
INTRODUCTION

Mitochondria support multiple aspects of neuronal development 
and functions by providing cellular energy, maintaining the 
intracellular calcium levels, generating reactive oxygen species and 
regulating the release of apoptogenic proteins such as cytochrome 
c and apoptosis-inducing factor [1]. Neurons are highly polarized 
cells with distinct axons and dendrites, and they have a high 
demand for energy to maintain neural circuits. Therefore, the 
quantity, quality and localization of mitochondria are all important 
for appropriate function of neurons [2]. For example, neuronal 

mitochondria are enriched in the synaptic structures and nodes 
of Ranvier where immediate supply of cellular energy and active 
buffering of calcium are required [3].

Recently, it has been demonstrated that morphological dynamics 
of mitochondria is also involved in the maintaining their function 
and distribution in neurons [1]. Mitochondrial morphology is 
determined by a balance between continuous fusion and fission 
[4], which is regulated by large GTPase dynamin-related proteins 
including Mitofusin 1/2 (Mfn1/2), Optic atrophy 1 (Opa1) and 
Dynamin-related protein 1 (Drp1) [5]. Mfn1/2 is located on the 
outer membrane of mitochondria (OMM), and binding and 
homo- or hetero-dimerization of mitofusins promote fusion of 
two neighboring OMM. Sequentially, Opa1, resided on the mito
chondrial inner-membrane (IMM), fuses IMM by GTP hydrolysis. 
On the other hand, Drp1 is primarily localized at cytosol. For 
mitochondrial fission, Drp1 translocates from cytosol to OMM, 
and divides a mitochondrion into two pieces by GTP hydrolysis. 
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Mitochondrial fission is predominantly controlled by the activity 
of Drp1, and the frequency of mitochondrial fission determines 
the quality as well as morphology of mitochondria. Because 
mitochondria are essential for the neuronal functions, increasing 
amounts of evidence support the idea that Drp1 plays critical roles 
in the physiological function and pathological progression of the 
nervous system. 

MOLECULAR REGULATORY MECHANISMS FOR THE DRP1 
FUNCTION

Drp1 protein has four domains: GTPase domain, middle do

main, variable domain, and GED domain (Fig. 1) [6]. Unlike 
other dynamin family proteins, however, Drp1 does not have a 
lipid-interacting pleckstrin homology domain [7], and thus the 
anchorage of Drp1 to the mitochondrial membrane is mediated 
by its receptor binding. Crystal structural study revealed that 
the variable domain of Drp1 acts as a hinge, forming a T-shaped 
dimer or tetramer [8, 9]. Therefore, fission-promoting activity 
of Drp1 is controlled by many post-translational modifications 
around the variable domain, including phosphorylation, 
sumoylation, ubiquitination and S-nitrosylation (Fig. 1, Table 1). 
Post-translational modifications and the alterations in its receptor 
functions also contribute to the activity of Drp1. S-nitrosylation 
is irreversible protein modification process, which is associated 
with neurodegenerative changes of proteins [10]. On the other 
hand, other post-translational modifications can be reversible, 
suggesting that these changes occur for the physiological control 
of mitochondrial dynamics. 

Serine 637 (S637) of human Drp1 can be phosphorylated by 
protein kinase A (PKA), and it suppresses mitochondrial translo
cation and GTPase activity [11, 12]. On the other hand, Drp1S637 
is dephosphorylated by calcineurin (PP2B), which promotes 
mitochondrial fragmentation [13]. In neurons, Drp1S637 can also 
be phosphorylated by CaMKIα following neuronal activation [14]. 
Interestingly, phosphorylation of Drp1 by CaMKIα conversely 
enhances the mitochondrial fragmentation, since phosphorylated 
Drp1 by CaMK1α shows higher affinity with mitochondrial 
effector molecule, Fis1. In addition, Rho-associated coiled-
coil containing protein kinase 1 (ROCK1) also phosphorylates 
Drp1S637, resulting in mitochondrial fragmentation under hyper

Fig. 1. Schematic illustration of Drp1 structure. (A) Domain structure 
and post-translational modifications of Drp1. Multiple post-translational 
modifications regulate GTPase activity of  Drp1. The number of 
amino acids is based on Drp1 splicing variant 1 in human. (B) Folded 
structure of Drp1. VD, variable domain; GED, GTPase effector domain; 
MD, middle domain; P, phosphorylation; NO, S-nitrosylation; O-Glc, 
O-GlcNAcylation; SUMO, sumoylation.

