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Homo sapiens exhibit a distinct 
pattern of CNV genes regulation: 
an important role of miRNAs and 
SNPs in expression plasticity
Harsh Dweep1, Nada Kubikova2, Norbert Gretz1, Konstantinos Voskarides3 & 
Kyriacos Felekkis2,4

Gene expression regulation is a complex and highly organized process involving a variety of genomic 
factors. It is widely accepted that differences in gene expression can contribute to the phenotypic 
variability between species, and that their interpretation can aid in the understanding of the 
physiologic variability. CNVs and miRNAs are two major players in the regulation of expression 
plasticity and may be responsible for the unique phenotypic characteristics observed in different 
lineages. We have previously demonstrated that a close interaction between these two genomic 
elements may have contributed to the regulation of gene expression during evolution. This work 
presents the molecular interactions between CNV and non CNV genes with miRNAs and other 
genomic elements in eight different species. A comprehensive analysis of these interactions indicates 
a unique nature of human CNV genes regulation as compared to other species. By using genes with 
short 3′ UTR that abolish the “canonical” miRNA-dependent regulation, as a model, we demonstrate 
a distinct and tight regulation of human genes that might explain some of the unique features of 
human physiology. In addition, comparison of gene expression regulation between species indicated 
that there is a significant difference between humans and mice possibly questioning the effectiveness 
of the latest as experimental models of human diseases.

It is widely accepted that evolutionary phenotypic differences can be attributed to a great degree to gene 
expression variations. It has been suggested that major anatomical and physiological changes observed in 
organisms involve the evolution of complex gene expression networks1–3. A variety of genomic elements 
participate in the formation of these complexes but not yet completely understood gene expression reg-
ulatory networks may contribute to these evolutionary phenotypic differences.

Copy Number Variations (CNVs) refer to genomic regions with segmental duplications that have 
been recognized after systematic comparative genomic hybridizations using DNA of healthy human sub-
jects. They are defined as DNA segments of 1 kb or larger in size more found at a significant frequency 
in the population4–6. CNVs are prevalent throughout the genome of humans and other species at both 
coding and non-coding regions and might include both genes and regulatory elements. MicroRNAs 
(miRNAs) constitute a class of short endogenous non-coding RNA molecules of 21–25 nucleotides (nt) 
in length, which function as negative regulators of gene expression at the post-transcriptional level in 
multicellular eukaryotes4. In addition to the mechanisms for gene regulation proposed, miRNAs can 
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regulate a plethora of protein coding genes in humans and other species, primarily through binding to 
the 3′  UTR of the mRNA of target genes4.

Both miRNAs and CNVs are believed to contribute to expression plasticity and may be responsible 
for the unique phenotypic characteristics observed in the human lineage. In view of such a role, a com-
prehensive analysis of the interactions between miRNAs and CNVs in different species could provide an 
insight into the gene expression changes, which may have contributed to the appearance of new pheno-
typic characteristics in humans.

CNVs are known to exhibit genic bias. These genomic elements were shown to drive evolution and 
at the same time contribute to the pathogenesis of various human diseases. As a result, the regulation 
of expression and expression plasticity of genes lying in CNV regions could be of considerable interest 
in gaining an inside in the appearance of human-specific phenotypic characteristics. We have previ-
ously shown that miRNAs, evolutionary contribute to the regulation of CNV genes as this category of 
genes was found to harbor more miRNA binding sites and regulated by more miRNAs as compared to 
their non-CNV counterparts7. miRNA-CNV genes interactions were further explored to demonstrate the 
unique nature of the human lineage as compared to the other species. The nature of such interactions 
might explain some of the unique physiological attributes observed in Homo sapiens. We wanted to fur-
ther explore the expression regulation of CNV genes and to compare the factors involved in this process. 
Through a comprehensive in silico analysis we explored the interrelations between CNV genes and other 
genomic factors such as miRNAs and SNPs. By using as a model, genes with short 3′ UTR, which are 
expected to lose the “canonical” miRNA regulation, we were able to demonstrate a unique redistribution 
of miRNA binding sites and SNPs on CNV genes of human lineage. Human CNV genes appear to require 
overall a more tight and complex regulation, which is significantly different from any other species. In 
addition, our results provide an insight into important differences between humans and other species in 
regards to gene expression regulation that might have an impact on medicine and biology.

