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Abstract: A new coumarin-based fluorescent probe, containing an allylic esters group, has been
designed and synthesized for sensing cysteine in physiological pH. In this fluorescent probe, the
coumarin was applied as the fluorophore and an allylic esters group was combined as both a
fluorescence quencher and a recognition unit. The probe can selectively and sensitively detect
cysteine (Cys) over homocysteine, glutathione, and other amino acids, and has a rapid response
time of 30 min and a low detection limit of 47.7 nM. In addition, the probe could be applied for cell
imaging with low cytotoxicity.
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1. Introduction

Biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), are natural
compounds containing sulfydryl, which play crucial roles in the process of intracellular protein
turnover [1]. Generally, alternations of the level of cellular biothiols lead to many diseases such as
psoriasis, leucocyte loss, cardiovascular disease [2], acquired immunodeficiency syndrome (AIDS) [3],
psoriasis-like skin lesions [4], lethargy, liver damage [5], muscle weakness, and wasting [6]. In addition,
GSH is the vastest non-protein thiol in cells [7], serving as an important regulator of the redox reaction
in vivo and maintaining intracellular redox activities [8,9], which is a key indicator of diseases such as
diabetes and Alzheimer’s disease [10]. The level of Hcy has been proved to be connected with neural
tube defects, Alzheimer’s disease, osteoporosis, and inflammatory bowel disease [11]. What is more,
Cys is a semi-essential amino acid that plays a structural role in many proteins, and its concentration
is closely linked with edema, slowed growth [12], and a wide variety of cancers including breast
cancer [13], colorectal cancer [14], nasopharyngeal cancer [15], and lung cancer [16]. Therefore, it is
essential to develop a reliable method for detecting biothiols [17].

Numerous assays have been carried out to detect biothiols including high performance liquid
chromatography [18,19], mass spectrometry [20,21], colorimetric detection [22], electrochemical
method [23,24], and capillary electrophoresis [25]. However, these studies faced a number of difficulties
such as high facility cost, complicated operation, complex preparation, long detecting time, or poor
selectivity. Recently, more attention had been paid to developing fluorescent probes, a cheap and easy
method to distinguish biothiols [26–28]. For example, Tong et al. synthesized a visible blue-to-green
pyrene probe, which could detect polyanion in aqueous media but cannot distinguish Cys from other
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biothiols [29]. Zhao et al. designed a rapid and sensitive probe for Cys, GSH, and Hcy, but it could not
identify them from each other [30]. Only a few reports detected Cys from GSH and Hcy due to their
similar structures containing nucleophilic mercapto groups [31,32]; thus, a new kind of fluorescent
probe with steady, high selectivity and sensitivity is still needed.

Coumarin is a compound containing the parent nucleus of benzopyrone, an economic
chromophore. What is more, coumarin shows high intense fluorescence, good solubility, relatively
high fluorescence quantum yield, ease of production, and molar absorption coefficient if an electron
donating group, such as hydroxy or unalkylated amino group, is substituted at the 7 position [33].
The fluorescence intensity of coumarins has a close relationship with the substituent groups on the ring.
When the intramolecular charge transfer capability was changed by modifying substituent groups,
the optical properties of the whole molecule were influenced. So, we can control the optical properties
of molecules by adding different substituent groups with pushing or pulling electronics. Moreover,
various mechanisms have been used in the design of Cys fluorescent probes, including the cyclization
reaction with an aldehyde [34–36], Michael addition [37–39], and cleavage reaction [40–42] by thiols.

In this report, a turn-on fluorescence probe based on coumarins was designed for Cys with highly
selectivity and sensitivity. The allylic esters group serves as a blocker of coumarin fluorophore in the
probe, which not only functions as a Michael receptor, but also an electrophile [43]. Because Cys has
lower steric hindrance to conduct Michael additions, the probe can sharply distinguish Cys from other
biothiols within 30 min and has been successfully used in living cell imaging. With the development
of fluorescent probes for the discrimination of Cys from other amino acids and biothiols, real-time
monitoring of the Cys level of cells, tissues, and animals will be possible.

2. Results and Discussion

2.1. Characterization of the Probe

The synthesis of the probe is outlined in Scheme 1. Compound 1 was further treated with acryloyl
chloride to form the probe. The structure of the probe was confirmed by 1H-NMR, 13C-NMR, IR,
and MS spectra (Figures S1–S4). The probe was colorless and had two absorption bands centered at
278 nm and 312 nm. It showed weak fluorescence (Φ = 0.0194) due to the quencher acrylamide group.
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2.2. UV-Vis Absorption and Fluorescence Spectra

As shown in Figure 1b and Figure S5, the UV-vis absorption spectra of the free probe (10 µM)
showed absorption peaks at 278 nm and 312 nm. Upon the addition of Cys, the absorption at 278 nm
gradually decreased, while the absorption at 312 nm increased and red-shifted to 323 nm. Furthermore,
as shown in Figure 1a, the fluorescence intensity of the probe was enhanced from Φ = 0.0194 to
Φ = 0.1725 with Cys.