Table 1. Post-translational modifications of Drp1

Modifications Sites
Upstream  
regulators

Effects References

Phosphorylation

Dephosphorylation

S-nitrosylation
SUMOylation

DeSUMOylation
Ubiquitination

O-GlcNAcylation

S616

S637

S637

C644
Multi-sites in  

variable domain

T585, T586

CDK1
Erk1/2
PKCδ
PKA
CaMK1α
ROCK1
Calcineurin  
  (PP2B)
Nitric oxide
MAPL

SENP5
MARCH5
Parkin
O-GlcNAc- 
  transferase

Activation
Activation
Activation
Inactivation
Activation
Activation
Activation

Activation
Activation

Inactivation
Inactivation
Inactivation
Activation

Taguchi et al., 2007
Yu et al., 2011
Qi et al., 2011
Chang and Blackstone, 2007; Cribbs and Strack, 2007b
Han et al., 2008a
Wang et al., 2012c
Cereghetti et al., 2008

Cho et al., 2009
Braschi et al., 2009

Zunino et al., 2007b
Nakamura et al., 2006a; Yonashiro et al., 2006b
Wang et al., 2011b
Gawlowski et al., 2012b
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glycemic condition [15]. Considering that phosphorylation at the 
same site by different kinases showed entirely opposite effects on 
Drp1 activity, it appears that not only the status of Drp1 phos
phorylation but also the type of upstream kinases determines the 
functional consequences. The precise mechanisms underlying 
these interesting phenomena remain to be explored.

Another phosphorylation site, serine 616 (S616), can also be 
phosphorylated by many kinases including CDK1 [16], ERK1/2 
[17] and PKCδ [18]. Phosphorylation at this site enhances the 
activity of Drp1 under certain circumstances such as mitosis, 
high glucose or oxidative stress conditions, which results in 
mitochondrial fragmentation. However, when its phosphomimetic 
or phosphodefective mutant, Drp1(S616D) or Drp1(S616A) 
respectively, was simply overexpressed in HeLa cells, mutant Drp1 
failed to alter mitochondrial morphology [13]. It implies that the 
effect of Drp1S616 phosphorylation may depend on intracellular 
context and/or upstream kinases rather than phosphorylation 
status. More recently, it has been identified that CDK5 can 
also phosphorylate Drp1S616, which induces mitochondrial 
fragmentation by the mobilization of Drp1 to mitochondria from 
microtubule [19]. However, CDK-dependent phosphorylation 
of Drp1S616 inhibits the oligomerization of Drp1 bound on mi
crotubule or mitochondria. These results imply that CDK-de
pendent phosphorylation of Drp1S616 may has reciprocal effect 
on mitochondrial translocation and oligomerization of Drp1. 
Considering that neurons have high activity of CDK5, it is intere
sting to explore whether phosphorylation of Drp1S616 can serve as 
an activating or inactivating mechanism for Drp1 in the nervous 
system.

SUMOylation has been known to increase the stability of Drp1 
on OMM that is required for efficient fission of mitochondria 
[20, 21]. For example, ectopic expression of SUMO1 stabilizes 
mitochondrial-targeted Drp1 in a Bax/Bak-dependent manner 
leading to mitochondrial fragmentation during apoptotic cell 
death [21]. Currently, the SUMOylation of Drp1 is regulated by 
SUMO E3 ligase MAPL [22] and SUMO protease SENP5 [23].

