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Abstract

Retinal ganglion cell (RGC) death occurs after optic nerve injury due to acute trauma or chronic 

degenerative conditions such as optic neuropathies (e.g. glaucoma). Currently, there are no 

effective therapies to prevent permanent vision loss resulting from RGC death, underlining the 

need for research on the pathogenesis of RGC disorders. Modeling human RGC/optic nerve 

diseases in non-human primates is ideal because of their similarity to humans, but has practical 

limitations including high cost and ethical considerations. In addition, many retinal degenerative 

disorders are age-related making the study in primate models prohibitively slow. For these reasons, 

mice and rats are commonly used to model RGC injuries. However, as nocturnal mammals, 

these rodents have retinal structures that differ from primates - possessing less than one-tenth of 

the RGCs found in the primate retina. Here we report the diurnal thirteen-lined ground squirrel 

(TLGS) as an alternative model. Compared to other rodent models, the number and distribution of 
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RGCs in the TLGS retina are closer to primates. The TLGS retina possesses ~600,000 RGCs with 

the highest density along the equatorial retina matching the location of the highest cone density 

(visual streak). TLGS and primate retinas also share a similar interlocking pattern between RGC 

axons and astrocyte processes in the retina nerve fiber layer (RNFL). In addition, using TLGS we 

establish a new partial optic nerve injury model that precisely controls the extent of injury while 

sparing a portion of the retina as an ideal internal control for investigating the pathophysiology 

of axon degeneration and RGC death. Moreover, in vivo optical coherence tomography (OCT) 

imaging and ex vivo microscopic examinations of the retina in optic nerve injured TLGS confirm 

RGC loss precedes proximal axon degeneration, recapitulating human pathology. Thus, the TLGS 

retina is an excellent model, for translational research in neurodegeneration and therapeutic 

neuroprotection.

SUMMARY

This study characterizes the composition of the retinal ganglion cell (RGC) layer and the 

distribution of RGCs in the cone-dominant ground squirrel retina. The RGC density and the 

anatomical features of axon-astrocyte interaction in the ground squirrel resemble primates, 

rendering it an excellent alternative model for RGC neurodegeneration and neuroprotection.
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INTRODUCTION

The retina, a layered light-sensitive tissue located in the back of the eye, is essential for 

vision and is an extension of the central nervous system (CNS). Photoreceptors convert 

light into electrical signals that are eventually transmitted to retinal ganglion cells (RGCs), 

which in turn convey the information to the brain for both image forming and non-image 

forming functions (such as circadian photoentrainment and pupillary reflex [1]). In the 

retina, most of the RGCs are situated in the ganglion cell layer (GCL), also known as 

orthotopic RGC (oRGCs), while a small proportion are located in the inner nuclear layer 

(INL), termed displaced RGC (dRGCs) [2–5]. Axons from both oRGCs and dRGCs form 

the optic nerve (ON) connecting the eye to the higher visual centers in the brain [6]. 

RGC axonal damage originating from optic nerve trauma or degeneration may lead to 

irreversible vision loss as mammalian CNS neurons normally cannot regenerate [7]. The 

eyes provide ease of access for surgical manipulation to model various human diseases 

[8–13]. Therefore, the retina (specifically RGCs) are often used to investigate degeneration 

of ganglion cells and their nerve fiber layers, neuronal survival, and axonal regeneration in 

the CNS. Traumatic ON injury (e.g. optic nerve crush, ONC) is a well characterized axonal 

injury and neurodegenerative model that induces progressive RGC death [14–20]. Although 

RGC death is generally quantified ex-vivo, in vivo imaging directly through the optic 

media of the eye using spectral-domain optical coherence tomography (SD-OCT) confers an 

unique advantage to follow the progression of different retinal pathologies [21–25].
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Rodents, such as mice and rats, are the most commonly used experimental mammals 

because they share basic retinal structure with the human retina and genomic information 

and genetic tools are readily available. However, these rodents are mostly nocturnal 

mammals with a rod-dominant retina [26,27] and there are prominent structural differences 

compared to primate retina. Notably, the number of RGCs in these rodents are ten times 

lower than primate retina [28–30], reflecting a more primitive visual system focusing on rod 

vision. In contrast, the thirteen lined-ground squirrel (TLGS; Ictidomys tridecemlineatus) is 

a diurnal mammal with a cone-dominant retina [31–33]. Like most terrestrials mammals, 

TLGS possess two types of cones (M- and S-cones) [31,34–38]), whereas many primates 

(including humans) are trichromatic (L-, M- and S-cones [39–41]). Although the primate 

retina is in general rod-dominated (~95% rods [42]), its fovea region consists of cones and 

has a distribution pattern similar to the TLGS retina [31,33]. Such a high density cone 

mosaic is likely associated with complex visual information carried by RGCs to the brain, 

and as a result, TLGS also have larger and highly developed visual areas in the brain 

compared to mice and rats [43].

TLGSs use their superior visual ability to navigate during the day, avoid predators, and 

forage for food [43]. In addition, the TLGS is an obligatory hibernator, surviving a lengthy 

period of winter by drastically reducing body temperature and suppressing metabolic need 

[32,44,45]. Thus, the TLGS is becoming an increasingly attractive model to study retinal 

disease associated pathology and the metabolic adaptative pathways as potential therapeutic 

targets [32,33,46,47]. Previous studies have quantified RGCs or RGC axons in California 

ground squirrels [48,49]. However, a more direct and complete depiction of the RGCs and 

associated cells in the TLGS is warranted given that it is currently the main ground squirrel 

species used in labs. We hypothesized that due to similarities in the overall number and 

density of retinal ganglion cells in TLGS and primate retina, the TLGS may have RGC 

and retinal nerve fiber layer (RNFL) structures that more closely resembled primates than 

other rodents. Thus, the optic nerve injury model in TLGS is valuable because it better 

recapitulates injuries and degeneration in human optic neuropathies. A characterization of 

RGCs and other cells in the ganglion cell layer (GCL) of the TLGS retina under normal/

healthy and optic nerve injury conditions can therefore provide a foundation for further 

disease studies.

MATERIAL AND METHODS

Animal Handling, anesthesia, and analgesia

Adult thirteen-lined ground squirrels (Ictidomys tridecemlineatus, hence TLGS, ~200 g, 

n=25 squirrels) were obtained from a breeding colony at the University of Wisconsin 

Oshkosh. Three-month-old female pigmented mice (C57BL/6J, n=6 eyes) were obtained 

from the National Eye Institute (NEI) breeding colony. Postmortem eyes from nine-month-

old female albino rats (Sprague Dawley, n=6 eyes) were obtained from Dr. Tao Sun from 

the National Institute of Neurological Disorders and Stroke (NINDS). Postmortem eyes from 

eight to twelve-year-old Rhesus macaque (Macaca mulatta, n=4 eyes) were obtained from 

Dr. Lauren Brinster from the Diagnostic and Research Services Branch of the NIH, Dr. Mark 
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A. Eldridge from the National Institute of Mental Health and, Dr. Julie Mattison and Dr. 

Kielee Jennings from the Nonhuman Primate Core of the National Institute on Aging.

