PERK’s activity 

was suffi cient to block G3M9Gn2-P-P-Dol consumption because 

10 nM AP20187 strongly inhibited both protein (Fig. 5, A) and 

total [3H] LLO (Fig. 5, B) synthesis in Fv2E-PERK transfec-

tants, but not in CHO-K1 cells, whereas G3M9Gn2-P-P-Dol 

detected by FACE was unaffected in all cases (Fig. 5, C).

These results show that PERK’s kinase activity is suffi cient 

to inhibit G3M9Gn2-P-P-Dol consumption under unrestricted 

conditions, just as it is suffi cient to drive extension of under-

mannosylated intermediates under restricted conditions (Fig. 2).

PERK is necessary for inhibition 
of G3M9Gn2-P-P-Dol consumption 
by ER stress
The necessity of PERK was addressed because IRE1 has also 

been reported to attenuate translation in response to ER stress 

(Iwawaki et al., 2001). HeLa S3 cells were transfected with 

siRNA duplexes directed against distinct regions of PERK 

mRNA. The PERK-A duplex was ineffective for RNA interfer-

ence, and was therefore used along with sham transfection as a 

negative control. The PERK-B duplex effi ciently knocked down 

PERK mRNA (losses of 58 ± 3% with 5 h of transfection and 

77 ± 1% with 16 h of transfection). Because some effects on 

cell viability were noticed with the 16-h transfection, subse-

quent experiments were done with 5-h transfections. DTT and 

TG each inhibited synthesis of protein and total [3H] LLO under 

unrestricted conditions by about half in sham and PERK-A–

treated cells (Fig. 6, A), whereas the PERK-B duplex fully pre-

vented DTT- and TG-induced translation arrest and [3H] LLO 

synthesis inhibition. For reasons that are unclear, DTT treat-

ment tended to elevate total [3H] LLO labeling in PERK-B–

transfected cells above that in nonstressed cells, but the key 

point is that LLO synthesis was not inhibited. Splicing of XBP1 

mRNA (inset) verifi ed that the PERK-B duplex did not prevent 

DTT or TG from inducing ER stress.

Because eIF2α−Ser51 can be phosphorylated by the 

kinase PKR in response to double-stranded RNA (Scheuner et al., 

2001), the potential concern over the use of RNA interference 

was addressed with MEFs bearing two normal PERK alleles 

(PERK+/+) or two disrupted alleles (PERK−/−). The results 

(Fig. 6 B) confi rmed those obtained by RNA interference. Syn-

thesis of protein and total [3H] LLO under unrestricted condi-

tions were both strongly inhibited by ER stress inducers in the 

presence, but not the absence, of PERK. XBP1 mRNA splicing 

assays (unpublished data) verifi ed that DTT and TG induced 

similarly robust ER stress in both MEF types.

Figure 4. ER st ress in CHO-K1 cells reduces G3M9Gn2-P-P-Dol consumption. 
CHO-K1 cells (�90% confl uent; duplicate 100-mm dishes for [3H]mannose 
labeling and duplicate 150-mm dishes for FACE) were incubated with 
 normal medium (10 mM glucose) in the absence or presence of 2 mM DTT 
(top) or 150 nM TG (bottom) for the indicated times, and then for 20 min 
(maintaining absence or presence of DTT or TG) in medium with 0.5 mM 
glucose (unrestricted LLO synthesis). Open symbols: 10 μCi/ml 
[3H]mannose was included during the fi nal 20 min, and total [3H] LLO 
was determined. As shown in Fig. S2 C, under comparable conditions the 
majority of radioactivity was incorporated into G3M9Gn2-P-P-Dol. Closed 
symbols: no [3H]mannose was included; instead, G3M9Gn2-ANDS was 
measured by FACE. Data points are averages of duplicates. (insets) FACE 
gels displaying G3M9Gn2-ANDS from duplicate dishes obtained at the 
times (minutes) indicated.

