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ABSTRACT

Motivation: The understanding of the genetic determinants
of complex disease is undergoing a paradigm shift. Genetic
heterogeneity of rare mutations with deleterious effects is more
commonly being viewed as a major component of disease. Autism
is an excellent example where research is active in identifying
matches between the phenotypic and genomic heterogeneities.
A considerable portion of autism appears to be correlated with
copy number variation, which is not directly probed by single
nucleotide polymorphism (SNP) array or sequencing technologies.
Identifying the genetic heterogeneity of small deletions remains a
major unresolved computational problem partly due to the inability
of algorithms to detect them.
Results: In this article, we present an algorithmic framework, which
we term DELISHUS, that implements three exact algorithms for
inferring regions of hemizygosity containing genomic deletions of
all sizes and frequencies in SNP genotype data. We implement an
efficient backtracking algorithm—that processes a 1 billion entry
genome-wide association study SNP matrix in a few minutes—to
compute all inherited deletions in a dataset. We further extend our
model to give an efficient algorithm for detecting de novo deletions.
Finally, given a set of called deletions, we also give a polynomial time
algorithm for computing the critical regions of recurrent deletions.
DELISHUS achieves significantly lower false-positive rates and
higher power than previously published algorithms partly because
it considers all individuals in the sample simultaneously. DELISHUS
may be applied to SNP array or sequencing data to identify the
deletion spectrum for family-based association studies.
Availability: DELISHUS is available at
http://www.brown.edu/Research/Istrail_Lab/.
Contact: Eric_Morrow@brown.edu and Sorin_Istrail@brown.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

1.1 Genetic heterogeneity in autism
The understanding of the genetic determinants of complex disease is
undergoing a paradigm shift. Genetic heterogeneity of rare mutations
with severe effects is more commonly being viewed as a major
component of disease (McClellan and King, 2010). Phenotypic
heterogeneity—a large collection of individually rare or personal
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conditions—is associated with a higher genetic heterogeneity
than previously assumed. This heterogeneity spectrum can be
summarized as follows: (i) individually rare mutations collectively
explain a large portion of complex disease; (ii) a single gene may
contain many severe but rare mutations in unrelated individuals;
(iii) the same mutation may lead to different clinical conditions
in different individuals; and (iv) mutations in different genes in
the same pathways or related broader pathways may lead to same
disorder or disorder family (McClellan and King, 2010).

Autism spectrum disorders (ASDs) are an excellent example
of where research is active in identifying matches between the
phenotypic and genomic heterogeneities (Bruining et al., 2010). A
considerable portion of autism appears to be correlated with rare
point mutations, deletions, duplications and larger chromosomal
abnormalities including a disproportionately high rate of de novo
large (>100 kb) deletions and duplications (Morrow, 2010). Rare
severe mutations in multiple genes important in brain development,
such as NRXN1, CNTN4, CNTNAP2, NLGN4, DPP10 and
SHANK3 have been identified in patients with ASD (Ching et al.,
2010; Glessner et al., 2009; Guilmatre et al., 2009; McClellan and
King, 2010; Sebat et al., 2007; Walsh et al., 2008). Furthermore,
large recurrent structural mutations in genomic “hotspots”, such as
in chromosomal regions 1q21.1, 15q11–q13, 16p11.2 and 22q11.21,
have been shown to be associated with autism and other psychiatric
diseases (Mefford and Eichler, 2009; Morrow, 2010; Sanders et al.,
2011).

Due to the size and growth rate of the human population, nearly all
viable single nucleotide polymorphisms (SNPs) are likely present in
some individual; however, most point mutations are rare and occur in
low frequencies (a single individual or family). The large majority
of such mutations have no functional significance and persist by
chance in the absence of selective pressures. In contrast, mutations
with significant deleterious effects on fertility (e.g. in some cases
of severe autism) are less frequently transmitted to subsequent
generations. It follows that severe mutations are disproportionately
de novo and individually rare (McClellan and King, 2010).

1.2 Deletion polymorphism
A number of experimental and computational methods exist that can
efficiently infer large and rare deletions. Deletions of this type have
exhibited a significant role in many diseases, particularly in autism,
where recent studies of simplex families suggest 7–10% of autistic
children have a variety of large de novo deletions (Weiss et al.,
2008). Examples of deletions in autism include highly penetrant
chromosomal deletions in regions that affect many genes (e.g.
22q11.2) and large deletions that implicate few genes (e.g. DIA1
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or NRXN1) (Morrow, 2010; Morrow et al., 2008). The detection of
such variants has also been used successfully in finding association
studies of schizophrenia (Stefansson et al., 2008). While thousands
of deletions have been cataloged with various platforms (Fiegler
et al., 2006; Khaja et al., 2006; Mills et al., 2006; Stefansson
et al., 2008) and deposited into the Toronto Database of Genomic
Variants (Iafrate et al., 2004), the vast majority are large and rare
due to the lack of a reliable methodology for the detection of small
deletions.