2.3. Selectivity of the Probe for Cys

The sensing ability of the probe towards various compounds was detected, including cysteine
(Cys), homocysteine (Hcy), glutathione (GSH), glycine (Gly), lysine (Lys), histidine (His), alanine (Ala),
tyrosine (Try), cystine (Cys C), valine (Val), isoleucine (Ile), glutamic (Glu), phenylalanine (Phe), serine
(Ser), threonine (Thr), aspartic (Asp), methionine (Met), proline (Pro), leucine (Leu), CN−, SCN−,
HS−, and SO4

2− in buffered solution (PBS (phosphate buffered solution):DMSO (dimethyl sulfoxide)
= 6:4, pH = 7.4). In Figure 2, the green fluorescence response was sensed upon the addition of Cys
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(50 equiv.) to the probe (10 µM), and no obvious changes in fluorescence emission were observed
in other compounds. The results indicate that Cys is more active in the reaction due to its stronger
nucleophilicity compared with that of GSH and Hcy.Molecules 2017, 22, 1618 3 of 11 

 

 
Figure 1. (a) The fluorescence intensity of the probe and the probe added to Cys-buffered solution 
(PBS (phosphate buffered solution):DMSO (dimethyl sulfoxide) = 6:4, pH = 7.4) at room temperature; 
(b) The absorption spectra of the probe and the probe added to Cys in buffered solution (PBS:DMSO = 6:4, 
pH = 7.4) at room temperature. λex = 325 nm. 

 
Figure 2. Fluorescence intensity of the probe (10 μM) in the presence of different compounds (50 equiv.); 
each reaction was in buffered solution (PBS:DMSO = 6:4, pH = 7.4) at room temperature. λex = 325 nm. 

In order to ensure an accurate detection of Cys, the probe could not be obstructed by other 
compounds. Cys (50 equiv.) and a series of competing compounds (50 equiv.) were added to the 
probe (10 μM). As depicted in Figure 3, other compounds hardly had an influence on the fluorescence 
emission. The results showed that the probe could sharply distinguish Cys from the other compounds. 

 
Figure 3. Black bar represents the fluorescence response of the probe (10 μM) to various compounds 
(50 equiv.). Red bar represents the fluorescence response of the probe (10 μM) to Cys (50 equiv.) in 
the presence of other compounds (50 equiv.). Each reaction was in buffered solution (PBS:DMSO = 
6:4, pH = 7.4) at room temperature. The numbers represent analytes: 0. Blank; 1. Cys; 2. Hcy; 3. GSH; 
4. Asp; 5. Val; 6. Glu; 7. Pro; 8. Gly; 9. Phe; 10. Met; 11. Thr; 12. Ser; 13. Ile; 14. His; 15. Phe; 16. Lys; 17. 
Try; 18. Leu; 19. Cys C; 20. CN−; 21. SCN−; 22. HS−; 23. SO42−. λex = 325 nm, λem = 450 nm. 

  

Figure 1. (a) The fluorescence intensity of the probe and the probe added to Cys-buffered solution (PBS
(phosphate buffered solution):DMSO (dimethyl sulfoxide) = 6:4, pH = 7.4) at room temperature; (b) The
absorption spectra of the probe and the probe added to Cys in buffered solution (PBS:DMSO = 6:4,
pH = 7.4) at room temperature. λex = 325 nm.
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Figure 2. Fluorescence intensity of the probe (10 µM) in the presence of different compounds (50 equiv.);
each reaction was in buffered solution (PBS:DMSO = 6:4, pH = 7.4) at room temperature. λex = 325 nm.