Mice were housed in a temperature and light controlled room with 12-hour light/dark cycles 

at 22°C having free access to food and water. TLGS were similarly housed under these 

conditions during spring and summer seasons, but were placed into a hibernaculum at 

5°C beginning in the fall and housed throughout the winter as recommended [50]. Each 

species was treated and maintained according to their unique protocols (mouse, ASP#606; 

TLGS, ASP#595) approved by the National Institutes of Health guidelines for Animal 

Care and Use Committee in research and by the Ethical and Animal Studies Committee of 

the National Eye Institute. All animal studies conformed to the Statement for the Use of 

Animals in Ophthalmic and Vision research of the Association for Research in Vision and 

Ophthalmology (ARVO). In conducting this research, we adhered to the laws of the United 

States and regulations of the US Department of Agriculture.

Animals undergoing OCT imaging or surgery were anesthetized by isoflurane inhalation 

(Fluriso, Vet One, United Kingdom) and a drop of 0.5% proparacaine hydrochloride (Apexa, 

Akorn Pharmaceuticals Inc, Lake Forest, IL, USA) was provided as topical eye surface 

anesthesia. Eyes were kept hydrated with artificial tears (Systane Ultra, Novartis, Alcon) to 

prevent corneal desiccation and to maintain moisture and clarity.

Brain injection

To trace retinofugal projections, we performed stereotactic injections of Fluorogold (3μl, 6% 

diluted in 10% DMSO-saline) into both optic tracts as previously described for rats [51] 

one week prior to collecting and processing the tissues (n=4 retinas). The coordinates of the 

optic tract in TLGS (+6mm rosto-caudal, ±5mm medio-lateral and −6.5mm dorso-ventral 

from Lambda) were obtained using the “stereotaxic atlas of the brain of the 13-Line ground 

squirrel” [52].

Optic nerve injury

Due to the fact that squirrel eyes are set deeply into the eye sockets than those of mice 

and rats [32,53], we adapted the standard optic nerve crush (ONC) techniques in rodents 

[18,19] to TLGS. Briefly, the animal was placed on a heating pad during the surgery. After 

opening the conjunctiva along the supraorbital rim, the superior rectus muscle was dissected 

from its cranial portion preserving the scleral insertion (Figure 1A). Tracking gently on 

this muscle allowed the eye to rotate exposing the optic nerve head (ONH). Holding the 

muscle, the meninges were longitudinally opened with micro-scissors to avoid damaging the 

blood vessels (Figure 1A). After the ON was exposed, it was crushed for 10 seconds with 

watchmaker’s forceps. For the total ONC (tONC), the right ON was intraorbitally crushed 

~2 mm from the center of the optic disc where in the TLGS all the axons converge together. 

For the partial ONC (pONC) only the nasal branch was crushed at a similar distance 

(Figure 1B–C). Retinal ischemia was ruled out by fundus examination. Immediately after 

surgery, long-acting Meloxicam (Zoopharm, DRV Pharmacy NIH, 4mg/kg) was provided by 

subcutaneous administration for analgesia and, the animal was transferred to an individual 
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cage during the recovering period. For the tONC group the left eyes were used as controls, 

while the temporal halves in the pONC were used as internal control.

Retinal thickness measurements in vivo

TLGS eyes were scanned using SD-OCT (Spectralis; Heidelberg Engineering, Heidelberg, 

Germany). In both eyes a drop of tropicamide (Tropicamide Ophthalmic Solution, Akorn 

Pharmaceuticals Inc, Lake Forest, IL, USA) was instilled to induce iris mydriasis. To 

allow for comparison, we first characterized the retina nerve fiber layer (RNFL), ganglion 

cell complex (GCC) and retinal thickness along the eye fundus in intact animals (n=4 

retinas). The centro-nasal retina was scanned using 3x2 consecutive areas along the 

ONH. Each of these areas consisted of 31 equally spaced horizontal B-scans of 25 

raster scan sequences [24,25]. Each scanned area was approximately 3000 μm in length. 

The RNFL, GCC, and the retinal thickness were delineated manually and measured 

automatically to generate thickness maps per the manufacturer’s instructions (Eye Explorer, 

v.1.10.0.0; Heidelberg Engineering). The resulting partial images were exported and edited 

in Photoshop (Photoshop 21.2.4; Adobe Systems, Inc.) to reconstruct the 3x2 thickness 

maps. Once the retinal thickness was characterized in intact uninjured animals, we selected 

an equidistant area from the ONH to allow comparison among retinas before and after ON 

injury (pONC or tONC). We averaged tree equidistant measurements in the 10th b-scan 

below the ONH for evaluation of retinal, RNFL, and GGC thickness (see scheme in Fig 6A).

Tissue preparation

TLGSs and mice were euthanized by CO2, while rat and monkey eyes were collected 

postmortem. TLGS and mice were perfused transcardially with 0.9% saline solution and 

immediately were perfused with 4% paraformaldehyde in 0.1 M phosphate buffer. Rat 

and monkey eyes were submerged in the same fixative solution for 1 hour. To preserve 

retinal orientation, before enucleating the eyes, a burn point was placed in the dorsal pole. 

Immediately after eye enucleation, the retinas were carefully isolated from the eyecup and 

flattened as whole-mounts by making four (mice and rats) or eight (TLGSs and monkey) 

radial cuts. Then the retinas were mounted onto a filter membrane (HABP; Millipore, 

Bedford, MA, USA) and fixed in 4% paraformaldehyde in 0.1 M phosphate buffer for 

1 hour to maintain them flat. For classifying the GCL, a set of TLGS eye cups (n=3), 

were embedded in paraffin, sectioned by microtome at 3 μm thickness and subjected to 

hematoxylin-eosin staining. Another set of eye cups (mice, n=3; rat, n=3; TLGS, n=5; 

monkey, n=2) and optic nerves were cryoprotected in a graded sucrose series (Sigma, 

#84097) and embedded in optimal cutting temperature (Sakura Finetek, Torrance, CA, 

USA) at −80°C for cryo-sectioning (Leica, CM3050S) at 16 μm thickness. All retinal cross 

sections were done following the dorso-ventral (DV) axis and comprised both the superior 

and the inferior retina. Sections containing longitudinal blood vessels were excluded from 

our retinal evaluations.

Immunofluorescence

RGCs were identified in cross sections and in whole-mount retinas by immunodetection 

using two RGC-specific proteins, Brn3a [18] (Brain-specific homeobox/POU domain 

protein 3A) and RBPMs [54,55] (RNA-binding protein with multiple splicing) diluted at 
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1:500. Subpopulations of amacrine cells were detected using different antibodies; ChAT 

(Anti-Choline Acetyltransferase), glycine, GAD65+67 [56] (Glutamic Acid Decarboxylase) 

or calretinin diluted at 1:250. Astrocytes (GFAP, Glial fibrillary acid protein) and 

Microglial cells [20] (MCs; Iba1, Ionized calcium-binding adapter molecule 1) were also 

immunodetected (1:1000) to characterize the GCL composition. The ON sections were 

additionally immunolabeled for CD68 to identify activated MCs (1:1000). Whole-mount 

retinas were also immunolabeled for neurofilament heavy phosphorylated (pNFH) [16,57] 

and cleaved caspase-3 (c-Casp3) [58] diluted at 1:500 to characterize the RGC and axonal 

degeneration after ON injury. Complete antibody information is described in Suppl. Table 

S1A. The antibody specificity on TLGS tissue was confirmed by the high homology 

among the protein sequences across different species (Homo sapiens, Macaca fascicularis, 
Ictidomys tridecemlineatus, Rattus norvegicus, Mus musculus; detailed in Suppl. Table 

S1B). Briefly, all retinas were permeabilized) in PBS 0.5% Triton X100 four times (10 

minutes each). Retinas were then incubated for 6 days with the primary antibody in blocking 

buffer (2% Normal Donkey Serum, 0.5% Triton X100 in PBS) at 4°C. Afterwards the 

retinas were washed and incubated for 2 days with the proper secondary antibodies diluted 

1:500. Finally, retinas were thoroughly washed in PBS and cover-slipped vitreal side up with 

antifading mounting medium with DAPI (4′,6-diamidino-2-phenylindole, ThermoFisher, 

D1306) to counterstain all nuclei.