In the context of genetic heterogeneity, compound heterozygosity
and other phase-dependent interactions between small deletion
variants have been shown to play a role in complex disease (Hague
et al., 2003). Furthermore, deletion variants may also be involved
in loss of heterozygosity and uniparental disomy events, both of
which may be genetic determinants in the development of disease
(Stefansson et al., 2008). Each of these examples may include
smaller deletion polymorphisms, which are commonly overlooked
by GWAS as they are not directly probed by SNP arrays and difficult
to infer from high-throughput sequence data. However, three main
categories of computational methods for inferring small deletions
have been developed each associated with their own strengths and
weaknesses.

Intensity-based methods may be employed on SNP arrays or
custom designed fine-tiling arrays (Wang et al., 2007; Zerr et al.,
2010). Since probe intensities are noisy, both SNP and fine-tiling
arrays require many probes to span the deletion for accurate
measurement. Intensities from SNP arrays can extend to genome-
wide data but have difficulties inferring small deletions due to
the wide spacing of tag SNPs. Fine-tiling arrays provide a higher
resolution for detecting small deletions but are not in widespread
use and are prohibitively expensive to implement for genome-wide
data.

Sequence-based algorithms first map sequence reads to a
reference chromosome and then use coverage estimates and mapping
statistics to identify deletions (Medvedev et al., 2009; Mills et al.,
2011). While regions of sparse read mappings may indicate the
presence of a deletion, these methods suffer from high false-
positive rates originating from regions that cannot be sequenced or
mapped with reads and inherent biases in the choice and assembly
quality of the reference genome. Additionally, as the sampling
from high-throughput sequencers is not always random across the
genome, the problem of inferring deletions is conflated with the
problem of detecting sampling bias, particularly for hemizygous
deletions.

The final category of algorithms is based on deletion inference
from genotype data with a familial structure. These SNP-based
methods use genotype data to probe for specific genomic inheritance
events that suggest inherited or de novo deletion polymorphisms.
The key insight lies within inheritance patterns where an individual
should be heterozygous for a SNP allele according to the laws of
Mendelian inheritance, but is not. The deletion inference method
employed here, as well as previously published methods (Conrad
et al., 2006; McCarroll et al., 2006), relies on the fact that the
SNP calling algorithm for SNP arrays and sequence data cannot
distinguish between an individual who is homozygous for some
allele a and an individual who has a deletion haplotype and the
allele a (Fig. 1). Hemizygous deletions can then be inferred by
finding such genotypic events throughout the data and analyzing
their relationships to each other.

Fig. 1. Alleles in the genomic interval of a hemizygous deletion are
interpreted as homozygous by modern technologies. For example, individual
1 is correctly called heterozygous at the blue SNP position in the absence
of a deletion but, if individual 1 is hemizygous, then each SNP will
be called homozygous throughout the span of the deletion. This is true
for SNP array (the intensities of only one probe is processed) and high-
throughput sequencing technologies (sequence reads are sampled from a
single chromosome).

Previously developed SNP-based methods were applied to
HapMap data (International HapMap Consortium, 2003) containing
a considerably fewer number of individuals than current GWAS
data (albeit with more SNPs). These methods do not consider
multiple individuals and thus have difficulties inferring recurrent
deletions that may be associated with disease in association study
data. However, SNP-based algorithms extend to genome-wide data
and are not restricted to operate on SNP arrays; on the contrary,
they have higher power to infer deletions from SNP calls on high-
throughput sequencing data. Another considerable benefit of these
approaches is that they are largely orthogonal to deletion inference
from intensity- and sequence-based methods and can hence be used
in conjunction with those methods to control type I and type II
error.

1.3 Prior work on genome-wide deletion maps
Several algorithms exist capable of producing genome-wide deletion
maps. McCarroll et al., 2006 developed a combinatorial clustering
approach to identify sets of aberrant genotype inheritance patterns
for dense genome-wide HapMap data. Conrad et al., 2006 first
classifies SNP genotypes into several categories of Mendelian
inheritance. They then iterate over all individuals separately and
search for several sites that provide strong evidence of a deletion
near each other. Both of these algorithms consider a single
individual during deletion inference, which is effective at finding
large deletions. However, these algorithms are underpowered when
considering data containing small recurrent deletions. Corona et al.,
2007 developed an algorithm aiming to support recurrent deletion
calling by estimating haplotype frequencies assuming the presence
or absence of a deletion in a window. This algorithm, however,
phases the data first and the Mendelian inconsistencies caused
by genomic deletions create difficulties for haplotype phasing
algorithms. In fact, haplotype phasing algorithms generally convert
all Mendelian inconsistencies to missing data prior to phasing
thereby removing the deletion signal from the data. We presented
an algorithm in Halldórsson et al., 2011 that called deletions based
on a maximum clique finding heuristic algorithm. Although the run-
time of this algorithm was acceptable for GWAS data, we found it
was missing deletion calls in genomic regions of complex deletion
signature. All of these methods employ heuristics and can miss small
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deletions that may be conserved among a few individuals in the
sample.