Figure 5. PERK’s kinase activity is suffi cient to reduce G3M9Gn2-P-P-Dol 
consumption. (A–C) Control CHO-K1 (left) or Fv2E-PERK (right) cells were 
treated without (white bars) or with (black bars) 10 nM AP20187 for 1 h, 
followed by measurements of [3H]leucine incorporation into protein (means 
of quadruplicates ± the SEM; A), measurements of [3H]mannose incorpo-
ration into total LLO (averages of quadruplicates ± the SEM; B), or detec-
tion of G3M9Gn2-ANDS by FACE (duplicates; C) in medium with 0.5 mM 
glucose (unrestricted LLO synthesis under this condition). For A and B, val-
ues above the bars are the percentage of incorporation relative to that in 
the absence of AP20187. 
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Pulse-chase analysis of LLO fl ux
PERK’s effects on LLO fl ux might be explained entirely by a 

compensatory reduction of LLO consumption because PERK 

activity was replicated by attenuating translation with either 

CHX (Fig. 1) or activators of cytoplasmic eIF2α kinases (see 

the following section). As a more direct test of PERK’s ef-

fect on LLO fl ux, we performed pulse-chase experiments with 

Fv2E-PERK cells. After incubation in the absence or presence 

of AP20187 or DTT, the cells were labeled for 2 min with 

[3H]mannose in medium containing 1 mM glucose (which al-

lowed G3M9Gn2-P-P-Dol to be made effi ciently, yet permitted 

suffi cient uptake of [3H]mannose), and then chased in medium 

lacking [3H]mannose for up to 10 min. Although several [3H] 

species were detected, the only ones confi rmed as LLOs (by 

sensitivity to tunicamycin and comparison with standards) 

were [3H]M5Gn2-P-P-Dol and [3H]G3M9Gn2-P-P-Dol. Neither 

LLO was detected during the 2-min pulse (unpublished data). 

In untreated cells, both [3H] LLOs were detected after 4 min 

of chase, and [3H]G3M9Gn2-P-P-Dol was the only [3H] LLO 

signifi cantly detected after 10 min of chase (Fig. 7, A and B). 

By comparison, after activation of PERK with AP20187 or in-

troduction of ER stress with DTT, [3H]G3M9Gn2-P-P-Dol was 

the predominant LLO detected  after 4 min of chase.

These results suggest that PERK may have a direct effect 

on LLO fl ux, in addition to the aforementioned compensatory 

effect on consumption. In contrast, there is no evidence that ER 

stress affects LLO capacity because in CHO-K1 cells in 10 mM 

glucose undergoing unrestricted G3M9Gn2-P-P-Dol synthesis 

(FACE analysis; Fig. S2 B), G3M9Gn2-P-P-Dol quantity was not 

altered by ER stress (we did notice, however, that 0.5 mM glu-

cose incubation caused an unexpected reduction of G3M9Gn2-

P-P-Dol that was reversed by ER stress, perhaps because of 

reduced consumption). Specifi c activation of PERK’s kinase 

activity in Fv2E-PERK cells with AP20187 also failed to alter 

G3M9Gn2-P-P-Dol content (Fig. 5).

Phosphorylation of eIF2𝛂−Ser51 explains 
how cytoplasmic stress inducers 
counteract abnormalities of LLO 
biosynthesis and protein glycosylation
Eukaryotes contain multiple cytoplasmic eIF2α Ser51 kinases 

distinct from PERK (Scheuner et al., 2001), suggesting an al-

ternative way to modulate LLO biosynthesis. Arsenite (ARS) 

and diamide (DIA) induce transcription of the cytoplasmic 

stress marker HSP70 mRNA, but not the ER stress marker 

GRP78 mRNA (Table S1, available at http://www.jcb.org/cgi/

content/full/jcb.200607007/DC1), which is a result opposite 

to that obtained with ER stress inducers (Shang et al., 2002). 