In order to ensure an accurate detection of Cys, the probe could not be obstructed by other
compounds. Cys (50 equiv.) and a series of competing compounds (50 equiv.) were added to the
probe (10 µM). As depicted in Figure 3, other compounds hardly had an influence on the fluorescence
emission. The results showed that the probe could sharply distinguish Cys from the other compounds.
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Figure 3. Black bar represents the fluorescence response of the probe (10 µM) to various compounds
(50 equiv.). Red bar represents the fluorescence response of the probe (10 µM) to Cys (50 equiv.) in the
presence of other compounds (50 equiv.). Each reaction was in buffered solution (PBS:DMSO = 6:4,
pH = 7.4) at room temperature. The numbers represent analytes: 0. Blank; 1. Cys; 2. Hcy; 3. GSH; 4.
Asp; 5. Val; 6. Glu; 7. Pro; 8. Gly; 9. Phe; 10. Met; 11. Thr; 12. Ser; 13. Ile; 14. His; 15. Phe; 16. Lys; 17.
Try; 18. Leu; 19. Cys C; 20. CN−; 21. SCN−; 22. HS−; 23. SO4

2−. λex = 325 nm, λem = 450 nm.



Molecules 2017, 22, 1618 4 of 12

2.4. Effect of pH on the Fluorescence Response of Probe

To confirm the appropriate pH scope of the probe, the fluorescence intensity of the probe (10 µM)
added to Cys (50 equiv.) with different values of pH (3–10) was detected (Figure 4). The result showed
that the range of pH 7–9 fitted the reaction well. Because pH 7.4 is close to physiological conditions,
we selected a buffered solution at this level (PBS:DMSO = 6:4, pH = 7.4) for subsequent study.
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(500 µM) in buffered solution (PBS:DMSO = 6:4, pH = 3–10), pH was adjusted by NaOH and HCl.
λex = 325 nm, λem = 450 nm.

2.5. Effect of Reaction Time

To track the proper time of the response, we traced the fluorescence intensity of the probe (10 µM)
added to Cys (50 equiv.) while monitoring the time. The fluorescence intensity almost reached the
maximum in 15 min (Figure 5), which was relatively fast. Furthermore, the response obeyed the
pseudo-first-order rate, and the rate constant was calculated according to the following equation [44]:

Ln ((Fmax − F) / Fmax) = −kt, (1)

where F is the fluorescence intensity at time t, and Fmax is the fluorescence intensity after the reaction
totally completed. The constant k is shown in Figure S6. The value of the rate constant of Cys was
0.1618 min−1.
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solution (DMSO:PBS = 4:6, pH = 7.4). λex = 325 nm, λem = 450 nm.

2.6. Quantitative Responses of the Probe for Cys

To clarify the sensitivity of the probe, various concentrations of Cys (0–30 equiv.) were added
to the probe solution (10 µM) and the fluorescence intensity at 450 nm was recorded after 50 min.
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The results changed from nearly dark to a strong green fluorescent response as the concentration of
Cys increased. Furthermore, the emission intensity at 450 nm was linearly related to the concentration
of Cys from 0 to 50 µM (R2 = 0.9925) (Figure 6), which provided useful conditions for the quantitative
analysis of Cys. And the detection limit of Cys was calculated to be 47.7 nM based on the 3σ/slope
method [45]. The results indicated that the probe remained very sensitive to Cys.
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Figure 6. (a) Fluorescent spectral changes (b) The fluorescence intensity at 450 nm of probe (10 µM)
upon addition of Cys (0–300 µM) in buffer solution (DMSO:PBS = 4:6, PH 7.4), incubated 30 min before
detected. λex = 325 nm, λem = 450 nm.

As described above, the probe displayed excellent analytical properties, compared with some
other fluorescent probes of recent reports, for the detection of Cys. The comparison data is listed in
Table 1, indicating that the probe is promising for practical analysis.

Table 1. Comparison of the probe for the detection of thiols.

Reference Response Time Stokes Shift Detection Limit Selectivity for Cys

Sensors and Actuators B, 2017 [46] 12 min 122 nm 17.1 nM no
Sensors and Actuators B, 2016 [47] 3 h 110 nm 192 nM no

Biosensors and Bioelectronics, 2017 [48] 20 min 85 nm 14 nM yes
Biosensors and Bioelectronics, 2016 [49] 30 min 96 nm 0.874 µM no
Biosensors and Bioelectronics, 2014 [50] 40 min 55 nm 0.657 µM yes

ChemComm, 2013 [51] 2 h 97 nm - no
Molecules, 2016 [52] 2.5 h 174 nm 0.911 µM no

This work 30 min 125 nm 47.7 nM yes

2.7. Reaction Mechanism

The acrylate group has been applied as a thiols reaction site for detecting thiols [53,54]. Based on
the reported conjugate addition/cyclization sensing mechanism, the mechanism of probe responding
to Cys involved the next two steps: the conjugate addition of Cys to an unsaturated carbonyl moiety
generated thioether (1a), followed by intramolecular cyclization that gave the desired compound 1,
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which was responsible for the enhancement of the fluorescence intensity. To confirm the mechanism,
the probe was incubated with Cys before being isolated by high performance liquid chromatography
(see Figure S7 in the supporting information) and analyzed by mass spectra. In HPLC, a peak at
4.54 min corresponded to the compound 1 (coumarin) and a peak at 6.05 min corresponded to the
probe. Furthermore, the probe detected compound 1 (coumarin) after being incubated with Cys for 3 h.
In MS, a peak at 177.0 corresponded to the resulting compound 1 and a peak at 352.1 corresponded
to the additional product compound 1a (see Figure S8 in the supporting information). These data
strongly support the mechanism in Scheme 2.
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2.8. Application of the Probe