Image acquisition

Retinal sections, optic nerve sections, and whole mounted retinas were analyzed under a 

confocal microscope (Zeiss Z1 - LSM 780, Zeiss microscopes) equipped with a computer-

driven motorized stage controlled by its own image analysis software (Zen Lite Back 

edition 2012, Zeiss). The retinal and optic nerve photomontages were reconstructed using 

the maximum projection of individual images (20x) by zig-zag tiling with an overlap of 

8% between frames. To characterize the GCL composition, images of retinal sections (20x) 

were acquired at three different retinal areas (periphery, medial and central or visual streak). 

However, to uncover the whole retina surface, magnifications from flat mounts retinas (63x) 

were acquired in five regions along the DV axis (dorsal periphery, above ONH, visual streak, 

medial retina and ventral periphery; 4 images/region) using the same settings.

Ganglion cell layer characterization in TLGSs

To characterize the RGC population in TLGSs we evaluated the expression of different 

antibodies against RGC, amacrine cells (ACs), astrocyte and microglial cells (MCs) in 

retinal cross sections. Neuronal markers were quantified manually in the GCL, while glial 

markers were also measured in the adjacent layers; the RNFL and the inner plexiform layer 

(IPL). The different populations were characterized per retinal area (periphery, medial and 

central retina) and by their specific location in the GCL.

Automatic quantification. Brn3a+ orthotopic-RGC and DAPI+nuclei

To develop an automatic algorithm to quantify Brn3a+oRGCs, 30 samples were taken 

from different retinal areas (6 samples/retina, n=5 retinas). Brn3a+nuclei (RGCs) were 

automatically quantified on whole-mount retinas using a macro developed using ImageJ 

(Suppl. file S1). Briefly, to minimize interference with background labeling, a rolling 
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ball radius of 50 pixels was subtracted. Then, all images were transformed into 8-bit 

grayscale to discard color information followed by the application of a predetermined 

lower threshold to extract positive edges from the dark background and create a binary 

mask-like image. Next, ‘watershed’ segmentation automatically separates particles that 

touch and ‘despeckle’ median filter removes the noise. Lastly, positive objects were counted 

within fixed parameters (shape and size) to exclude objects that were too small or too 

large to be considered nuclei. Finally, the routine automatically extracts the number of 

counted objects and their x,y position coordinates. All data were exported to a spreadsheet 

(Office Excel 365; Microsoft Corp.) for further analysis (n=11 retinas). This automated 

routine was validated by statistical comparison with manual quantifications carried out by 

an experienced investigator (Pearson correlation coefficient R2=97%; 69,378 cells were 

quantified manually while 63,021 were obtained automatically). To quantify the number of 

RGCs in the central retina, a 3 mm diameter area was obtained from the center of the retinal 

photomontage (~1.5mm below the ONH) in intact and after tONC, while it was extracted 

from the nasal portion after pONC. Minimal adjustments (threshold and object size) were 

performed to adapt this routine to quantify DAPI+nuclei in whole ON sections or at the 

injury site (longitudinal area of 1x0.2 mm centered in the injury site).

Manual quantification. Brn3a+ displaced-RGCs and Iba1+cells

After the whole retinas were photographed, the dRGCs were detected by changing the 

microscope focus from the GCL to the inner nuclear layer. dRGCs were manually dotted 

in the retinal photomontage (n=12 retinas) using a photoediting program (Photoshop 21.2.4; 

Adobe Systems, Inc) as previously reported [5]. The Iba1+cells were also manually dotted 

directly on the ON photomontage. The number of dots and the position coordinates 

representing each dRGC or Iba1+cell, were automatically obtained using the ImageJ 

software. Finally, all the data including the spatial coordinates and number of dots were 

exported to a spreadsheet (Microsoft Office Excel; Microsoft Corp., Redmond, WA, USA) 

for spatial analysis (see next section). Additionally, to examine the number of Iba1+cells in 

the injury site, we extracted the same area described above (1x0.2 mm) after completing the 

manual dotting.

Spatial topography

The numerical coordinates (x,y) from each Brn3a+RGCs were obtained from the whole 

retinal photomontage. These data were exported to a spreadsheet application (Microsoft 

Office Excel) to assess the spatial distribution by calculating the number of neighbors per 

RGCs using a fixed radius (70 μm for oRGCs and, 345 μm for dRGC) as previously 

described [5]. However, the density of DAPI+nuclei and Iba1+cells in the ONs were 

evaluated by 83.3x83.3 μm areas. Both type of values where plotted using a graphics editing 

program (SigmaPlot 13.0 for Windows; Systat Software, Inc., Richmond, CA, USA) to show 

the k-neighbor or isodensity maps as described previously for other rodent species [17–

20,25]. To further characterize the distribution of RGCs along the retinal surface, we divided 

the retina along the two main axes: dorsoventral and temporonasal (DV, TN respectively). 

The oRGC (n=11 retinas) were assessed in an 6mm width for the DV profile, and 6mm 

high for the TN profile to prevent misplaced reads due to the radial cuts for flattening the 
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retina, while dRGC (n=12 retinas) where assessed in the whole surface. The RGC profiles 

are represented in line graphs (mean ± standard deviation; SigmaPlot 13.0).

Nuclear area

The nuclear area of Brn3a+oRGCs was measured in 5 retinal regions (135x135 μm, 63x) at 

different eccentricities. Two samples were taken in the dorsal retina, peripheral and medial 

(above the optic disc), and the other three areas corresponded to the inferior retina (visual 

streak, medial, and peripheral). For the visual streak two images were acquired, one in 

the most superficial row (~1-10 μm deep) and the other subsequently deeper (~15-25 μm 

deep). To simplify the graph representation, we averaged both peripheral (from dorsal and 

ventral) and both medial measurements because no significant differences were observed 

after analyzing the results. We measured a total of 13,544 Brn3a+nuclei (n = 6 retinas) 

plotted as the percentage of cells per nuclear area at different eccentricities.

Statistical Analysis

Data representation and comparisons among all data sets were carried out with a statistical 

software package (GraphPad Prism v.8, GraphPad San Diego, CA, USA). D’Agostino 

test was used to analyze the normal distribution of all data sets. Cellular quantifications 

or thickness measurements were analyzed by multiple comparison one-way ANOVA and 

Tukey’s test for post-hoc analysis. The sample size for the different studies was detailed 

in the corresponding tables. Data are presented as mean ± standard deviation (SD) and 

differences were considered significant when p<0.05 (*), p<0.01 (**) or p<0.001 (***).