By incubating dermal fi broblasts as described for Fig. 1 B, 

ARS and DIA greatly enhanced the extension of [3H] LLO 

intermediates to G3M9Gn2-P-P-Dol (Fig. 8, A–C), and 

diminished N-linked glycoproteins with undermannosylated 

glycans (Fig. 8, E–G). Their effects rivaled those of DTT 

(Fig. 8, D and H).

Because the effects of ARS and DIA on LLO synthesis 

correlated with their abilities to inhibit protein synthesis (Figs. 

S3 and S4, available at http://www.jcb.org/cgi/content/full/

jcb.200607007/DC1), but not with changes in mannose uptake 

or hexose-phosphate metabolism (not depicted), the requirement 

for eIF2α-Ser51 phosphorylation was tested with eIF2αS51/S51 

and eIF2αA51/A51 MEFs (as described for Fig. 3). Disulfi ram 

(DIS), which is another cytoplasmic stress inducer (Table S1), 

was included. All three agents inhibited protein synthesis in 

eIF2αS51/S51 MEFs (Table I) by at least half, and robustly pro-

moted extension of [3H] LLO intermediates (Fig. 9, A–D). 

However, their responses were quite disparate in eIF2αA51/A51 

MEFs. ARS failed to appreciably affect protein (Table I) or [3H] 

LLO (Fig. 9 G) synthesis in eIF2αA51/A51 MEFs, showing that 

ARS acted mainly through an eIF2α-Ser51 kinase, with a speci-

fi city comparable to that of DTT (Fig. 9, E and J). DIA and DIS 

both inhibited protein synthesis (Table I) and promoted LLO 

extension (Fig. 9, H and I) in eIF2αA51/A51 MEFs, but not as well 

as with eIF2αS51/S51 MEFs, indicating that they acted partly through 

Figure 6. Hindering PERK expression by RNA interference or gene disrup-
tion prevents inhibition of both protein synthesis and LLO consumption 
by ER stress inducers. Metabolic labeling of HeLa S3 and MEF lines was 
done with 0.5 mM glucose (unrestricted LLO synthesis conditions; HPLC 
data not depicted). (A) HeLa S3 cells were subjected to sham transfection, 
or transfection with siRNA duplexes PERK-A or -B for 5 h. Cells were left un-
treated (control; open bars) or treated with either 100 nM TG for 30 min 
(striped bars) or 2 mM DTT for 20 min (shaded bars). Synthesis of protein 
(with [3H]leucine; left) and LLO (with [3H]mannose; right) were measured 
as percentages of the untreated controls. Bars represent means (± the 
SEM) for 7–8 replicates (protein synthesis) or 8–12 replicates (LLO synthe-
sis) done over 4 independent sets of transfections. (inset) RT-PCR analyses 
of XBP1 mRNA (representative of 4 independent experiments) from a sin-
gle gel, cropped for alignment with appropriate bars. Spliced (XBP1S), un-
spliced (XBP1U), and hybrid (XBP1H) PCR products are indicated, with sizes 
indicated in Fig. 3. (B) MEFs with normal alleles (PERK+/+; left) or MEFs 
harboring disrupted PERK alleles (PERK−/−; right) were treated with TG or 
DTT, followed by protein and LLO synthesis measurements, as for A. Bars 
represent averages (± the SEM) of 3–5 or 6–9 replicates for TG and DTT, 
respectively, encompassing at least 2 independent experiments.
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eIF2α-Ser51 phosphorylation, and partly through a second means 

of translation attenuation.

Collectively, translation attenuation by eIF2α-Ser51 kinase 

activity explains the effects of cytoplasmic stress inducers on 

LLO synthesis, and represents a merge point with the mecha-

nisms of ER stress inducers.