Drp1 activity can be regulated by ubiquitination, which is 
mediated by mitochondria-associated RING-finger E3 ubiquitin 
ligase (MARCH5/MITOL). Both overexpression of ligase acti
vity-defective MARCH5 and gene knockdown induce hyper-
accumulation of Drp1 on OMM, but leads to opposite effect 
which is mitochondrial elongation [24] or fragmentation [25]. 
These contradictory outputs result from diverse effects of 
MARCH5 on dynamin-related proteins; MARCH5 promotes 
Mfn2-mediated mitochondrial fusion, while it also ubiquitinates 
Drp1 [26]. In addition, Drp1 can also be ubiquitinated by Parkin 

implicated in Parkinson’s disease [27]. This modification promotes 
proteasome-dependent degradation of Drp1, and pathogenic 
mutation or knockdown of Parkin induces increased level of Drp1 
and aberrant mitochondrial fragmentation.

In rat neonatal cardiac myocytes, Drp1 can be O-GlcNAcylated 
by O-GlcNac-transferase at Threonine 585 and 586 in the vari
able domain [28]. This modification decreases the level of 
phosphorylated Drp1S637, which is consistent with a reciprocal 
relationship between O-GlcNAcylation and phosphorylation in 
several cases [29]. In fact, O-GlcNAcylation of Drp1 increases the 
levels of GTP-bound active Drp1 and leads to fragmentation of 
mitochondria. 

MITOCHONDRIAL RECEPTORS FOR DRP1 

Upon exposure to stimuli for mitochondrial fission, Drp1 
is recruited from cytosol to putative fission sites on OMM. 
Recruitment of Drp1 is accompanied by several receptors 
on the OMM, and the interaction promotes Drp1-mediated 
mitochondrial fission. Fis1 was first identified as a Drp1 receptor 
in yeast [30]. In yeast, Fis1 is indirectly associated with Drp1 
by two adaptor proteins, Mdv1 [31] and Caf4 [32]. However, 
mammalian homologues of Mdv1 and Caf4 have not been 
identified. In mammal, Drp1 interacts with Fis1 for mitochondrial 
fission [33], but Drp1 can also be recruited to mitochondria in a 
Fis1-independent manner [34, 35]. This implies alternative path
ways of Drp1-mediated mitochondrial fission. Recent reports 
have demonstrated that mitochondrial fission factor (Mff) directly 
interacts with Drp1. In both in vivo and in vitro conditions, Mff 
binds Drp1 to promote mitochondrial fragmentation [36]. Con
sistently, knock-down of Mff releases Drp1 from fission foci on 
OMM and causes mitochondrial elongation. However, molecular 
mechanism underlying the foci formation by Drp1 and Mff is still 
unclear. MiD49 and MiD51 (MIEF1) also binds to Drp1, but these 
bindings inhibit mitochondrial fission [37, 38]. 

In addition, cytoskeleton is also involved in mitochondrial 
translocation of Drp1. Disruption of F-actin inhibits mitochon
drial translocation of Drp1 under mitochondrial depolarization 
[39], and impaired microtubule sequestrates Drp1 away from 
mitochondria [19]. Interestingly, Drp1 also interacts with Mfn2 to 
inhibit mitochondrial fusion [40], suggesting that mitochondrial 
recruitment of Drp1 is involved in the mitochondria fusion 
as well. After mitochondrial recruitment, Drp1 forms ring- or 
spiral-like oligomers and weakly constricts at a putative fission 
site [41]. Finally, GTP hydrolysis promotes a complete fission of 
mitochondria [42]. 
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MITOCHONDRIAL DYNAMICS AND NEURONAL FUNCTION 
UNDER PHYSIOLOGICAL CONDITIONS

Drp1 is a key player for the regulation of mitochondrial dyna
mics in neurons. Drp1 is highly expressed in post-mitotic neurons. 
RNA in situ hybridization revealed that Drp1 mRNA is highly 
enriched in the central nervous system including spinal cord 
and brain, compared to non-neural tissues of rat embryo (Fig. 
2Aa). In adult brain, regions containing neuronal cell bodies 
exhibit increased levels of Drp1 mRNA (Fig. 2Ab, c). In addition, 
immunohistochemistry shows that Drp1 is predominantly exp
ressed in neurons labeled by NeuN, a neuronal marker, rather 
than glial cells marked by GFAP (Fig. 2B). These data suggest 
that Drp1 may be a neuron-specific regulator of mitochondrial 
dynamics. Drp1 plays a role in mitochondrial transport for 
synaptic plasticity [14, 43], and neuronal growth [44, 45]. The 
balance between mitochondrial fission and fusion is important 
for cellular homeostasis in neuron. Neuronal activation induces 