RESULTS

Characterization of the ganglion cell layer in TLGS

The TLGS eyeball is asymmetric along the DV axis, with a linear optic nerve dividing 

the smaller dorsal and larger ventral portion [59] (roughly 1:2). In the peripheral retina, 

hematoxylin/eosin staining showed that the GCL is composed of a monolayer of nuclei but 

increased to four rows in the central retina (Fig. 1D). Knowing that not all the nuclei in 

the GCL belong to the RGC, we used two reliable and widely used RGC markers, Brn3a 

[18] and RBPMs [54,55] to identify RGCs. In cryostat cross sections, signals from Brn3a 

and RBPMs antibodies were largely co-expressed in the GCL, and the RGC population 

represented ~49% of the DAPI+ nuclei in the GCL (Fig. 2A–A’, Suppl. Table S3A). 

Towards the central retina, the proportion of RGCs in the GCL increased to 57% (Fig. 

2A’, Suppl. Table S2A–B). Notably, the expression of both RGC markers was notably 

reduced in the outer row of the GCL in the middle and central retina (Fig. 2A–A’, horizontal 

histograms). To examine whether those non-RGCs in the outer row of the GCL belong to 

the dAC, we used a set of antibodies (ChAT, glycine, GAD65+67, and calretinin). Indeed, 

the ChAT+dACs were situated almost exclusively in the outer most GCL-row of the medial 

retina, or in the two outer most layers in the central retina (Fig. 2B–B’). Glycine and 

GAD65+67 positive cells showed a similar pattern, while calretinin detected a subpopulation 

of dACs and RGCs (Fig. 2C), as previously reported [60], expanding across the GCL. 

We further assessed the non-neuronal populations, astrocytes (GFAP) and microglial cells 

(MCs, Iba1) in the GCL. Astrocyte soma were mainly restricted to the RNFL along the 
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retinal surface with a few embedded into the most inner GCL-row (Fig. 2D–D’, Suppl. 

Table S2C). Similarly, the MCs were largely absent from the GCL in resting conditions, 

located mainly in the IPL and a few in the RNFL (Fig. 2D–D’, Suppl. Table S2C). This 

arrangement was not obvious in mouse and rat retinas, since their GCL is a constant 

monolayer across the entire retina (Fig. 2E–F). However, examining macaque cryo-sectioned 

retinas revealed a similar pattern to TLGS retinas, with even more numerous RGC-rows and 

fewer ChAT+dACs in the central retina (Fig. 2G).

Additional characterization of the visual streak in flat mount retinas corroborated this 

GCL distribution. Within three sublayers of GCL (inner, middle, and outer), the RGCs 

(RBPMs+Brn3a+ + RBPMs+Brn3a−) were highly concentrated in the inner and middle 

layers (87.3%, 52.9% and 11%, inner, middle, and outer respectively, Fig. 3A–A’, Suppl. 

Table S3), while the ChAT+dACs and Glycine+ and were mostly placed in the outer 

layer (41.2% and 26.2% ChAT and Glycine respectively, Fig. 3B–C, B’–C’, Suppl. Table 

S3), confirming the results from cross sections (Fig. 2). Among RBPMs+RGCs, Brn3a− 

subpopulation represent a small fraction (5.4 in retinal sections and 4.3% in flat-mount 

retinas respectively, Fig. 3D–E, Suppl. Table S4), and were slightly more concentrated in the 

dorsal retina (Fig. 3E, Suppl. Table S4) and towards the inner most GCL-row of the central 

retina (Fig. 2A’, Suppl. Table S4).

Number and topography of RGCs in TLGS

To examine the number and distribution of the RGC population across the whole retina in 

the TLGS we employed two different techniques that both identified a high-density region 

along the equatorial retina below the ONH. This area corresponds to the visual streak region 

[31]. In the first technique, retrograde tracing by injecting Fluorogold into the optic tracts, 

identified a majority of the RGCs with brain-projecting axons. High-magnification images 

along the DV axis showed the different RGC densities across the retina (Fig. 4A). In the 

second technique, Brn3a immunolabeling confirmed this RGC distribution and allowed for 

a more precise quantification of RGCs by the use of an automated algorithm (for details 

see material and methods). Within the GCL, the population of Brn3a+oRGCs averages 

~600,000 (594,815 ± 37,407, n=11, Fig. 4B, Table 1A), while displaced RGCs are scarce 

(319.9 ± 38, n=12, Fig. 4C, Table 1A), representing only the 0.054% of the total population. 

The k-neighbor maps of the distribution of oRGCs across the entire retina (Fig. 4B) show 

lower RGC density in the dorsal retina, whereas the ventral retina exhibited an increasing 

gradient from the periphery toward the central retina. The highest oRGC density was at 

the visual streak in the equatorial retina approximately 1mm below the ONH (Fig. 4B). 

Parallel analysis from the same retinas revealed that dRGCs also concentrated in the visual 

streak beneath the ONH and, with a much smaller peak above the ONH that diffusely spread 

towards the dorso-temporal region. Evaluating the distribution of RGCs in the DV and TN 

axis confirmed such distribution profiles (Fig. 4D). Both the densities of oRGCs and dRGCs 

are slightly more towards the temporal retina (Fig. 4D) with peak densities found in the 

visual streak, but the dRGCs show a much narrower distribution around the visual streak.

In addition, using Brn3a as a nuclear marker, we observed that the size of RGC nuclei 

varies according to their location, with bigger nuclei in the periphery. Further analysis of the 
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central retina by layers revealed that RGC nuclei were even smaller in deeper layers of the 

GCL (Fig. 4E).

Optic nerve crush and glial response

Aiming to use TLGS to study RGC degeneration, we have performed two injury paradigms, 

pONC and tONC. In intact optic nerves, astrocyte dendrites have parallel orientation to 

the ganglion cell axons, sending short processes transversally to organize the axons in 

bundles as described for mice [61]. MCs under typical resting conditions showed a ramified 

morphology without CD68 (MC activation marker) expression and were evenly distributed 

throughout the entire ON (Fig 5A, a). At 14 days after injury, we noticed dramatic changes 

in the glial cells. We observed an absence of astrocytes in the injury site and those at the 

outskirt showed a reactive, hypertrophic morphology, with some outcrossing appendages 

into the damaged area (Fig 5B–C, b–c). Meanwhile, MCs exhibited vigorous activation 

along the ON and a subpopulation of MCs selectively amassed at the injury site. In fact, 

these MCs had an ameboid or round shape and co-labeled with CD68 (Fig 5b–c).

After pONC, in the whole ON there was an increase in cellular density (DAPI+ nuclei) 

compared to intact optic nerves (111%, Fig 5D–E first row, Table 1B). After tONC, a further 

increase in cell density (126%) was found compared to pONC. We observed a similar trend 

when analyzing the MC density in the whole ON but with an even higher percentage of 

increase (180%, Fig 5D–E second row, Table 1B). Despite these observed differences in 

cell and MC density in the whole ON following pONC or tONC, when we focused solely 

on the injury site, we observed similar numbers of DAPI+ cells and MC densities for both 

ONC models (Fig. 5F, Table 1B). This result indicates that cellular responses to ONC are 

relatively restricted to the injury site regardless of the size of the crush.

SD-OCT measurements and RNFL anatomy

To examine the degeneration of RGCs and their axons after ONC, we characterized the 

thickness of different retinal layers along the nasal portion of the dorso-central retina using 

the ONH as reference (scheme shown in Fig 6A). This extensive examination of the eye 

fundus allows for comparison of the same retinal area post injury among animals at various 

time points. Thus, we manually delineated the retinal, GCC, and the RNFL thickness from 

the same intact retinas. In agreement with the density maps of RGCs, we observed that 

the visual streak is the thickest region of the retina (Fig 6B). However, the RNFL was 

thicker from the superior border of the visual streak toward the ONH, indicating that this 

area contains a higher number of axons (Fig 6D). Interestingly, the GCC was thicker in the 

area comprising the visual streak up to the ONH, likely due to a thicker RNFL (Fig 6C). 