Aside from algorithms that exclusively use SNP data, a number
of different technologies have been used to determine deletions
and other copy number variations (CNVs) throughout the human
genome. Conrad et al., 2009 used tiling arrays to identify 8888
(7075 unique) CNVs. Park et al., 2010 employed a combination
of a tiling array and resequencing to determine CNVs in an Asian
population. Levy et al., 2007 identified a number of CNVs from
the sequencing of a single individual. The 1000 Genomes Project
has worked on identifying CNVs from the sequencing of a subset
of one thousand individuals (Siva, 2008). There have also been
SNP arrays developed to specifically target CNVs (Halldórsson and
Gudbjartsson, 2011). These methods represent orthogonal analyses
and can be used alongside SNP-based methods to infer deletions.

1.4 The DELISHUS approach
In this article, we present a SNP-based algorithmic framework for
genome-wide hemizygous deletion inference termed DELISHUS
(deletions in shared haplotypes using SNPs). We model the
input SNP data using graph theory and implement efficient and
exact algorithms to call genomic deletions based on biological
conservation of a pattern of Mendelian inconsistency. Since our
algorithms consider all individuals in the sample simultaneously,
they achieve significantly lower false-positive rates and higher
power when compared to previously published algorithms. By
slightly modifying the model, we also present an algorithm for
detecting de novo deletions. After deletions are called, we employ a
similar graph theoretic approach for computing the critical regions
of recurrent deletions in polynomial time. We also present a human
genome deletion map of the Autism Genetic Resource Exchange
(AGRE) GWAS data (Supplementary Fig. S1). Our algorithmic
strategy is based on a combination of (i) using deletion conservation
across many individuals to benefit from recurrent deletions in the
population, (ii) modeling the input with graph theory and bounding
the number deletion calls by a polynomial, and (iii) implementing an
exact backtracking algorithm which completes its computation on
a GWAS sized dataset in a few minutes due to a sparsity condition
in the data. These three stringent requirements provide a rigorous
basis for extracting genomic deletions of all sizes from the abundant
SNP data available from high-throughput sequencing and array
technologies.

2 METHODS
We organize the methods section around three computational biology
problems for inferring deletions in genomes that present a signature of small
recurrent deletions inspired by the genetics of autism.

• Problem 1: identification of inherited deletions,

• Problem 2: identification of de novo deletions and

• Problem 3: identification of the critical regions of recurrent deletions

The DELISHUS algorithmic framework provides efficient and exact
solutions to each problem.

2.1 Input and definitions
The input to our algorithm is an m×n genotype matrix M . The rows of
M correspond to sets of related individuals and we assume that for every
individual i there exists at least one other individual j such that i and j

Fig. 2. Each trio inheritance pattern can be classified into three categories
under the interpretation of inherited deletions. The evidence of deletion
pattern provides evidence for the presence of an inherited deletion. The
no deletion pattern provides evidence for the absence of a deletion. The
consistent with a deletion pattern does not provide strong evidence for
the presence or absence of a deletion.

share a haplotype. In practice, M frequently consists of parent–child pairs
or parents–child trios from a family-based association study design. The
columns of M correspond to SNP calls for the m individuals. The genotype
data are commonly obtained with SNP arrays but are increasingly acquired
from whole-exome or whole-genome sequence data that provide SNP calls
at a high resolution; consequently, this allows the detection of smaller or less
frequent deletions.

Mendelian inheritance patterns in M can be divided into three major
categories (Fig. 2). If an inheritance pattern can be explained only by the
introduction of a deletion haplotype or a SNP call error, then we call it
evidence of deletion. If the pattern can be explained by introducing a deletion
haplotype or SNP call error but follows the laws of normal Mendelian
inheritance, then we call it consistent with a deletion. Finally, if the pattern
cannot be explained by introducing an inherited deletion haplotype then we
call it no deletion.

2.2 Problem 1: identification of inherited deletions
We assume, for ease of exposition, M consists of trio data. DELISHUS first
converts M to a new matrix M ′ with m/3 rows and n columns. Each row
of M ′ corresponds to a trio and each column corresponds to a trio-SNP
inheritance pattern. Let the value of the (i,j) cell be denoted M ′

i,j . Then
M ′

i,j ∈{0,1,X } where

• M ′
i,j =1 if the ith trio exhibits an evidence of deletion inheritance

pattern at SNP j,

• M ′
i,j =0 if the ith trio exhibits a consistent with a deletion inheritance

pattern at SNP j and

• M ′
i,j =X if the ith trio exhibits a no deletion inheritance pattern at

SNP j.

DELISHUS then constructs a graph G(V ,E) based on M ′. A node is
introduced for each evidence of deletion site and an edge between two nodes
signifies that both nodes can be explained by the same deletion; formally,
let vi,j denote the vertex associated with row i and column j, then vi,j ∈V if
M ′

i,j =1 and (vi,j,vk,l )∈E if the ranges [M ′
i,j,M

′
i,l ] and [M ′

k,l ,M
′
k,j] contain

no X . In this graph, two nodes that are connected can be explained by the
same deletion polymorphism and are termed compatible. Therefore, dense
subgraphs of G correspond to genomic regions that are likely to contain
inherited deletions. However, this picture is complicated by the fact that
deletions may occur in a region of the genome independently and at slightly
different intervals. Each vertex in G may be a member of many different
dense subgraphs and thus we formulate the problem of identifying deletions
as follows:

Formulation 1. For each connected component d ∈G and for each set of
vertices that form a maximal clique C in d , report C as deleted if |C|≥k
where k is some threshold of evidence. Report a subset of vertices in C as
genotyping errors if they are not members of at least one deletion.