Results
Genes with short 3′ UTRs (less than 7 nt long), which are expected to abolish the “canoni-
cal” miRNA-dependent expression regulation.  Regulation of gene expression is a complex and 
multifactorial process. Genes can be regulated simultaneously by a variety of genomic elements. Even 
miRNA-dependent regulation of gene expression follows different mechanistic processes. The major reg-
ulatory pathway for gene expression, however, involves the binding of miRNAs to target sites within the 
3′  UTR region. In order to understand the importance of miRNA regulation of CNV and non-CNV 
genes in various species we used as a model, genes with short 3′  UTRs (less than 7 nts long) from eight 
different species [chicken (gga), dog (cfa), cow (bta), rat (rno), mouse (mmu), macaque (mml), chimpan-
zee (ptr), human (hsa)]. These genes are expected to lose the “canonical” miRNA-dependent regulation 
since miRNA will be unable to bind to that region.

Although, miRNAs are believed to regulate gene expression by targeting other genes regions, the 
major regulatory pathway involves the binding of miRNAs to target sites within the 3′  UTR region. 
Various studies have identified the presence of short 3′  UTR protein coding genes in the genome of var-
ious species including humans8–11. In general, it appears that the majority of 3′  UTR are relatively short. 
Liu et al. demonstrated that more than 50% of the 3′  UTR sequences examined in 22 different species 
have length between 100–300 bps8. Additional studies, have demonstrated that transcripts with shorter 
3′  UTR in humans and zebrafish display higher level of expression and differential tissue expression 
attributing it to the loss of miRNA binding sites10,11. Despite these data, the link between loss of miRNA 
binding sites and gene expression has not been directly examined.

We identified genes in both CNV and non-CNV regions in all of the eight species that have a 3′  UTR 
shorter than 7 nts (referred in text as “short 3′  UTR genes”). As depicted in Fig. 1, humans have fewer 
genes with short 3′  UTRs than all the other seven species, 869 compared to the next lowest 2,267 in 

Figure 1.  Number of genes with short 3′ UTR among 8 species. Comparison of the number of CNV 
versus non-CNV genes with short 3′  UTR in chicken (gga), dog (cfa), cow (bta), rat (rno), mouse (mmu), 
macaque (mml), chimpanzee (ptr), and human (hsa).
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dog. Of note, during the classification of these genes into CNV and non-CNV regions, we observed that 
the number of short 3′  UTR genes categorized under the non-CNV regions is higher than those catego-
rized under CNV regions for all other species (excluding human), whereas, in case of human, an exact 
opposite trend is noted suggesting an alternative manner in the regulation of these genes in the human 
lineage. In order to identify any functional involvement, short 3′  UTR genes from all three categories (all 
genes, CNV genes and non-CNV genes) were interrogated against all known KEGG pathways. A total 
of 36 significantly enriched pathways were obtained for the all genes category (Fig. 2). Interestingly, two 
pathways appear to be significantly enriched with short 3′  UTR genes in the majority of species in all 
three categories. Olfactory- and Taste-transduction pathways were found to be significantly enriched for 
six (cfa, hsa, mml, mmu, ptr and rno) out of eight species. These pathways have been previously found 
to be associated with CNV regions and evolution demonstrating the genic bias exhibited in CNV regions 
and may reflect the diversity in senses in various organisms12–14.

As shown in Fig. 2, short 3′  UTR genes belonging to all the three different categories in species other 
than human, are enriched in various other pathways including some disease-related ones. Notably, the 
short 3′  UTR genes of mouse were found to have the highest number of significantly enriched pathways 
compared to all other species (Fig. 2).

Distribution of miRNA binding sites on CNV and non-CNV genes.  In order to further examine 
the differential expression regulation of CNV genes in the different species, we explored the distribution 
of miRNA binding sites on different regions of the CNV and non-CNV genes. Two prediction algorithms 
(miRWalk and TargetScan) were employed to generate the possible binding site interactions between 
human miRNAs and all known genes of 8 different species. The miRNA-target interactions resulting 
from both algorithms were used to calculate the mean of binding sites per gene for further analysis.