Therefore, to perform reliable comparisons among animals and after ON injury, we selected 

an area 1mm ventral below the ONH (Fig 6A).

The first significant thinning following ONC was observed at 14 days measuring the GCC 

(83% and 82.3%, pONC and tONC respectively) and RNFL thickness (75.4% and 79.3%, 

pONC and tONC respectively, Fig. 6E–F, Table 1C), but the retinal thickness was not 

statistically different among groups (Fig. 6E–F, table 1C). As expected, we did not observe 
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significant differences between partial or total ONC since we always measured the nasal 

(injured-side, pONC) or injured retina (Fig. 6E–F).

To examine the detailed cellular structure of the RNFL in TLGS and to compare it with 

other animal model species, we performed ex vivo antibody labeling of pNFH+, which 

labeled RGC axons in the RNFL uniformly and showed axon bundles running parallel 

towards the ONH, similar to axon bundles in the mouse, rat, and primate retina (Fig 6G–

J). However, in mouse and rat retinas, astrocytes displayed typical star-shape morphology, 

wrapping the blood vessels and contacting axon bundles as they traverse through them (Fig 

6G–H). In contrast, the astrocyte processes in TLGS are bundled in parallel with and form 

close contacts along the RGC axons (Fig 6I). Essentially, RGC axons in TLGS appear to 

be shielded by astrocyte processes. Interestingly, such relationship between RGC axons and 

astrocytes processes is remarkably similar to that of the primate retina (Fig 6J), indicating 

that TLGS could potentially be a more faithful disease model of optic neuropathies in the 

context of neuron-glia interaction.

Retinal ganglion cell degeneration after traumatic optic nerve injury

To characterize the RGC degeneration after ONC in TLGS retinas we performed triple 

immunolabeling of; i) Brn3a to identify surviving RGCs, ii) cleaved-Caspase3 (c-Casp3) 

to detect apoptotic RGCs, and iii) pNFH to reveal the status of the degenerating RGC 

and axons. As reported previously, pNFH is normally expressed in axons (Fig 7A–a), 

however, it starts to accumulate abnormally in the soma as a symptom of degenerating 

and dysfunctional RGCs (Fig 7B–b, C, arrow), or in the form of rosary beads along the 

axons [16] (Fig 7C, arrowhead). Analyzing the c-Casp3 expression at 14 days, we observed 

apoptotic RGCs in the far-middle retina (Fig. 7B). Although, Brn3a expression is greatly 

reduced in most apoptotic RGCs [58,62], we identified a few RGCs in an intermediate state 

of degeneration as their soma contain: i) accumulation of neurofilament, ii) expression 

of c-Casp3, iii) a weak Brn3a signal, corroborating that they are indeed dying RGCs 

(details in Fig. 7b). Those moribund cell bodies eventually disappear, leaving an axonal 

stump that withdraws from the vanishing soma (a sequence shown in Fig. 7C’–C”). Further 

investigation in the transition zone after pONC show a clear view of both scenarios. As 

described previously, the c-Caps3 expression is restricted to the crushed site of the retina 

where most of the Brn3a+RGCs are missing and the loss of RGC axons are evident in the 

central retina at 14 days post injury. (Fig. 7D).

After both forms of ON injury, the RGC loss was significant at fourteen days (276,608 ± 

60,486, n=7 and 73,886 ± 29,927, n=6, pONC and tONC respectively, Fig 7E, Table 1A) 

compared with intact retinas (594,815 ± 37,407, Fig 4B). K-neighbor maps of surviving 

RGCs showed a diffuse loss of Brn3a+ oRGCs either affecting the nasal retina after pONC 

or the entire retina after tONC (Fig 7F). The RGC loss quantified for the whole retina was 

more pronounced after tONC than pONC, reflecting the extent of injury (12.4% and 46.5% 

respectively, Fig 7F, Table 1A). However, the degeneration in both cases followed a similar 

rate. The RGC survival in the central retina (3mm ∅ within the injury area) showed a similar 

RGC survival rate after pONC and tONC (9.5% and 8.1% respectively, Fig 7F, Table 1A). 

In addition, after both pONC and tONC, the RGC loss was higher in the central retina than 
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in the peripheral, as described in the rat retina [19,20]. Note that at 14 days after tONC, on 

average 12.4% of total RGCs survived, while the survival rate is only 8.1% in the central 

area (Fig 7G).

DISCUSION

Our main objective in the present manuscript was to characterize the anatomical features of 

the RGC population and their axons under healthy control and injured conditions in order 

to establish the TLGS as an animal model for studying RGC degenerative diseases. First, 

we characterized the GCL in control retinas and discovered that the RGCs are not randomly 

mixed with dACs but organized in the inner rows of the GCL. Second, we quantified the 

entire population of RGCs in whole-mount retinas, demonstrating a spatial distribution of 

high density RGCs in the visual streak area matching that of the cone photoreceptors [31]. 

Third, we characterized the RGC degeneration following ONC and found the course and 

degenerative patterns are similar to other species such as mice [17,58], rats [18–20,24], goat 

[63] and monkey [64], indicating a conserved pathological process that can be exploited to 

model human conditions. Lastly, we highlighted anatomical differences, between TLGS and 

other rodents, revealing TLGS retinas to be more similar to primate retina, indicating that 

the TLGS is a potentially more faithful model for human RGC diseases.

Retinal ganglion cells in the GCL of TLGS

Like other rodents, the GCL of the TLGS retina is composed of a mixture of RGCs, dACs, 

and a small fraction of non-neuronal cells [19,65]. One key feature of the TLGS retina is 

the high concentration of RGCs in the central retina, with as many as four layers of RGCs 

making up ~60% of the cells in GCL (compared to 40% in rat retina [19]). Although not 

as high as in the central primate retina [29,66–69] (up to 97% of GCL cells), such multi-

layered RGC distribution is closer in resemblance to the central primate retina, compared 

to other rodents which usually only have a single layer of RGC cells throughout the retina. 

This likely reflects the cone-dominant nature of the TLGS retina conveying more visual 

information than nocturnal rodents [48]. Indeed, the high density RGC area corresponds to 

the visual streak defined by the highest density of cones [31].

Furthermore, the RGCs are mainly restricted to the inner rows of the GCL, while different 

subpopulations of dACs (ChAT, glycine, GAD65+76, calretinin) situate in the outer most 

row. This particular layout may reflect the temporal sequence of neurogenesis during 

development — RGCs are among the earliest to differentiate and occupy the apical layers of 

the GCL [70,71], and dACs which originate later and thus have to settle in the outer layer 

of the GCL. Anatomically, it could also facilitate RGCs to send their axon into the RNFL, 

which is adjacent to the inner GCL layer. We also found that the size of RGC nuclei (Brn3a+ 

labeling) is larger in the inner layer than those found in the outer layer – in accordance with 

the gradual dwindling of available space for developmental late-comers. Such a stereotypical 

layout of RGCs in the GCL is conserved in the primate retina (Fig. 2G) but is obviously 

missing in the mouse and rat retina, owing to their monolayer of RGCs.