mitochondrial fragmentation, which results in redistribution of 
mitochondria in dendritic spines for local ATP supply and Ca2+ 
buffering [46]. Consistently, inhibition of mitochondrial fission 
leads to defects on synaptic morphogenesis and plasticity [14, 43, 
46, 47] and axonal growth [44, 45]. 

Drp1 is essential for neuronal development, function and 
survival. Neuron-specific Drp1-/- mice died shortly after birth, 
resulting from developmental defects in nervous system [44]. In 
addition, a patient with dominant-negative mutation in Drp1 
showed similar defects in brain development [48, 49]. These 
findings imply that Drp1-meditaed mitochondrial fission is 
required for neuronal development. During the development of 
nervous system, the length of mitochondria changes dynamically. 
Recently, we found that mitochondria in developing chick 
motoneurons progressively shortened in vivo, accompanied 
by a marked induction of Drp1 expression [45]. The blockade 
of Drp1 activity markedly increased the mitochondrial length, 
suggesting that increased Drp1 expression contributed to the 
developmental adjustment of mitochondrial length. On the other 
hand, it is known that mitochondria progressively elongate in 
cultured mouse cortical neurons [50-52]. Exact cause for this 
difference is yet unclear, but we found that Drp1 expression level 
is also progressively increased during the maturation of neurons 
in vitro, suggesting that transcriptional program for the Drp1 
expression is conserved in vitro. Maturation of cultured neurons 
in vitro is temporally associated with marked growth of the 
neuronal processes, thereby demanding massive biogenesis of 
mitochondria. Mitochondrial length is influenced by multiple 
factors including fusion/fission ratio, biogenesis and mitophagic 
degradation. Therefore, it appears that increased Drp1 and fission 
rate may not be sufficient to explain the mismatch between 
development-related shortening and biogenesis-related elongation 
of mitochondria in neurons. 

MITOCHONDRIAL DYNAMICS AND NEURONAL CELL DEATH 
AND PATHOLOGIES

The molecular links between Drp1 and cell death are first 
suggested by the fact that Drp1-containing fission foci also 
contains apoptosis-promoting Bcl-2 family molecules such as 
Bak, Bax and truncated Bid [21, 53-55]. In fact, mitochondrial 
fission is necessary for the execution of apoptosis. For example, 
suppression of Drp1 activity reduces mitochondrial fission and 
inhibits mitochondrial translocation of Bax which is essential for 
the execution of apoptosis [53, 56]. Conversely, the priming of 
mitochondrial fragmentation by Drp1 overexpression augments 
the extent of apoptosis [55], but Drp1 overexpression itself does 

Fig. 2. High level of Drp1 expression in the nervous system. (A) In situ 
hybridization of Drp1 mRNA in rat embryo (a) and adult brain (b, c). 
(B) Immunohistochemistry of Drp1 protein in rat cerebral cortex. NeuN 
and GFAP are used as markers for post-mitotic neurons and astrocytes, 
respectively.



153www.enjournal.orghttp://dx.doi.org/10.5607/en.2013.22.3.149

Drp1 in the Nervous System

not induce cell death in many cell types. Recently, we provided 
in vivo evidence that mitochondrial fission is associated with 
the neuronal death. During the chick motoneuron development, 
mitochondrial length is dramatically reduced by the time of 
initiation of naturally occurring programmed cell death (PCD) 
[45], suggesting that mitochondrial shortening can reduce the 
threshold of neuronal apoptosis as a PCD onset mechanism. 
Supporting this, overexpression of Drp1 triggered premature 
onset of PCD in motoneurons (our unpublished data). However, 
suppression of Drp1 activity induced neuronal death in the chick 
[45] and mouse [49] development models. These results indicate 
that the mitochondrial dynamics and Drp1 activity is set for the 
maximal survival of neurons during the development, but the 
impaired balance of Drp1 activity results in neuronal cell death.