As expected, human CNV and non-CNV genes with long 3′  UTR were found to have significantly 
higher number of miRNA binding sites per gene (p <  0.0001; Wilcoxon rank-sum test) on their 3′  UTR 
regions compared to all the other seven species (Fig.  3A,B and Supplementary Table S1). The miRNA 

Figure 2.  Significant Pathways on short 3′ UTR genes in the 8 different species: chicken (gga), dog (cfa), 
cow (bta), rat (rno), mouse (mmu), macaque (mml), chimpanzee (ptr), and human (hsa). Cells with dark 
and white background colors stand for significantly enriched and non-significant pathways, respectively.
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binding sites on other gene regions (5′  UTR and CDS) were not significantly different between human 
and the other species (Fig. 3A,B, and Supplementary Table S1). On the contrary, in the absence of 3′  UTR 
(short 3′  UTR genes) human CNV genes were observed to accumulate the higher number of miRNA 
binding sites per gene (p <  0.0006; Wilcoxon rank-sum test) on their 5′  UTR regions as compared to 
other species. However, in non-CNV genes, the number of miRNA binding sites per gene on the 5′  UTR 
was not significantly different (Fig. 3C,D and Supplementary Table S2). Comparisons of the mean length 
of 5′  UTR, CDS and 3′  UTR between the eight species did not demonstrate any statistical significant 
variation. As a result, the observed differences in the number of miRNA binding sites cannot be attrib-
uted to differences in length of the gene regions (Supplementary Data, Table S3). These results suggest 
that in the absence of 3′  UTR, CNV genes in humans may specifically accumulate more miRNA binding 
sites at the 5′  UTR region of mRNA to compensate for the loss of the “canonical” miRNA regulation.

A comparison of the mean miRNA binding sites on the 5′  UTR of long and short 3′  UTR genes 
between CNV and non-CNV categories demonstrates that although in the long 3′  UTR genes (Fig. 4B) 
the mean miRNA binding sites are equal or less in CNV genes in all the species examined, in short genes 
(Fig.  4A) the trend is quite different. The mean miRNA binding sites is significantly higher in human 
CNV genes (p value =  0.009; Fisher’s exact test) as compared to the CNV genes from the other seven 
species, highlighting the importance of a tighter expression regulation of human CNV genes expression 
(Fig. 4).

Comparison of SNP distribution within 5′ UTR, CDS, 3′ UTR of CNV genes (long 3′ UTR) among 
different species.  SNPs are the most frequent form of variation in genomes. In the human genome 
specifically more than 38 million SNPs have been identified as part of the 1000 genomes project in 14 dif-
ferent populations15. It is well established that this type of variation can affect gene expression. The effects 
of SNPs on gene expression can occur in two ways changes in the transcript sequences and changes 
to the regulatory domain (reviewed in16). SNPs found in the coding sequence of genes can alter tran-
script levels by the introduction of premature stop codon and by altering the initial methionine leading 

Figure 3.  Mean miRNA binding sites per gene in genes with long 3′ UTR (A,B) and genes with short 3′  
UTR (C,D). A: Mean miRNA binding site/gene on long CNV genes. B: Mean miRNA binding site/gene on 
long non-CNV genes. C: Mean miRNA binding site/gene on short CNV genes. D: Mean miRNA binding 
site/gene on short non-CNV genes in the 8 different species (chicken (gga), dog (cfa), cow (bta), rat (rno), 
mouse (mmu), macaque (mml), chimpanzee (ptr), and human (hsa)). Data represent mean + /−  standard 
error of the mean (SEM).
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to an untranslatable transcript. Similarly, SNPs located on the 3′  UTR can impact miRNA-dependent 
gene expression regulation by abolishing or creating miRNA binding sites. SNP accumulation would, 
therefore, be expected to contribute to the genomic and phenotypic variability between species. In an 
attempt to identify their contribution in expression plasticity we investigated the SNP in both CNV and 
non-CNV genes in different species.