Among RBPMs+ RGCs, ~96% are Brn3a+ (Suppl. Table S4), in agreement with previous 

reports for other rodents [5,17,18,62]. The remaining RBPMs+/Brn3a− RGCs are slightly 
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more concentrated in the dorsal retina. Those cells likely include the intrinsically 

photosensitive RGCs (ipRGCs) since they do not express Brn3a as reported previously 

[1,62]. Although some poly-axonal amacrine cells may also be RBPMs+/Brn3a− [55], they 

rarely reach the inner layer of GCL. Thus, these putative ipRGCs are situated at a front-row 

location without much light scattering from retinal tissues which would be beneficial for 

global light detection.

Number and topography of RGCs in TLGS

We quantified Brn3a+ RGCs in the TLGS retina to be ~600,000 (Table 1A). This number 

is likely to be slightly underestimated for two reasons. First, we chose Brn3a over 

RBPMs antibody for quantification because nuclei labeling (Brn3a) is easier to segregate 

and quantify than soma labeling (RBPMs). However, there are ~4% of RGCs that are 

Brn3a negative. Second, although we obtained a high precision in our automatic RGC-

counting algorithm compared with manual counting (R2=97%), the RGC number is likely 

underestimated in the central retina (R2=79%), owing to the limitation of 2D image-based 

quantification that may miss some RGCs in the visual streak where there are multiple layers 

of RGCs. However, even with these considerations, the total number of RGCs remains 

lower than the previous quantification of California ground squirrel optic nerve that provided 

an estimation of ~1.2 million axons [49]. This discrepancy can perhaps be attributed to 

species difference and unknown numbers of centrifugal axons that were not excluded in 

the California ground squirrel study [49], nonetheless the number appears to be high, 

considering that primate/human retinas which have a much larger retina and higher RGC 

density in the central area have only about ~1.3 million RGCs [28–30]. Regardless, ground 

squirrels seem to have RGC numbers that are closer to primates and humans, and are 

much higher than other rodent models (~15 and ~7 times more than mouse and rat retinas 

respectively [5,17,18,58]).

Although lacking a fovea structure, the visual streak in TLGS retina has a peak RGC density 

(close to 10,000 RGCs/mm2) on par with the peri-fovea region of the primate retina [67], 

presumably representing an area with high visual acuity. This is similar to previous report 

on California ground squirrels [48] (24,000 nuclei/mm2, assuming 50% of which are RGCs). 

We verified this RGC distribution pattern by retrograde labeling of Fluorogold injection into 

the optic tract [51]. This method is superior than the commonly practiced SC injection in 

other rodents, as the SC in TLGS is much bigger [43,52], thus requiring multiple injections 

to cover most of the RGC projections. Interestingly, dRGCs also sharply concentrate in the 

same region slightly extending toward the temporal quadrant. In the mouse retina, dRGC 

neurogenesis is under the control of Glycogen Synthase Kinase 3 and may contribute to 

binocular vision as they project to the ipsilateral thalamus [72,73]. The functional role of 

dRGCs in TLGS remains to be explored.

Optic nerve crush and glial response

Although partial ON injury has been performed in other species [64,74], the TLGS retina 

is particularly suitable owing to its linear, ‘Y’-shape optic nerve head that permits injury 

to half of the axons with an ideal internal control from the uninjured half. Importantly, the 

level of RGC death, glia cell accumulation, and pattern of cellular responses appeared to 
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be comparable between pONC and tONC at 14 days post injury. There is not a significant 

spread of injury-induced pathology towards the uninjured half. The key feature of the lesion 

is the accumulation of activated MCs in the center of the lesion surrounded by hypertrophic 

astrocytes. This is different from the mouse spinal cord injury [75–77], in which newly 

proliferated scar-forming astrocytes grow into the injury site. It is generally believed that 

MCs are mainly participating in the inflammatory response and phagocytosis of axonal 

debris [78], whereas the glial scar formation depends on the astrocyte-microglia interactions 

[79]. Recent results [80,81] have challenged the old dogma of glial scar preventing axon 

injury recovery [82–84]. Thus, the implication of MC and astrocyte pattern observed here on 

RGC axon regeneration warrants further study. More time points post injury will be needed 

to capture the dynamics of glial responses.

In vivo SD-OCT measurements and ex vivo pathology

SD-OCT provides a valuable tool to detect structural changes in the retina and to follow 

injury progression. Although both the GCC and RNFL thickness declined significantly at 

14 days after ONC, the RNFL thinning appeared milder, compared to the extent of RGC 

loss observed ex vivo. While the glial cell proliferation and infiltration [85–87] could 

contribute to the maintenance of the RNFL thickness, ex vivo immunolabeling revealed 

axons remain in injured retinal regions despite significant RGC loss(Fig. 7D–E) – indicating 

RGC loss precedes the RNFL and GCC thinning, as previously described in rat [24]. In 

addition, detailed analysis captured the sequence of cellular events underlying degeneration. 

Initially the degenerating soma exhibits decreased Brn3a expression and increased caspase 3 

expression (Fig. 7A–B). This is followed by the accumulation of pNFH in the failing soma, 

and in later stages the dissolved soma leaves behind a ‘flare ending’ of the retracting axon 

(Fig. 7C–C”). This process is likely not uniform across the retina, with the central retina 

leading the peripheral areas [19] (Fig. 7G) as a result of: 1) being closer to the injury site 

[15]; 2) higher metabolic demand [88,89]. Interestingly, we found in the RNFL of the TLGS 

retina, astrocyte dendrites form dense bundles and “ensheathe” the RGC axons, whereas 

such interactions are much looser in mouse and rat RNFL (Fig. 6G–H). This may also 

contribute to the different rate of degeneration as the peripheral RGC axons have longer 

segments covered by such astrocyte processes. This feature of astrocyte-axon interaction is 

also observed in the primate retina; thus, it would be interesting to study the impact of such 

neuro-glial interaction, especially in the context of axonal injury.

TLGS is a good model for RGC and optic nerve pathologies with features similar to 
primates.

Overall, the TLGS confers several advantages as a model for studying RGC 

neurodegeneration and optic neuropathy. First, the TLGS is a diurnal rodent having a cone-

dominated retina with a highly dense cone area known as the visual streak. Accordingly, 

multiple layers of RGCs are enriched in this area, with a density closely matching the 

primate perifoveal region. Additionally, in the RNFL, the anatomical structure of astrocyte-

RGC axon interaction closely resembles primates. Given the increasing evidence implicating 

the role of astrocytes in RGC death [90], this structural interaction will likely have a 

substantial impact on the pathophysiological process of optic nerve injury and RGC loss. 