In the absence of genotyping or sequencing errors, each evidence of
deletion site would indicate a hemizygous deletion. In real data, random
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Fig. 3. The outline of the matrix M ′ is given with the red vertices
corresponding to evidence of deletion sites in G. Four maximal cliques are
formed, namely, {1,2},{1,3},{3,4,5} and {3,4,6,7}. Each maximal clique
induces an interval that is the shortest such interval associated to the
vertex set.

errors create false positives and the threshold k is tuned to lift predictions
above the noise level by enforcing a minimum number of evidence of deletion
sites to commit to a deletion. In particular, the value for k is guided by false-
positive rate and power analysis experiments specifically tuned for a specific
dataset. Formulation 1 computes all maximal cliques which, in G, correspond
to rectangular areas of M ′ whose evidence of deletion sites reinforce each
other. It takes exponential time to compute and output all maximal cliques in
a general graph; however, G has a special structure that allows us to achieve
polynomial time algorithms.

Lemma 1. G contains at most
(n+1

2

)
maximal cliques.

Proof. Let C be a set of vertices forming a maximal clique in G. Let the
interval of C be IC as defined by the span of SNPs from the leftmost evidence
of deletion site of C (denoted l) to the rightmost evidence of deletion site of
C (denoted r). We say C induces the interval of SNPs IC .

Since C is maximal, there cannot exist a vertex v /∈C such that v is
compatible with every vertex of C, thus IC cannot be extended. Furthermore,
a maximal clique distinct from C but inducing IC cannot exist because each
of its vertices must be compatible in the interval [l,r], which is in violation
of the maximality of C. It follows that no maximal clique other than C can
induce IC ; thus, each maximal clique uniquely defines an interval. Since(n+1

2

)
distinct intervals exist for any given M ′, the statement follows. �

Figure 3 gives an illustration of Lemma 1 on an example M ′ and G.
Due to of Lemma 1, G has a polynomial number of maximal cliques.

As the n of a larger chromosome can be several hundreds of thousands,
this may still be prohibitively large. A more precise bound can be computed
by observing that we only consider columns with at least one 1. Let n1 be
the number of columns containing at least one 1, therefore the number of
maximal cliques is at most

(n1+1
2

)
. But, if non-overlapping sections of the

matrix exist, we consider connected components separately; let di be the ith
connected component of the set of all components D and ndi be the number
of columns with at least one 1 in the SNPs of di .

number of maximal cliques≤
|D|∑
i=1

(
ndi +1

2

)

We call the matrix M ′ sparse if the number of connected components is
large. A sparse M ′ allows for trivial parallelization of deletion inference
on distinct connected components and efficient computations due to the
component sizes being small. Table 1 shows that the probability of evidence
of deletion sites is low whereas the probability of a no deletion site is
high for the HapMap and AGRE data. This suggests that M ′ contains few
deletion intervals compared to non-deleted intervals and thus M ′ is sparse
and D is large. This follows the intuition that the emergence of deletion
polymorphisms are typically infrequent events.

Table 1. The probabilities of an evidence of deletion
site and a no deletion site for HapMap and autism
GWAS data suggest M ′ is sparse

Data Evidence of deletion No deletion

HapMap P1 5.89×10−4 0.30
HapMap P2+3 2.78×10−4 0.18
AGRE autism 1.21×10−4 0.41

Fig. 4. M ′ is shown on the left with a superimposition of evidence of
deletion vertices and edge connections. On the right, two maximal cliques
are shown that share a subset of evidence of deletion sites. If the threshold
k ≤5, DELISHUS would report both cliques as potential deletions.

Tsukiyama et al., 1977 presented an output sensitive algorithm that
computes all maximal cliques of a component d with edges e in time O(de)
per clique generated.

Corollary 1. Computing all genomic deletions of M ′ using Formulation
1 can be done in polynomial time.

In practice, however, the Bron–Kerbosch algorithm for maximal clique
computation has proven to be more efficient. The Bron–Kerbosch algorithm
is a recursive backtracking algorithm that computes all maximal cliques in an
undirected graph but is not guaranteed to run in polynomial time. Although
the Bron–Kerbosch algorithm is not an output-sensitive algorithm, it is still
widely considered the fastest maximal clique finding algorithm (Cazals and
Karande, 2008; Harley, 2004). Also, through empirical observations, the
components of G are chordal with high probability. When a component of
G is chordal, we can compute all maximal cliques even faster by simply
generating a perfect elimination ordering.