A comparison of the SNP distribution in four species for which data are available (human, mouse, rat 
and chicken), indicated that human genes (CNVs and non-CNVs) had significantly higher numbers of 
SNPs per gene than the other three species (76.30, 24.04, 7.32, and 9.92 in CNV genes and 56.90, 19.12, 
7.09, and 9.67 for non-CNV genes, respectively). Similar findings were observed for all gene regions 
(5′  UTR, CDS and 3′  UTR) with a pronounced difference in the CDS and 3′  UTR (Fig. 5A). The latter 

Figure 4.  miRNA binding site enrichment analysis in 5′ UTR of CNV versus non-CNV genes having 
short (A) and long 3′  UTRs (B). A: Mean miRNA binding sites on the 5′  UTR of CNV versus non-CNV 
genes with short 3′  UTR among the 8 different species (chicken (gga), dog (cfa), cow (bta), rat (rno), mouse 
(mmu), macaque (mml), chimpanzee (ptr), and human (hsa)). B: Mean miRNA binding sites on the 5′  UTR 
of CNV versus non-CNV genes with long 3′  UTR among the 8 different species.

Figure 5.  Comparison of mean SNP number and SNP density between CNV and non-CNV genes among 
human (hsa), mouse (mmu), rat (rno) and chicken (gga). A: Mean number of SNPs distribution between 
CNV and non-CNV genes in the four different species. B: SNP density cell plot between CNV and non-
CNV genes in the four different species.
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is of considerable interest as it signposts a potential interconnection between SNP accumulation and 
the formation of new miRNA binding sites on human genes. In support to this notion, human CNV 
genes had a significantly higher number of accumulated SNPs in all gene regions as compared to their 
non-CNV counterparts (Fig. 5A). In order to avoid any bias due to the differences in 5′  UTR, CDS and 
3′  UTR lengths between different species, we calculated the SNP density (SNPs/kb) for each transcript 
size category (Fig. 5B). In agreement with the previous data, SNP density is higher in humans than in 
the other three species analyzed for all different gene regions and transcript size categories in support of 
an increase of miRNA binding sites in human CNV genes. Interestingly, there appears to be an evolu-
tionary trend for the accumulation of SNPs in 3′  UTR of CNV genes, since the number of SNPs in mice 
is higher in CDS and 3′ UTR as compared to rat and chicken that have more SNPs only in CDS regions. 
When genes with short 3′  UTR were examined, there was no significant redistribution of SNPs on CNV 
genes, suggesting that a possible SNP-miRNA connection in gene expression plasticity may be confined 
to the “canonical” miRNA regulation (Supplementary Table S4).

Differential regulation of CNV and non-CNV genes by “CNV-miRNAs”.  MicroRNAs are major 
regulators of gene expression and thus appear to play a significant role in phenotypic variability and 
evolution. A specific subset of miRNA genes localized on CNV regions (CNV-miRNAs) are expected 
to be pivotal in such processes. CNV-miRNAs were previously shown to be involved in many biological 
processes and diseases, including organ development, angiogenesis and fertility. Recent studies attempted 
to map CNV-miRNAs in different human population and unraveled the different layers of genotypic 
complexities and phenotypic expressions of these molecules17. In an attempt to investigate the role of this 
miRNA subset in human gene regulation, first, a comprehensive atlas of CNV- and non-CNV-miRNAs 
was constructed by mapping the genomic location of all known human miRNAs against all known 
human genes. A total of 610 (24%) out of 2,578 human mature miRNAs were located within the 
CNV regions. These were designated as “CNV-miRNAs”, whereas as the remaining 76% were named 
“non-CNV-miRNAs”. Secondly, we added the possible interactions of these two groups (CNV-miRNAs 
and non-CNV-miRNAs) with the genes belonging to CNV and non-CNV regions and compared the 
mean values of these two miRNA classes within 5′  UTR, CDS and 3′  UTR. As seen in Fig. 6A, the mean 
value of CNV-miRNAs targeting CNV genes is significantly higher (p <  0.0001; Wilcoxon rank-sum test) 
compared to the mean values of CNV -miRNAs targeting non-CNV genes in all gene regions (compare 
black bars in left versus right panel). These results suggest that the regulation of CNV-miRNAs is highly 
associated with CNV genes. Interestingly, the mean value of non-CNV-miRNAs was also significantly 
higher (p <  0.0001; Wilcoxon rank-sum test) within CNV genes than the mean value of CNV-miRNAs 
targeting both categories (CNV as well as non-CNV genes) and non-CNV-miRNAs targeting non-CNV 
genes. These results also indicate that CNV genes are highly regulated by both classes of miRNAs 
which further supports the unique and complex regulation of human CNV genes. Comparisons of the 
mean length values of of 5′  UTR, CDS and 3′  UTR between CNV and non-CNV genes of humans 
showed no significantly difference (p >  0.05; using ANOVA test) in support of our previous conclusion 
that the differences were not due to differences in the length of the CNV and non-CNV gene regions 
(Supplementary data, Table S5).