An MTS assay with a HepG2 cell line was applied to estimate the cytotoxicity of the probe.
As shown in Figure 7, cellular viability was greater than 80% after 24 h in 27 µM (based on
DMSO < 0.1%), which indicated that the probe had low toxicity to HepG2. To investigate the probe’s
capability for cell imaging, HepG2 were incubated with the probe (25 µM) in PBS for 2 h at 37 ◦C and
washed three times with PBS. As shown in Figure 8a, green fluorescence response could be observed
inside cells under a confocal fluorescence microscope. This observation shows that the probe can
detect the biothiols in the cells. Furthermore, in Figure 8b, when the cells were preincubated with
Cys (100 µM) for 1 h and then incubated with the probe (25 µM), the fluorescence response was
partly enhanced. In the control group, the cells were preincubated with 500 µM N-ethylmaleimide
(NEM), a widely used thiol-blocking agent [55] for 1 h, then incubated with the probe (25 µM) for
2 h. As shown in Figure 8c, the fluorescence response was too slight to be detected, indicating the
pertinence of Cys. The results obviously indicated that the probe could be used as a probe for both
endogenously and exogenously produced Cys in living cells.
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Figure 8. Fluorescent imaging of HepG2 cells: (Left) fluorescent image; (Middle) bright field image;
and (Right) overlay image. λex = 405 nm, λem = 420–480 nm. (a) Images of cells incubated with the probe
(25 µM) for 2 h at 37 ◦C; (b) Images of cells preincubated with Cys (100 µM) for 1 h and then incubated
with the probe (25 µM) for 2 h at 37 ◦C; (c) Images of cells preincubated with N-ethylmaleimide (NEM)
(500 µM) for 1 h and then incubated with the probe (25 µM) for 2 h at 37 ◦C.

3. Materials and Methods

3.1. Materials and Instrumentation

All chemicals (reagent grade) used were purchased from Sino Pharm Chemical Reagent Co., Ltd.
(Shanghai, China). Reaction progress was monitored using analytical thin layer chromatography (TLC)
on pre-coated silica gel GF254 (Qingdao Haiyang Chemical Plant, Qingdao, China) plates, and spots
were detected under UV light (254 nm). Melting point was measured on an XT-4 micromelting point
instrument and uncorrected. IR (KBr-disc) spectra were recorded by a Bruker Tensor 27 spectrometer
(Bruker, German). 1H-NMR and 13C-NMR spectra were measured on a BRUKER AVANCE III
spectrometer at 25 ◦C and referenced to tetramethyl silane (TMS) (Bruker, German). Mass spectra were
obtained on an MS Agilent 1100 Series LC/MSD Trap mass spectrometer (Agilent, Santa Clara, CA,
USA). UV-vis spectra were recorded on an Agilent 8454 UV-vis spectrometer (Agilent). Fluorescence
spectra measurements were recorded on an Agilent G9800A fluorescence spectrophotometer (Agilent).
Fluorescence images were obtained on a Leica TCS-SP8 multiphoton; a confocal microscope and a
63× oil-immersion objective lens was used (Leica, Switzerland). High-resolution EI mass spectra were
recorded on an Agilent 6460 triple quad LC-MS mass spectrometer (Agilent).
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3.2. Synthesis of the Probe (4-Methyl-2-oxo-2H-chromen-7-yl Acrylate)