With complex genetic heterogeneity (e.g. compound heterozygosity of
small deletions), it is likely most informative to compute all possible
configurations of deletions. Each maximal clique can be tested for association
to disease if the data has a special structure. For example, the AGRE
autism dataset includes families with a mixture of children diagnosed
with autism and children without the disorder treated as healthy controls.
DELISHUS computes the deletion transmission rates of parents to children
with autism and parents to children whom are healthy; these deletion calls
and transmission rates can be used to prioritize variants based on a number
of statistical tests. This extra phenotypic information helps resolve situations
where multiple deletion configurations are possible in the data (Fig. 4) and
guides the deletion calls towards disease relevancy.

Formulation 1 also enables the resolution of complex genomic deletion
‘hot-spot’ regions. These regions (e.g. 22q11.21) pose the difficult problem of
sorting through many possible configurations of deletions. DELISHUS can
identify and process every deletion separately to resolve these complexity
regions. Using this formulation, we called inherited deletions from the
AGRE autism GWAS data and produced a high-level deletion map of autism
(Supplementary Fig. S1). Table 2 demonstrates that DELISHUS is capable
of efficiently resolving these regions for genome-wide data.
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Table 2. We ran DELISHUS using Formulation 1 on HapMap P1, P2+3
and the AGRE autism data

Data Runtime (s) Memory (GB)

HapMap P1 CEU 71.5 <1
HapMap P2+3 CEU 91 <1
AGRE autism 139.8 1.6

The HapMap P1 CEU data consists of 90 genotypes with about 1 million SNPs.
The HapMap P2+3 CEU data consists of 174 genotypes with about 4 million SNPs.
The AGRE data includes 4327 genotypes with about 500 thousand SNPs. We show
DELISHUS scales to current GWAS sized data by presenting the runtime and memory
requirements for the AGRE autism data. We ran DELISHUS on each chromosome in
parallel on a cluster of 23 nodes. The numbers reported are the maximum requirements
for a single machine in the computing cluster.

However, if evidence of deletion sites must be committed to exactly
zero or one deletion, we can iteratively remove the largest clique of all
maximal cliques in the component. More precisely, if the cardinality of a
maximal clique is ≥k, we call the associated intervals deleted and remove the
corresponding vertices from the graph. Statistical models that score deletions
based on other quantities, such as deletion length or allele frequencies, may
be used to provide a different ordering for the maximal clique processing.
For example, if deletion length were the most important statistic, the green
clique in Figure 4 would be preferable to the blue clique. This procedure
is iterated until each evidence of deletion site has been called as part of a
deletion or a SNP calling error.

2.3 Assessing the false-positive rate
Our algorithm uses enrichment of compatible evidence of deletion sites from
many individuals to infer deletions. While inherited deletions are certainly
a cause for evidence of deletion sites, these sites may also arise from
genotyping or sequencing errors. To assess the false-positive rate occurring
from random error, we computed the distribution of evidence, consistent
and no deletion sites across three datasets: HapMap Phase 1 CEU, HapMap
Phase 2+3 CEU and the AGRE autism data. We simulated a chromosome
of length 25 000 SNPs with 30, 58 and 2500 parent–child trios for the
HapMap Phase 1, HapMap Phase 2+3 and AGRE autism data, respectively.
The inheritance patterns are drawn independently at random according to
the distribution defined by each dataset. We ran this simulation at different
thresholds for 1000 iterations. These computations are conservative because
the evidence of deletion probabilities were computed from the entirety of
the data including sites that may arise from both SNP calling errors and true
genomic deletions.

The false-positive rate depends on the density of the SNP array, the sample
size of trios and the probabilities of Mendelian inheritance patterns. In the
HapMap data, DELISHUS produces very few false positives at a threshold
of 3. In the larger AGRE autism data, DELISHUS requires a threshold of 5 to
produce similar false-positive rates. In contrast, when DELISHUS is tuned
to reproduce the results of Conrad et al., 2006 by considering each individual
independently (identified as the single individual algorithm), a thresholds of
2 and 3 yields similar false-positive rates for both the HapMap and autism
data. Table 3 summarizes these computations.

It is difficult to simulate false positives that may arise from technical
artifacts, SNPs that are poorly genotyped, or SNPs that are undersampled
from sequence reads. If such a SNP passes quality control (QC), we may
detect the error by observing the distribution of Mendelian errors. Mendelian
errors can be placed into two categories: those that show evidence of a
deletion and those that do not. We assume there is no bias toward producing
genotyping errors in either category. Even though evidence of deletion
Mendelian errors are more probable, we would still expect to find non-
evidence of deletion Mendelian errors for poorly genotyped SNPs. For
these reasons, we may filter out SNP sites with many non-evidence of

Table 3. We simulated 25000 independent and identically distributed trio
inheritance patterns according to the distribution observed in the data

T D P1 D P2+3 D AGRE SI P1 SI AGRE

2 8.528 10.356 1214.063 0.701 1.854
3 0.076 0.135 141.13 0.001 0.001
4 0 0.001 11.274 0 0
5 0 0 0.632 0 0
6 0 0 0.028 0 0
7 0 0 0 0 0

The HapMap P1 CEU, P2+3 CEU and AGRE autism data were simulated with 30, 58
and 2500 trios, respectively. We inferred deletions using different thresholds (T) for
DELISHUS (D) and the single individual (SI) algorithms. The statistic calculated for
the false-positive rate is the average amount of deletions detected in 1000 iterations for
the HapMap Phase 1 (P1), Phase 2+3 (P2) and AGRE autism GWAS data.

deletion Mendelian errors to reduce false-positive rates from systematic
errors. Conservative approaches may further filter deletions that feature only
one SNP containing evidence of deletion sites regardless of the Mendelian
error distribution.