These primate-like features render it a good model for the human retina. Second, the 
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unique optic nerve structure of TLGS makes it possible for reliable partial injury, offering 

a potential model to study secondary degeneration in axons spared from the initial injury 

and to have an internal control for experiments such as sequencing and treatments. Third, 

the TLGS is an obligatory hibernator, therefore its metabolic flexibility may be exploited 

for strategies to deal with injury/disease-induced stress. Of course, being a non-model 

species and a hibernator, it has disadvantages compared to other rodents such as lower 

availability, higher cost, difficulty breeding, lack of genetic tools, seasonal food and 

handling requirements (individual housing, environmental enrichments, hibernaculum, etc) 

[50], however, it can be a complimentary model species bridging the gap between mice and 

primates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Ocular and retinal anatomy of thirteen-lined ground squirrel
(A) Anatomy of the proximal visual pathway of thirteen-lined ground squirrel (TLGS). The 

ocular globes, optic nerves, and optic chiasm are exposed. The dorsal skull and the superior 

rectus muscle were removed (in the left eye) to allow visualization of the optic nerve head 

(ONH) and the retinal arteries (untouched during the surgery procedure). (B) Dorsal image 

of the ocular globes and optic nerves after enucleation. The retinal ganglion cells axons 

extend out from the ocular globe through a linear ONH. Approximately 1.5 millimeters 

away they merge forming the distinctive ‘Y’-shape. (C) Internal view of the TLGS eye cup, 

after removing the cornea and lens, showing the posterior pole of the vitreous chamber 

and the ONH placed above the equatorial region and extending horizontally for several 

millimeters [53]. (C, right bottom) Eye fundus of TLGS acquired in vivo by the SD-OCT 

showing the ONH and the retinal vasculature. (D) Retinal cross sections stained with 

hematoxylin-eosin (H&E) in different retinal areas along the dorsoventral axis (DV, scheme 

in D). Note that the rows of nuclei in the ganglion cell layer (GCL) increases towards the 

central retina, while in the periphery the GCL constitutes a monolayer. INL, inner nuclear 

layer; ONL, outer nuclear layer.

Xiao et al. Page 21

Lab Invest. Author manuscript; available in PMC 2022 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Characterization of ganglion cell layer in thirteen-lined ground squirrel retinal sections
(A) Retinal cross sections of TLGS retinas along the dorsoventral axis (DV, from peripheral, 

medial and central retina) stained with antibodies against various retinal cell types. (A-

A’) Identification and quantification of RGCs in the ganglion cell layer (GCL) using 

Brn3a and RBPMs antibodies counterstained with DAPI. In the medial and central retina, 

the RGCs were located mainly in the inner most rows of the GCL. (B) Expression of 

ChAT+displaced amacrine cells (dACs) in the GCL. Note that in medial and central 

retina the ChAT+dACs were confined mostly to the outer GCL rows. Quantifications of 
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ChAT+dACs and RBPMs+RGCs along the DV axis are shown in B’. (C) Identification 

of other dACs populations by glycine, GAD65+67, or calretinin immunodetection in 

combination with the RGC detection (RBPMs) to corroborate their specific location into 

the GCL assembly. (D) Identification and quantification of astrocytes and microglial cells 

(MCs) in the GCL and the surrounding retinal layers (retinal nerve fiber layer, RNFL 

and inner plexiform layer, IPL). Note that details in D correspond to a single-plane 

images. Vertical histograms show the percentage of RGCs (co-expressing RBPMs+Brn3a+ 

or RBPMs+Brn3a−, A’), ChAT+dACs (B’) or astrocytes and MCs (D’) in overall (total), at 

different retinal areas (peripheral, medial and central), while horizontal histograms depict 

each cell-type contribution to the different GCL-rows in the medial and central retina (from 

inner to outer GCL-rows). (D’) Astrocytes and MCs estimations include the retinal nerve 

fiber layer (RNFL) and the inner plexiform layer (IPL) where they are predominantly found. 

(E-G) Retinal cross section from mouse (C57BL/6J), rat (Sprague-Dawley) and Rhesus 

macaque immunostained with RBPMs and ChAT antibodies to label the GCL pattern. The 

GCL extended as a monolayer along the whole retina surface in mouse and rat retinas 

(E-F), however, the macaque displayed a gradual increase in the number of rows towards the 

central retina (G) similar to the TLGS retina (B). This distinct pattern of RGC somas stacked 

over multiple layers is exaggerated in the macula of the primate retina. The RGCs occupy 

most of the rows in the GCL and the few ChAT+dACs are confined to the outer row (G). 

Note that in two cases the ChAT+dACs are overlapping RBPMs+RGCs (Arrows in G).
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Fig. 3. Characterization of the ganglion cell layer in thirteen-lined ground squirrel flattened 
retinas
Immunodetection of Brn3a and RBPMs (RGCs, A), ChAT or glycine (dACs, B, C, 

respectively) counterstained with DAPI at three different focus planes of the same area 

in flat-mounted TLGS retinas. (A’-C’) Horizontal histograms depict the percentages of 

RGC (Brn3a+ and RBPMs+), ChAT+dACs or Glycine+dACs per zone of the GCL in central 

retina. These results corroborate the observations described in the retinal section analysis 

(Fig 2). (D) Images of Brn3a and RBPMs co-expressing RGCs in retinal flat-mounts (same 

area as in A). The circles depict RBPMs+Brn3a−RGCs. (E) Vertical histogram showing the 

percentage of RBPMs+Brn3a−RGCs in retinal sections (total), flat retinas (total) or along the 

DV axis (by distinguishing 5 retinal areas: dorsal periphery, above optic nerve head, visual 

streak, medial retina, and ventral periphery, see retinal scheme in E). RBPMs+Brn3a−RGCs 

are slightly concentrated in the dorsal retina.
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Fig. 4. Retinal ganglion cells topography and visual field of thirteen-lined ground squirrel
(A) Flattened whole-mount retina of TLGS traced with Fluorogold (FG) from the optic 

tracts. The FG-labelling revealed high concentration of RGCs in the visual streak. 

Magnifications show the different RGC densities along the DV axis at 7 days after 

FG injection into the optic tracts. (B) Microphotographs of RGCs labeled with Brn3a 

along the DV axis and topographic maps of Brn3a+ orthotopic RGCs (oRGCs) in TLGS. 

Magnifications of representative different Brn3a+oRGC density to areas selected by frames 

in the adjacent map (i, ii, iii, iv). The k-neighbor maps were reconstructed from flat 
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whole-dissected retinas depicting the distribution of oRGCs in three dimensions (x, y, and 

color scale). (C) Lateral view of a 3D reconstruction from a z-stack containing oRGCs 

and displaced RGCs (dRGCs) in the central retina. Flat images of individualized Brn3a+ 

oRGCs or dRGCs acquired at different focus planes (GCL and INL, respectively) in the 3D 

block. Topography of Brn3a+dRGCs in the INL in the same retinas analyzed for the oRGC 

topography. (B-C) The total number of Brn3a+RGCs counted in each retina are shown at 

the bottom of each map. K-neighbor maps representing the number of neighbors around 

each cell within a given radius visualized using a color scale. For oRGCs the color scale 

(neighbors/oRGC) is defined from 0-19 (purple) to 160-179 neighbors/oRGC (dark red), 

each color represents an increase of twenty neighbors in a radius of 70 μm; while the color 

scale for dRGCs is defined from 0-1 (purple) to 16-17 neighbors/dRGC (dark red), each 

color represents an increase of two neighbors in a radius of 345 μm. (D) RGC profiles in 

the dorsoventral and temporonasal axis (DV and TN, respectively). Line plots depict the 

average of oRGCs and dRGCs (Y axes) at increasing distances from the ONH (X axes, in 

mm). Note that both oRGC and dRGC populations peak in the visual streak (from 1 to 2.5 

mm below the ONH), and the temporal retina contains slightly more RGCs than the nasal 

counterpart. (E) Different RGC-nuclear areas (μm2) along the retinal surface. Line plots 

showing the averaged or the cumulative distribution of the Brn3a+RGC-nuclei size at four 

different retinal locations. D, dorsal; T, temporal; V, ventral; N, nasal.
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Fig. 5. Optic nerves after traumatic injury in thirteen-lined ground squirrel
Magnified images from representative horizontally sectioned ON showing astrocytes 

(GFAP) counterstained with DAPI (A, first row), or microglial cells (MCs, Iba1) and MC 

activation (CD68) in intact (A, second row), at 14 days post pONC (B) or post tONC (C). 