Changes in the mitochondrial dynamics are found in many 
neurodegenerative diseases, including Alzheimer’s disease 
(AD), Parkinson’s disease (PD), Huntington’s disease (HD) and 
amyotrophic lateral sclerosis (ALS). It has been postulated that 
the imbalance of mitochondrial fusion/fission is associated with 
disease-related mitochondrial dysfunctions [57]. In case of AD, 
mitochondrial fragmentation is progressively increased during 
the progression of disease in patients and transgenic mouse 
models [58, 59]. Upon induction of mitochondrial fragmentation, 
interactions between Drp1 and Aβ or phosphorylated Tau are 
also progressively increased [60, 61]. Although it is yet unclear 
how pathological changes enhance the interactions between 
Drp1 and AD-related proteins, it has been reported that post-
translational modifications of Drp1 such as S-nitrosylation and 
phosphorylations are observed in AD patients [10, 62]. Therefore, 
it is plausible that AD-dependent modifications of Drp1 can 
enhance the fission activity as well as protein interactions.

In the pathology of  PD, mitochondrial changes are well-
documented. Especially, genetic mutations in the autophagic 
processes, such as Parkin and PINK, are frequently associated 
with PD. For example, Parkin and PINK play roles in the 
tagging of impaired mitochondria for autophagic degradation. 
Considering that mitochondrial fission is necessary for the 
efficient autophagic removal of damaged mitochondria, it has 
been proposed that mitochondrial fission machineries are affected 
by PD pathogenesis. As described in above, Parkin ubiquitinates 
Drp1 and promotes proteasome-dependent degradation of Drp1. 
Therefore, pathogenic mutation of Parkin results in the abnormal 
accumulation of Drp1, which promotes excessive mitochondrial 
fragmentation [27]. These mechanisms may be associated with 
PD-dependent mitochondrial dysfunctions. Drp1 also interacts 
with another PD-related molecule, leucine-rich repeat kinase 
2 (LRRK2) [63]. This interaction enhances mitochondrial 

translocation of Drp1 and leads to excessive mitochondrial 
fragmentation. 

The expression of Drp1 is increased in the striatum and cortex 
of HD patients, which may influence mitochondrial dysfunction 
in HD [64, 65]. Mutant huntingtin (mtHtt) abnormally recruits 
Drp1 on OMM and subsequently promotes GTPase activity of 
Drp1, resulting in excessive mitochondrial fragmentation [66, 
67]. Recent report has revealed that hyper-activation of Drp1 is 
mediated by S-nitrosylation, as a result of nitric oxide produced by 
mtHtt [68], as also found in AD.

While mitochondrial fragmentation is not yet reported in 
ALS patients, an animal model of ALS, mutant SOD1 G93A 
(mSOD1) mouse, exhibited reduced mitochondrial length in 
motoneuron at the pre-symptomatic period [69, 70]. Furthermore, 
prevention of Drp1 activity significantly decreased cell death of 
spinal motoneuron in rats [71]. During the pathological process 
of ALS, the axonal transport of mitochondria is also impaired in 
affected motoneuron [72, 73]. These impairments are rescued by 
suppressing Drp1 [71], supporting the idea that mitochondrial 
fission machineries are tightly linked with axonal transport 
mechanism [3, 71, 74].

CONCLUSION

Dysregulation of Drp1-dependent mitochondrial fission is 
commonly observed in neurodegenerative diseases, despite 
the fact that no genetic mutation of Drp1 has been identified. 
Drp1 is therefore considered as a candidate target for a disease-
modifying drug to enhance neuronal survival and their func
tions. For instance, chemical inhibitor of Drp1 (mdivi-1) can 
effectively suppressed retinal neurodegeneration following 
acute ischemia [75]. Suppression of basal Drp1 activity, however, 
causes impairments in synaptic plasticity and axonal integrity. 
Therefore, it is necessary to study the disease-specific modification 
of Drp1 and its implications, as it may provide a better insight to 
understand and treat neurodegenerative diseases.
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