Discussion
How is the synthesis of G3M9Gn2-P-P-Dol controlled? Evidence 

exists for regulation of specifi c reactions in the LLO pathway 

(Kean et al., 1999; Banerjee et al., 2005) and for  developmental 

induction of key enzymes (Lehrman, 1991; Crick and Waech ter, 

1994; Crick et al., 1994). However, mechanisms that might 

acutely regulate the pathway based on the availability of 

G3M9Gn2-P-P-Dol have been elusive. Because G3M9Gn2-P-P-

Dol is ultimately needed for N-linked glycosylation, and hence 

ER homeostasis, processes that sense ER stress are candidate reg-

ulatory inputs for adjustment of G3M9Gn2-P-P-Dol synthesis.

This study shows that decreased synthesis of polypeptide 

acceptors by activation of PERK reduces LLO consumption 

and, consequently, enhances extension of LLO intermediates, 

replenishing G3M9Gn2-P-P-Dol (Fig. 10). Because PERK is 

activated by extended periods of ER stress resulting from 

hindered G3M9Gn2-P-P-Dol synthesis, and hence, aberrant 

N-glycosylation (Harding et al., 2000b), PERK can balance 

glycoprotein precursor polypeptide synthesis with LLO path-

way fl ux. Thus, in addition to reducing ER stress by lessening 

the load of client protein, this mechanism allows PERK to en-

sure proper N-glycosylation of the polypeptides that continue 

to be made. The importance of this synergy is emphasized by 

a recent study showing that maintenance of favorable diffu-

sional properties in the ER lumen is much more dependent on 

effi cient functioning of the lectin-chaperone system (which 

requires proper N-glycosylation) than the total load of poly-

peptide (Snapp et al., 2006). In addition to decreasing LLO 

consumption, pulse-chase experiments suggested that PERK 

stimulates LLO fl ux itself. The mechanism responsible for this 

is unclear at this time.

Though used here to accumulate undermannosylated in-

termediates, glucose deprivation may also be a physiological 

cause of ER stress (Scheuner et al., 2001). A 30-min reduction 

of glucose concentration to 2.5 mM (just below the typical 

fasting level of 4 mM) can cause signifi cant accumulation of 

LLO intermediates in fi broblasts (Gao et al., 2005). Although 

the brief (20 min) incubations in low-glucose media used here 

Figure 7. Pulse-chase analysis of PERK’s 
 effect on LLO fl ux. Fv2E-PERK cells were pulse-
labeled with [3H]mannose for 2 min and chased 
for up to 10 min, as described in Materials and 
methods. Cells lacked additional treatments 
(control) or were treated with either 1 nM 
AP20187 for 1 h or 2 mM DTT for 20 min 
before pulse labeling, as well as during the 
pulse (but not during the chase). The 4-min 
chase was the earliest point at which [3H] LLOs 
were reliably detected. (A) LLO glycans from cells 
chased for the indicated times were analyzed 
by HPLC. The positions of M5Gn2 and 
G3M9Gn2 are shown by the open and closed 
arrowheads, respectively. (B) Results from A and 
a second identically performed experiment 
were combined (all points are means ± the 
SEM). HPLC peak heights for M5Gn2 and 
G3M9Gn2 were normalized to mannose con-
tent, and G3M9Gn2 percentages were calcu-
lated. Circles, control; triangles, AP20187; 
squares, DTT.



JCB • VOLUME 176 • NUMBER 5 • 2007 612

were insuffi cient to appreciably inhibit protein synthesis (un-

published data) or cause ER stress (Doerrler and Lehrman, 

1999; Shang et al., 2002), seminal studies showed that ex-

tended glucose deprivation can trigger an ER stress response, 

as well as interfere with protein glycosylation (Pouyssegur 

et al., 1977; Shiu et al., 1977). In our hands, incubation of der-

mal fi broblasts for 12 h in medium with 0.5 mM glucose (a re-

stricted condition when used for only 20–30 min) triggered an 

ER stress response, and both G3M9Gn2-P-P-Dol synthesis and 

proper protein N-glycosylation were restored (Doerrler and 

Lehrman, 1999). However, at such extended time-points, 

UPR-dependent transcription of LLO biosynthetic enzymes 

(Lehrman, 2006) and increased glucose transport (Doerrler 

and Lehrman, 1999) would be expected, as well as PERK, to 

participate in enhancement of G3M9Gn2-P-P-Dol synthesis. 