2.4 Estimating statistical power
The power to correctly infer deletions is a function of three variables: (i) the
number of probes, distance between probes or size of the deletion; (ii) the
frequency of the deletion in the population; and (iii) the allele frequencies.
To estimate the power for predicting deletions, we use the HapMap Phase 1
CEU, Phase2+3 CEU and AGRE autism data; this selection fixes the allele
frequencies. When computing the size of the deletion in base pairs, we select
a genomic position at random and extend this interval for the defined size
of the deletion. Therefore, it is possible for smaller deletions to be missed
by the data completely if no SNPs exist within the deleted interval. We can
also compute the size of a deletion in SNPs for which we randomly select
a SNP and extend the deletion interval appropriately. In this case, there is
always at least 1 SNP in the interval of the deletion. We varied the sizes of the
deletions between 1 bp and 1 Mb or 1 and 20 SNPs and randomly selected
three individuals in the HapMap data and five individuals in theAGRE autism
data to harbor the deletions. To simulate the deletion, the genotypes of the
child and a randomly selected parent were altered to indicate an inherited
deletion. That is, the alleles of the child and selected parent were changed
to homozygous for the non-transmitted allele in the span of the deletion.
A deletion is said to be detected if the algorithm correctly reports a deletion
for that specific trio. For example, if DELISHUS detects three individuals
having a deletion within the simulated deleted region in the AGRE autism
data, it will have detected 3/5 of the deletion.

We tested the power of the DELISHUS algorithm to detect inherited
deletions within simulated intervals of various sizes in the HapMap P2+3
CEU data (Fig. 5A). In general, algorithms that infer deletions from SNP
data have reduced power if only one parent is genotyped. This is also true
of X chromosome deletions compared to the autosomes; the SNP calls for
deleted haplotypes are less predictable and usually result in missing data.
However, it is still feasible to call X chromosome deletions passed from
mother to daughter. Due to the density of the data, our algorithm can robustly
detect small deletions in the autosomes and performs fairly well on the X
chromosome of females.

We then compare the power of the DELISHUS algorithm and the single
individual algorithm for the HapMap P1 CEU data (Fig. 5B). This data is
roughly one-quarter as dense but useful for comparison of smaller sample
sizes; it is also the same data used by Conrad et al., 2006. There is a
clear trade-off between false-positive rates and algorithmic power to detect
deletions. However, when tuning the algorithms to achieve similar false-
positive rates, the DELISHUS algorithm clearly outperforms the single

i158



Copyedited by: ES MANUSCRIPT CATEGORY:

[16:38 1/6/2012 Bioinformatics-bts234.tex] Page: i159 i154–i162

DELISHUS: Genome-wide deletion inference

A

B

Fig. 5. (A) The power to infer deletions in the HapMap Phase 2+3 CEU data
as a function of the number of base pairs in the deletion. (B) We compare the
power of the DELISHUS and single individual algorithms on HapMap Phase
1 CEU data. We average the power over all autosomes as they produced a
similar curve. There is less power to predict deletions on chromosome X due
to the male having only a single X chromosome. This power calculation was
repeated 100 times for each autosome and then averaged. In both figures, the
threshold of the DELISHUS algorithm was set to 3 and calibrated using the
false-positive rate calculations of the previous section. Also a total of three
individuals were selected at random to harbor the genomic deletion.

individual algorithm due, in part, to leveraging the genomic information
of the entire sample during inference.

Current association studies feature about as many SNPs as the HapMap
data but many more individuals. Considering this, we applied the DELISHUS
and single individual algorithms to the AGRE autism data (Fig. 6A). Five
trios were selected at random (from the set of about 2500 trios) and a
random interval was deleted. Using conservative thresholds, the DELISHUS
algorithm is much more sensitive than the single individual algorithm.
DELISHUS excels at inferring recurrent small deletions but the power of
the two algorithms eventually converges as the deleted genomic interval
increases. This proposition is highlighted in Fig. 6B where we inspect small
deletions at a high resolution. The trend for the X chromosome is similar to
the autosomes and is omitted.

Power to infer deletions is also a function of deletion frequency. After
increasing the frequency of the deletion in the sample from 0.2% to 1%, the
power of the DELISHUS algorithm increases significantly and notably for
smaller deletions (Fig. 7).