A solution of compound 1 (200 mg, 1.14 mmol) and triethylamine (0.12 mL, 0.86 mmol) in dried
CH2Cl2 (10 mL) was added to acryloyl chloride (205.5 mg, 2.27 mmol) at 0 ◦C under nitrogen. After
stirring for 12 h at room temperature, the reaction mixture was diluted with CH2Cl2. The CH2Cl2
solution was washed with a saturated aqueous Na2CO3 solution, as well as water, and then dried over
anhydrous Na2SO4. The solvent was evaporated under reduced pressure. The crude product was
purified by column chromatography (SiO2, ethyl acetate/hexane = 1/5, v/v) to give the probe as a
pale white solid. Yield: 305 mg (80%). IR νmax/cm−1 (KBr) 1721.36, 1616.37 (C=O), 1388.53, 1164.33;
m.p. 151.1–153.4 ◦C; ESI/MS m/z: 231.0 [M + H]+; 1H-NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.6 Hz,
1H, H5 coumarin), 7.20 (d, J = 2.2 Hz, 1H, H8 coumarin), 7.16 (dd, J = 8.6, 2.3 Hz, 1H, H6 coumarin),
6.68 (dd, J = 17.3, 1.1 Hz, 1H, H3 coumarin), 6.40–6.29 (m, 2H, H3 propionyl-), 6.11 (dd, J = 10.5, 1.1 Hz,
1H, H2 propionyl-), 2.47 (d, J = 1.2 Hz, 3H, -CH3). 13C-NMR (100 MHz, CDCl3) δ 163.8, 160.6, 154.2,
153.0, 152.0, 133.7, 127.3, 125.4, 118.1, 117.9, 114.6, 110.5, 18.7.

3.3. Absorption and Fluorescence Spectroscopy

The probe was dissolved in DMSO (1 mM) for a stock solution. The compounds such as cysteine
(Cys), homocysteine (Hcy), glutathione (GSH), glycine (Gly), lysine (Lys), histidine (His), alanine (Ala),
tyrosine (Try), cystine (Cys C), valine (Val), isoleucine (Ile), glutamic (Glu), phenylalanine (Phe), serine
(Ser), threonine (Thr), aspartic (Asp), methionine (Met), proline (Pro), leucine (Leu), CN−, SCN−, HS−,
and SO4

2− were all dissolved in purified water (10 mM). Tested solutions were prepared by adding
40 µL stock solution and a different analyte solution into the buffer (PBS:DMSO = 6:4, pH = 7.4) to
a confirmed volume of 4 mL. The resulting solutions were mixed well and detected after 30 min at
room temperature.

Fluorescent quantum yields were determined using Quinine sulphate (Φs = 0.54 in 0.1 M of
H2SO4 solution) as a standard, according to a published method [56]. The fluorescent quantum yield
was calculated based on the following equation:

Φx = Φs × (Fx/Fs) × (As/Ax) × (ηx
2/ηs

2) (2)

where Φ is the fluorescent quantum yield, Φs = 0.54 in 0.1 M of H2SO4 solution, Fx and Fs are the
integrated fluorescence intensities of the sample and the standard, respectively, at the same excitation
wavelength, Ax and As are the absorbance at the excitation wavelength, and η is the refractive index of
the respective solvent.

3.4. Cell Culture for HepG2

HepG2 cells were provided by Chinese Academy of Sciences. HepG2 cells were cultured
in minimum essential medium (MEM) blended with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin solution, (100×) at 37 ◦C under an atmosphere of 5% CO2. Cells were
transplanted on confocal dishes and adhered for 24 h before use in an experiment.

3.5. Fluorescence Imaging of Cys in Living Cells

Experiments to evaluate the sense ability of the probe for biothiols were executed in culture
medium (90% MEM, 10% FBS). The cells were incubated in the probe (25 µM) for 2 h at 37 ◦C and
washed with 0.1 M PBS (0.6 mL × 3) before observation. To detect exogenously produced biothiols,
cells were treated with Cys (100 µM) at 37 ◦C for 2 h and washed with 0.1 M PBS (0.6 mL × 3). Then,
the cells were incubated in the probe (25 µM) for 2 h at 37 ◦C and washed with 0.1 M PBS (0.6 mL × 3)
before observation. For the control experiment, cells were treated with 100 µM NEM for 1 h at 37 ◦C
and washed with 0.1 M PBS (0.6 mL × 3). Then, the cells were incubated in the probe (25 µM) for 2 h
at 37 ◦C and washed with 0.1 M PBS (0.6 mL × 3) before observation. For the positive experiment,
cells were treated with coumarin chromophore (25 µM) for 2 h at 37 ◦C and washed with 0.1 M
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PBS (0.6 mL × 3) before observation. A fluorescence microscope and a 63× oil-immersion objective
lens was used. The cells were excited with UV light below 405 nm, and emission was collected at
450 ± 40 nm.

4. Conclusions

The probe showed a stable, highly selective and sensitive fluorescence response towards Cys over
GSH, Hcy, and other compounds. The main mechanism of the pertinence of Cys could be attributed to
the nucleophilic addition and its lower steric hindrance. Confocal fluorescence microscopy imaging
using HepG2 cells indicated that the probe can be applied for the detection of Cys in living cells.

Supplementary Materials: The supplementary materials are available online.
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