Details of the injury site showing the crush-length after partial or total ONC (B-C, first 

row, right bottom). (A) The surveying MCs were distributed homogeneously along the optic 

nerve (a), while the activated microglia-like cells were highly concentrated and numerous 

in the injury site after optic nerve damage (B-C). Details show the similar appearance of 

the glial scar at 14d after pONC and tONC (b and c, respectively). (D) Isodensity maps 

depict the distribution of DAPI+nuclei or Iba1+MCs whole ON sections from intact, at 
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14d after pONC or tONC. Color scale defined from 0 DAPI+nuclei/mm2 (purple) to 7,950 

DAPI+nuclei/mm2 (red), or from 0 Iba1+MCs/mm2 (purple) to 2,750 Iba1+MCs/mm2 (red). 

The number of quantified cells in the corresponding ON are shown below each map. (E) 

Plots showing the mean density (±SD) of DAPI+nuclei and Iba1+MCs in whole ON or in the 

injury site (1x0.2 mm area) in intact or at 14d post ONC. d, days; R, rostral; C, caudal; T, 

temporal; N, nasal.
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Fig. 6. Retinal thickness evaluation in thirteen-lined ground squirrel
(A) Representative example of the TLGS eye fundus reconstructed by 3x2 individual fundus 

images acquired in vivo from central toward nasal retina along the ONH by SD-OCT. The 

3x2 scanned area corresponds to the red selected area in the TLGS eye schematic in the 

lower left panel of A. Note that the ONH of the TLGS runs horizontally along the central 

retina. Manual segmentation was performed to determine measurements of the whole retinal 

thickness (B), ganglion cell complex (GGC, C) and retinal nerve fiber layer (RNFL, D) 

thickness. (B-D) Representative images from OCT volume scan analysis for the retina (B), 

GCC (C) or RNFL (D) in intact TLGS retinas. (E) Representative sections from the B-scan 

were analyzed further using volumetric analysis of the central retina (1mm below the visual 

streak, see schematic in A) obtained from the same eye at intact and post-surgical conditions 

(7 and 14 days post-ONC). (F) Volumetric analysis of the retina, GCC, or RNFL thickness 

showed no difference between partial or total ONC in the centro-nasal retina. After ONC, 

retina, GCC, and RNFH indicated no significative changes at 7 days but revealed significant 

thinning of the GCC and RNFL at 14 days post-injury. (G-J) Comparison of the RNFL 
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and astrocyte interactions in different species including mice (G), rats (H), TLGSs (I) and 

monkeys (J). While astrocytes displayed typical star-shape morphology in mouse and rat 

retinas with punctual interactions with the RGC axons (G-H), they primarily ‘ensheathe’ the 

axons in TLGS and monkey retinas (I-J).
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Fig. 7. Retinal ganglion cells loss after optic nerve crush in thirteen-lined ground squirrel
Magnified images from flat-mounted retinas taken from the mid-ventral retina. The 

surviving RGCs (Brn3a), apoptotic RGC (cleaved-Caspase 3) and the nerve fiber layer 

(pNFH) are shown in representative images of the uncrushed retinal portion (A), crushed (B-

C) or the transition zone (D) in the same retina at 14d post pONC. Details in a show typical 

RGC axons (pNFH) and absence of apoptotic RGCs (cleaved-Caspase 3 expression) in 

uncrushed retinas. Details in b show loss of RGCs (Brn3a) and the appearance of apoptotic 

RGCs (c-Casp3+, arrowheads). Note a degenerating RGC in an intermediate state; somatic 

accumulation of neurofilament (pNFH), Casp3 expression and weak Brn3a signal (arrow). 
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Details in C show typical alterations in the intraretinal axons, beaded axons (arrowheads, C), 

somatic accumulation (arrows, C), and the formation of axonal ending in flare-like shape 

(C’-C”). (D) The crushed half of the transition zone indicates a correlation between RGC 

loss and c-Casp3 expression at 14d post pONC (area is shown in the upper right of D’). 

K-nearest neighbor maps reveal the extensive Brn3a+RGCs loss at 14d post pONC or tONC. 

The total number of Brn3a+RGCs counted in each retina are shown at the bottom of each 

map. The number of neighbors was calculated used a radius of 70 μm and the neighbor 

maps were plotted using the same color scale descried for intact retinas (Fig. 4). (F) Plot 

showing the mean number (±SD) of surviving Brn3a+RGCs in whole retinas or in the central 

retina (3mm diameter area) in intact or after ONC. (G) RGC profiles in the DV axis showing 

the average (±SD) surviving RGCs after tONC compared with intact retinas (Y axes) at 

increasing distances from the optic nerve head (X axes, in mm). d, days; D, dorsal; T, 

temporal; V, ventral; N, nasal.
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Table 1.

Cellular densities, total cell number, and thickness of the thirteen-lined ground squirrel retina and optic nerve 

in intact and after partial or total ONC. (A) Total number of Brn3a+oRGCs in the GCL and Brn3a+dRGCs 

in the INL. (B) Number of DAPI+nuclei and Iba1+cells in cryosectioned optic nerve in TLGS. (C) In vivo 
thickness of the retina, ganglion cell complex (GCC) and retina nerve fiber layer (RNFL) in the retina.

A. Neuronal population in whole mount retinas

Cell type Staining Area Intact (oRGC n=11, dRGC n=12) pONC 14d (n=7) tONC 14d (n=6)

RGCs
Brn3a+oRGC Whole retina 594,815±37,407 276,608±60,486 

(46.5%)
73,886±29,927 

(12.4%)

3 mm ∅ 44,513±3,469 4,218±2,643 (9.5%) 3,622±2,274 (8.1%)

Brn3a+dRGC Whole retina 319.9±38 (0.054%)

B. Cellular and microglial populations in whole-optic nerve sections and in the injury site.

Cell type Staining Area Intact (n=5) pONC 14d (n=7) tONC 14d (n=3)

All DAPI

Whole ON 2653.4±75.5 2,938.3±113.7 (111%) 3,348.5±55.7 
(126%)

Injury site 
(1x0.2mm)

2880.3±164 7,264±985.2 (252%) 6,826±1588.2 
(237%)

Microglia Iba1+MCs

Whole ON 250.6±19.2 450.8±62 (180%) 664±68.5 (267%)

Injury site 
(1x0.2mm)

276.2±15.4 2,804±361.2 (1015%) 2,843±111.1 
(1029%)

C. In vivo thickness measurements (μm)

Zone Measure Intact (n=10) pONC 7d 
(n=7)

tONC 7d (n=3) pONC 14d (n=7) tONC 14d (n=3)

Retina 240.2±15 236±19 
(98.3%)

243.7±12.2 
(101.4%)

223.3±20.4 (92.9%) 224.2±5.7 (93.3%)

Central GCC 131.4±5 124.7±8 (95%) 128.7±9.3 (98%) 109±10.6 (83%) 108.2±1.4 (82.3%)

RNFL 36.3±2 36.4±4 (100%) 37.4±4.3 (103%) 27.4±3.4 (75.4%) 28.8±2.5 (79.3%)
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