Other conditions that interfere with LLO synthesis (Elbein, 

1987; Datema et al., 1987) include exposures to glucosamine 

and 2-deoxyglucose, which trigger ER stress responses 

(Pouyssegur et al., 1977; Peluso et al., 1978; Qiu et al., 2005), 

and to tunicamycin (Lehrman, 1991), which induces ER stress 

and causes PERK-dependent translation arrest (Harding et al., 

2000b). In all cases, a compensatory role of PERK would 

be anticipated.

The vigorous effects of only 20–35% translation attenu-

ation on LLO intermediates were surprising, suggesting in-

fl uence by translational variations within the physiological 

range (Scheuner et al., 2001). The failure to detect acute ER 

stress effects on LLO synthesis in eIF2αA51/A51 MEFs sug-

gests that, absent of translational control, there may be no 

other strongly stimulatory mechanisms in these cells during the 

fi rst �30 min of the response. This also argues against 

G3M9Gn2-P-P-Dol metabolism being infl uenced by potential 

secondary effects of ER stress (such as misfolding of poly-

peptide acceptors or disruption of OT). LLO extension in ER 

stressed-dermal fi broblasts correlated temporally with loss 

of glycogen and elevation of glucosyl phosphates, suggesting 

that regulated glycogenolysis might elevate sugar precursor 

pools and drive LLO extension (Gill et al., 2002). However, a 

direct link was not established. Given our current results, changes 

in glycogen metabolism do not appear to have major importance 

for regulation of LLO synthesis by robust ER stress in MEFs.

The mechanism for PERK reported in this study, termed 

“translational balancing” in Fig. 10, does not involve complex 

Figure 8. Treatments with ARS and DIA promote synthesis of 
G3M9Gn2-P-P-Dol and glycosylation of proteins with G3M9Gn2. 
Dermal fi broblasts were untreated (controls; A and E), or 
treated with 0.2 mM DIA for 20 min (B and F), 40 μM ARS 
for 1 h (C and G), or 2 mM DTT for 20 min (D and H). Cells 
were incubated with medium containing 10% dialyzed 
FBS and 40 μCi/ml [3H]mannose for 20 min either during 
(DIA and DTT) or after (ARS) stress treatments. LLO glycans 
(A–D) and N-linked glycans (E–H) were analyzed by HPLC. 
The positions of standards are indicated as in Fig. 2.

Table I. Effects of replacing eIF2𝛂S51 with eIF2𝛂A51 on protein synthesis

Genotype Protein Synthesis

ARSa

(40 μM, 1 h)
DIAb

(0.2 mM, 20 min)
DISc

(10 μM, 2 h)

%

eIF2αS51/S51 46.4 ± 2.7 18.6 ± 0.7 35.0 ± 0.4

eIF2αA51/A51 93.2 ± 1.6 66.3 ± 3.9 83.0 ± 0.9

eIF2αS51/S51 and eIF2αA51/A51 MEFs were treated with stress inducers. Except 
for the fi nal 5 min, conventional DMEM plus 10% FBS was used. For the fi nal 
5 min, DMEM with 0.3 mM glucose, 10% dialyzed FBS, and 5 μCi/ml 
[3H]leucine was used. Results are means of triplicates ± the SEM of the percent-
age of untreated controls. The use of 0.3 mM glucose was not necessary for 
protein synthesis measurements, but it simplifi ed comparisons with [3H]mannose-
labeling experiments.
aVoet and Voet, 1995.
bKosower et al., 1969.
cFleming et al., 2006.
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ER stress-signaling pathways and may be analogous to regula-

tion by other eIF2α kinases, notably HRI (Han et al., 2001). 