2.5 Problem 2: identification of de novo deletions
Recent studies have highlighted the importance of protein altering de novo
mutations for neural developmental disorders like autism (O’Roak et al.,
2011). Inferring de novo deletions in genotype data is more difficult due to
the parent having a lower frequency of homozygous SNPs over the interval
of the child’s deletion. For instance, the no deletion pattern in Fig. 2 could
be hiding an undetectable de novo deletion. Figure 8 shows the inheritance
patterns for inherited and de novo deletions for a pair of individuals sharing a
haplotype. The most obvious relationship between the two types of deletions

A

B

Fig. 6. The power of the DELISHUS and single individual algorithms to
infer inherited deletions in the AGRE autism autosomal data using (A) a view
of large deletions defined by basepairs and (B) a higher resolution view for
small deletions defined by SNPs. In both cases, a total of five individuals
were chosen at random to harbor the deletion.

Fig. 7. The power of the DELISHUS and single individual algorithms to
infer highly recurrent small inherited deletions with a frequency of 1% (or
25 people) in the AGRE autism data.

is that there is a much higher probability of consistent with a deletion
patterns when inferring de novo deletions. This causes G to become more
connected and, in regions of deletion complexity, may cause DELISHUS
to run in superpolynomial time. However, Lemma 1 still applies, thus this
problem remains theoretically polynomial and empirical evidence suggests
our algorithms are still efficient.

Table 4 shows false positive rates for the DELISHUS de novo deletion
inference algorithm on theAGRE autism data. We do not observe a significant
increase in the false positive rate because the probability of a no deletion site
is only reduced slightly. If the probability of a no deletion site is high enough
and the threshold is set to a large enough value, random genotyping errors
cannot form enough compatible evidence of deletion sites to be called a
deletion.
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Fig. 8. Categories of inheritance between a pair of individuals sharing a
haplotype for inherited and de novo (in individual B) deletions. To represent
all possible inheritance patterns, we encode an individual’s SNP as 0 or 1
for the homozygote, 2 for the heterozygote and 3 for missing data. Unlike
inherited deletions, if individual A is a heterozygote, individual B may still
harbor a de novo deletion.

Table 4. We simulated 25000 trio
inheritance patterns for 2500 trios
using parameters from the AGRE
autism data

T D AGRE

5 0.94
6 0.06
7 0.002

We inferred deletions using different
thresholds (T) for the DELISHUS (D) de
novo algorithm. The statistic calculated for
the false-positive rate is the average amount
of deletions detected in 500 iterations.

We have found many examples of de novo deletions in the autism AGRE
dataset. Figure 9 shows the two different interpretations of M ′ using Figure 8.
Due to data usage rules, we have substituted the gene name. It is certainly
the case that one larger de novo deletion is more likely than three smaller
inherited deletions. In this case, the de novo deletion becomes connected and
not many other SNPs become consistent with a deletion. In practice, we do
observe this same phenomenon.

2.6 Problem 3: identification of the critical regions of
recurrent deletions

Deletions in autism and other neurological disorders are often recurrent
(Stefansson et al., 2008; Weiss et al., 2008), with multiple deletions occurring
in the same region of distinct individuals independently. Recurrently deleted
regions often present a complex deletion signature with many deletions
existing at slightly different intervals. While many configurations of deletions
exist, interpretation of these regions is often formulated in a parsimonious
manner. Critical regions capture this sense of parsimony and are defined as
a region of large overlap for a subset of deletions. Critical regions are often
used when attempting to connect a set of associated recurrent deletions to
underlying biological mechanisms.

Since many critical regions may exist in the data, it is often useful to
prioritize them by generating a ranking. Formulation 2 demonstrates one
method for prioritization using critical region size.

Formulation 2. Report all recurrently deleted regions shared by at least k ′
deletions as significant critical regions.

Fig. 9. We show the graph G superimposed on M ′ with the trio rows denoted
A–H and the SNPs denoted S1–S14 for inherited and de novo deletion
interpretations. For inherited deletions, Gene X displays three small 3-cliques
each conferring little evidence of being a true deletion. When interpreting
this data for de novo deletions, the second trio shows evidence for one larger
de novo deletion. In G, we see that the second trio now becomes a hub for
connections to trios C through F. The outlined black, red and white maps are
deletion heat maps representing M ′. Regions of 1’s and 0’s are represented
by red and white, respectively. Regions of X ’s and 0’s are represented by
black.

To solve this formulation, we construct a graph G′(V ′,E′) on the set of
recurrent deletions. We introduce a vertex v∈V ′ for each deletion and an
edge (vi,vj)∈E′ if vi and vj share a SNP index. As the deletions are intervals
on the chromosome, we can make the following observation.

Observation 1. G′(V ′,E′) is an interval graph and hence chordal.

Each maximal clique now corresponds to a critical region and its
size corresponds to the number of deletions contained within the region.
Therefore, an algorithm for Formulation 2 first computes G′(V ′,E′) from the
output of DELISHUS for inherited or de novo deletions. Since G′(V ′,E′) is
chordal, all critical regions are computed using perfect elimination orderings
to generate maximal clique components in guaranteed polynomial time.
Critical regions with the number of deletions ≥k ′ are then ranked according
to some metric (e.g. size).