Iron defi ciency hinders conversion of protoporphyrin IX to 

heme and releases HRI from its heme-inhibited state to phos-

phorylate eIF2α-Ser51. This, in turn, reduces α- and β-globin 

chain synthesis to balance hemoglobin synthesis with heme. In 

addition to reducing undesired malfolded globin chains (Han 

et al., 2005), translational balancing should increase heme rela-

tive to protoporphyrin. Accordingly, translational balancing 

may be a simple, general mechanism by which eIF2α-Ser51 ki-

nases adjust metabolic pathways whose end products interact 

with newly synthesized proteins.

Translational control also has implications for the type I 

congenital disorders of glycosylation (CDG-I), which involve 

mutations in genes required for G3M9Gn2-P-P-Dol synthesis 

(Jaeken and Matthijs, 2001; Freeze and Aebi, 2005), resulting 

in aberrant glycosylation of serum proteins. Fibroblasts from 

CDG-I patients exhibit several criteria of chronic ER stress, 

suggesting that their LLO defects may be partially offset by 

benefi cial effects of the ER stress response (Lehrman, 2006). 

CDG-I may be amenable to correction, as G3M9Gn2-P-P-Dol 

production is not completely impaired because of the pres-

ence of at least one partially active allele. Because Ib is the 

only treatable subtype of the 12 CDG-Is (a–l; Niehues et al., 

1998), the compensatory effects of DIS (Fig. 9) are parti-

cularly interesting. DIS is a clinically approved drug used 

to discourage alcoholism (Fleming et al., 2006), and is innoc-

uous unless alcohol is consumed. Though toxic, ARS also has 

a history of therapeutic use (Kosnett, 2004). In preliminary 

experiments with CDG-Ia fi broblasts, we noted that DIS, 

ARS, and DIA all had some ability to restore synthesis of 

G3M9Gn2-P-P-Dol, although the effects were highly variable 

(unpublished data), advocating further development of 

such agents.

In conclusion, we fi nd that PERK can balance ER glyco-

protein synthesis with fl ux through the G3M9Gn2-P-P-Dol path-

way. Upon accumulation of LLO intermediates, aberrant 

N-linked glycosylation would create ER stress and activate 

PERK. PERK’s kinase activity would then reduce the load of 

glycoprotein precursor polypeptides, slow LLO consumption, 

facilitate extension of LLO intermediates to G3M9Gn2-P-P-Dol, 

and reestablish correct N-linked glycosylation.

Figure 9. Importance of eIF2𝛂-Ser51 for the actions 
of cytoplasmic stress inducers on LLO synthesis. eIF2αS51/S51 
(A–E) or eIF2αA51/A51 (F–J) MEFs (Fig. 3) were left un-
treated (CON; A and F) or treated with 40 μM ARS for 
1 h (B and G), 0.2 mM DIA for 5 min (C and H), 10 μM 
DIS for 2 h (D and I), or 2 mM DTT for 5 min (E and J). 
Incubations were continued for 20 min in medium con-
taining the respective agents and 0.3 mM glucose, 10% 
dialyzed FBS, and 40 μCi/ml [3H]mannose. [3H] LLO 
glycans were analyzed by HPLC as in Fig. 3.
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Materials and methods
Reagents and cell cultures
All stress inducers were obtained from Sigma-Aldrich. An ARGENT Regu-
lated Homodimerization kit containing AP20187 was a gift from Ariad 
Pharmaceuticals (www.ariad.com/regulationkits). [2-3H]mannose (15 Ci/
mmol) and [3H]leucine (164 Ci/mmol) were purchased from GE Healthcare. 
Cell culture media were obtained from Invitrogen, and sera were obtained 
from Atlanta Biologicals. CHO-K1 (Camp et al., 1993), PERK-Fv2E–expressing 
CHO-K1 transfectants (Lu et al., 2004), PERK+/+ and PERK−/− MEFs 
(Harding et al., 2000b), eIF2αS51/S51 and eIF2αA51/A51 MEFs (Scheuner 
et al., 2001), HeLa S3 (Elbashir et al., 2001), and dermal fi broblasts (Doerrler 
and Lehrman, 1999; Shang et al., 2002) were obtained and grown in the 
culture media described. However, to aid adhesion, MEFs were grown on 
standard 100-mm tissue culture dishes pretreated with 10 ml autoclaved 
0.1% type B bovine gelatin (Sigma-Aldrich) for at least 1 h. After removal of 
the solution, the dishes were dried for at least 30 min.