2.7 Validation of deletions
Deletion calls may be validated with several types of experimental and
computational methods. A select subset of deletions inferred in the autism
GWAS data are scheduled to undergo experimental validation in Dr
Morrow’s laboratory using qPCR and custom-designed fine-tiling arrays.
We validated our HapMap P1 deletion calls by comparing inferred inherited
deletions to the deletions found by Conrad et al., 2006 and testing for a
significant overlap. Conrad et al., 2006 developed a method that calls a region
deleted if two or more evidence of deletion sites exist within close proximity
to each other. From the set of computationally inferred deletion calls in the
HapMap P1 data, they apply additional filtering steps and commit to 543
deletions (data extracted from the Database of Genomic Variants). From our
analysis of the HapMap P1 data, we were able to produce a total of 1844
deletions covering all 543 deletions of Conrad et al., 2006.

We have shown previously that this type of analysis yields few false
positives per chromosome (0.701 on average, Table 3). However, recurrent
genomic deletions may be shared by descent or appear more frequently in
specific genomic regions. In both cases, DELISHUS uses information of the
entire sample to call genomic deletions that explains, in part, the increased
number of deletion calls.
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3 DISCUSSION
Using Formulation 1, DELISHUS computes all inherited or de novo
deletions with maximal clique size above a user-defined threshold
and then ranks them according to a number of different properties.
Work in progress focuses on further validation studies and the
prioritization of small recurrent deletions with the most support
for experimental wet-lab validation in Dr Morrow’s Laboratory.
However, researchers may want to find deletions that are large
and rare instead of small and recurrent. DELISHUS is adaptable
to this type of inference by essentially mimicking the behavior of
the Conrad et al., 2006 algorithm by restricting edges to within
trio only. Furthermore, statistical rankings are also supported by
this framework. After potential deletions are called, statistical and
discrete quantities may be used to score and rank the deletions based
on, for example, parent-of-origin effects which have been shown to
be associated to autism (Arking et al., 2008; Fradin et al., 2010;
Lamb et al., 2005); other examples of quantities to use for scoring
include linkage disequilibrium, allele frequencies, size of deletion
and number of evidence sites.

While we have found Formulation 1 to be the most useful,
it only considers the case for which an error might convert a
normal inheritance pattern to a 1. However, all potential conversions
between deletion categories are possible (Fig. 10). Formulation 3
represents an alternative to Formulation 1, which models deletions
and genotyping errors without the usage of a threshold.

Formulation 3. We are now allowed to correct any 1→X and any
X →1 in M ′. Find the minimum number of switches from 1→X
or X →1 such that all cliques are disjoint.

Regardless of the formulation, there may still be other types of
errors in SNP data such as technical artifacts producing completely
erroneous SNPs. These are usually filtered in a preprocessing QC
step, but it is often advantageous to allow DELISHUS to process the
pre-QC data. For example, a small 1 SNP deletion that is associated
to the phenotype of interest could mimic the behavior of a technical
artifact and should not be removed prior to running DELISHUS.

As sequencing becomes cheaper and the sequencing of thousands
of individuals becomes feasible, DELISHUS may prove to be a
reliable source for calling small deletions genome-wide at a higher
resolution than array data. For example, the 1000 Genomes Project is
currently sequencing the genomes of HapMap individuals. Some of
the HapMap individuals sequenced belong to parent–child trios and
pairs. When this full sequence data becomes available, DELISHUS
can be used on the SNP call data to validate previous calls in the
HapMap data.

Fig. 10. M ′ is shown on the left with a superimposition of evidence of
deletion vertices and edge connections. On the right, we demonstrate that
making one X →1 correction unifies evidence of deletion sites into one larger
deletion.

4 CONCLUSION
With increasingly dense SNP arrays and whole-exome sequencing
becoming commonplace for studies of association, we are now ready
for the genome-wide search for smaller deletion variants. Although
the power of these newer technologies is enormous, genetic
heterogeneity remains a daunting challenge and the identification
of all polymorphism is paramount to the understanding of complex
disease. While large genomic deletions have already been found
and replicated, the problem of identifying small deletions remains
an unmet challenge.

In this article, we presented three computational problems related
to deletion inference in SNP data with a focus on small recurrent
deletions in autism. We introduced the DELISHUS algorithmic
framework for computing inherited deletions, de novo deletions and
critical regions. Using a formulation inspired by the complexity
of the deletion signature in autism, we showed that the problem
of computing all inherited and de novo deletion configurations
in SNP data can be solved in polynomial time (and empirically
within minutes). We presented systematic methods to compute false-
positive rates and power for the DELISHUS and single individual
algorithms and demonstrated how to use the calculations to
evaluate algorithmic performance and tune the threshold parameter.
Comparisons of power, while controlling for false-positive rates,
show that the DELISHUS algorithm excels at inferring small
recurrent deletions. We also showed that finding critical regions
of recurrent deletions may also be solved in polynomial time. The
DELISHUS software package that implements these algorithms is
readily available for download at the Istrail Lab website.
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