Analysis of LLO glycans and N-linked glycans 
by [3H]mannose incorporation
Cell cultures were incubated (see previous section) for 20–30 min (except for 
Figs. 5 and 6; 5 min) in media with 0.3–0.5 mM glucose containing 10% 
dialyzed FBS and [2-3H]mannose. [3H] LLOs were extracted with chloro-
form/methanol/water (10:10:3). Either the total LLO-associated tritium was 
measured by liquid scintillation spectroscopy or the [3H] LLOs were treated 
with weak acid to release water-soluble glycans, which were then fraction-
ated and detected by HPLC with in-line liquid scintillation spectroscopy 
(Doerrler and Lehrman, 1999; Shang and Lehrman, 2004c). The HPLC sys-
tem resolves glycans on the basis of single-sugar differences, with the largest 
glycans eluting the latest. The proteinaceous pellets remaining after organic 
extraction were digested with pronase and N-glycanase (Calbiochem), and the 
released N-glycans were analyzed by HPLC (Shang and Lehrman, 2004c).

For LLO pulse-chase studies with Fv2E-PERK cells, both [3H]mannose 
and [3H]glucosamine were evaluated, but only [3H]mannose was deemed 
suitable. Conditions were optimized by varying the times and [3H]mannose 
concentrations for pulse labeling. In most [3H]mannose pulses, we detected 

multiple species eluting from the HPLC column earlier than 20 min, 
but these were disregarded because they were refractory to inhibition by 
tunicamycin (an inhibitor of LLO synthesis). For the experiment presented in 
Fig. 7, Fv2E-PERK cells were incubated in F-12 medium with 10% dialyzed 
FBS, 1.0 mM glucose, and 250 μCi/ml [3H]mannose for 2 min. Labeling was 
then terminated by removal of [3H] medium and addition of methanol (no 
chase), or cells were washed twice with prewarmed phosphate-buffered 
saline, and the incubation continued in the same medium, but without 
[3H]mannose before terminating the reactions (chase). LLOs were recov-
ered from methanolic suspensions in sequential chloroform/methanol (2:1) 
and chloroform/methanol/water (10:10:3) extracts, which were com-
bined for recovery of all LLO species, and processed for HPLC as described 
in the previous paragraphs.

Analysis of LLO glycans by FACE
LLO glycans from unlabeled cells were recovered by techniques described 
in the preceding section, coupled to ANDS, and analyzed with FACE oli-
gosaccharide profi ling gels. Gel images were acquired with a Fluor-S Multi-
Imager (Bio-Rad Laboratories) using a 530DF60 fi lter. When necessary, 
individual ANDS conjugates were quantifi ed with Quantity One software 
supplied with the scanner (Gao and Lehrman, 2002a). For clarity, some 
images were adjusted with brightness and contrast tools in PowerPoint 
2003 (Microsoft), treating all data from a single gel identically. Cropping 
and joining of lanes in a single gel is indicated by vertical lines. For critical 
direct comparisons, only samples loaded on the same FACE gel were con-
sidered. This limited most experiments to duplicate determinations. Thus, 
we present original FACE data for the reader’s inspection. Per 107 cells, 
50% of the sample was usually loaded per gel lane.

Protein synthesis assays
Incorporation of [3H]leucine into total protein involved incubation in media 
with 10% dialyzed FBS and 5 μCi/ml [3H]leucine for 5 min, collection of 
the material insoluble in 5% trichloroacetic acid (Shang and Lehrman, 
2004b), and determination of tritium by liquid scintillation spectroscopy. 
Incorporation of 125 μCi/ml [35S]methionine for 20 min was done 
exactly as described (Shang et al., 2002) by phosphorimager analysis of 

Figure 10. Translational balancing by PERK restores 
correct protein glycosylation. Symbol and font sizes 
refl ect relative amounts of LLO, protein, and hexose. 
Arrow thicknesses represent relative activity at each 
step. Glycans from LLO intermediates are indicated by 
white squares, with extension to G3M9Gn2 indicated 
by attachment of black squares. (A) Under normal 
conditions, LLO intermediates are effi ciently extended 
to G3M9Gn2-P-P-Dol, with proper N-glycosylation. 
(B) Metabolic dysfunction (for example, by limited hexose 
supply) reduces fl ux through the LLO pathway, leading 
to accumulation of LLO intermediates, incorrect protein 
glycosylation, ER stress, PERK activation, and phos-
phorylation of eIF2α. (C) Translational balancing 
requires only moderate translation attenuation by 
eIF2α-P. This reduces LLO consumption, allowing LLO 
intermediates to be extended to G3M9Gn2-P-P-Dol 
even with metabolic dysfunction. Note that fewer glyco-
proteins are produced than normal, but they are 
 correctly glycosylated with G3M9Gn2.
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polyacrylamide gels. We have not noticed any differences in the validity or 
reliability of these two assays.

Application of siRNAs
siRNA duplexes targeting human PERK (accession no. NM_004836) were 
PERK-A (sense 5′-C A A G A G G A A G A C A U C C U G C tt-3′, antisense 5′-G C A-
G G A U G U C U U C C U C U U G tt-3′) and PERK-B (sense 5′-U G G A C C A U G A G-
G A C A U C A G tt-3′, antisense 5′-C U G A U G U C C U C A U G G U C C A tt-3′), corre-
sponding to coding region nucleotides 691–709 and 2,237–2,255, 
respectively (synthesized by the RNA Oligonucleotide Synthesis Core of 
University of Texas Southwestern Medical Center). Individual oligonucleo-
tides were resuspended in 500 μl DEPC-treated H2O (concentrations deter-
mined by OD260), mixed, and diluted to 20 μM each in annealing buffer 
(100 mM potassium acetate, 30 mM Hepes-KOH, pH 7.4, and 2 mM 
magnesium acetate), heated for 3 min at 90°C, and incubated for 1 h at 
37°C to form duplexes. HeLa S3 cells were plated in DME with 10% FBS 
without antibiotics in 60-mm dishes, and used at �30–50% confl uence. 
Transfection of siRNAs was done with Oligofectamine (Invitrogen) accord-
ing to the manufacturer’s instructions. Cells were incubated with buffer only 
(“sham”) or with duplexes for 5 or 16 h. Cells were passaged once into the 
desired numbers of 100-mm dishes. 3 d after the initiation of transfection, 
cells were treated with the stress inducers indicated or used to harvest 
RNA. PERK mRNA was quantifi ed by northern analysis and normalized to 
actin mRNA (Shang et al., 2002).

Splicing of XBP1 mRNA
Total mRNA was isolated with a RNeasy Mini kit (QIAGEN). Splicing of 
XBP1 mRNA was assessed by RT-PCR (Shang and Lehrman, 2004a). PCR 
products representing spliced XBP1 (XBP1S), unspliced XBP1 (XBP1U), and a 
hybrid (formed during the chain reaction, composed of one strand each of 
XBP1U and XBP1S, [XBP1H]) were resolved by agarose gel electrophoresis.

Online supplemental material
Fig. S1 shows the inhibition of protein synthesis in Fv2E-PERK cells by 
AP20187. Fig. S2 shows ancillary LLO analyses. Fig. S3 shows the inhibi-
tion of protein synthesis by cytoplasmic stress inducers. Fig. S4 shows the 
recovery from DIA treatment. Table S1 shows mRNA responses in dermal 
fi broblasts for cytoplasmic stress inducers. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200607007/DC1.
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