To further support the notion that the CNV genes are more likely to be regulated by both classes of 
miRNAs in humans, we downloaded their DERs from the fitSNPs. This DER value represents the preva-
lence of differential expression of a gene in multiple microarray profiles between thousands of specimens 
and is estimated by analyzing all the documented human microarray datasets under GEO repository 

Figure 6.  Mean number of miRNA binding sites per gene of CNV and non-CNV miRNAs on human 
genes (CNVs and non-CNVs). (A) Mean value of target genes predicted for CNV- and non-CNV-miRNAs 
and (B). Mean value of DERs of putative targets (human CNV and non-CNV genes) targeted by CNV- and 
non-CNV miRNAs. Data represent mean + /−  standard error of the mean (SEM).
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at NCBI. It can be used, therefore, as a comprehensive atlas for the differential expression patterns of 
human genes at transcriptomic level. It is expected that genes with high DER values will exhibit a more 
complex and tighter expression regulation. In addition, it has previously been demonstrated that genes 
with high DER values are more likely to have disease-associated variants18. Comparison of the mean 
values of DERs for the putative targets predicted for CNV- and non-CNV-miRNAs showed that both 
classes of miRNAs have a significantly higher mean DERs values (p =  0.008 and p =  0.0074 for CNV-, 
and non-CNV-miRNAs, respectively; Wilcoxon rank-sum test) for CNV genes. These findings further 
support our previous studies in which we demonstrated that the number of distinct miRNA types and 
the average number of miRNA binding sites in genes belonging to CNV regions are significantly higher 
than the ones in non -CNV regions (Fig. 6B).

Discussion
There is a well-established relationship between changes in gene expression and phenotypic variability 
at the organismal as well as at the cellular level19,20. Consequently, by understanding and elucidating the 
complex networks involved in gene expression regulation will aid in figuring out the phenotypic differ-
ences among species under normal and possibly pathological conditions. At the genomic level, various 
elements interact with each other resulting in a fine-tuned regulation of protein coding genes. Major 
players in this complex interplay are miRNAs. These short non-coding RNA moieties are well established 
regulators of gene expression and are involved in a plethora of biological processes. We and others have 
demonstrated previously that miRNAs have greater potential for interacting with genes found in CNV 
regions of the genome. In this way, they act as buffers in response to the higher and probable toxic 
expression of CNV genes during evolution. At the same time, it appears that the interconnection between 
these two elements follows a unique pattern of regulatory mechanism in the human lineage. As gene 
expression and regulation can determine to a great degree the phenotype of an organism, the interactions 
of CNV genes with various genomic elements like miRNAs might help identify unique physiologic prop-
erties of humans. In this study, we performed a comprehensive analysis of the regulatory interactions of 
CNV and non-CNV genes in eight different species (gga, cfa, bta, rno, mmu, mml, ptr, hsa). By using 
genes with 3′  UTR shorter than 7 nts that lose the “canonical” miRNA-dependent regulation as a model 
we were able to explore the nature of CNV genes expression regulation and examine the differences 
between human and other species.

Humans appear to have significantly fewer genes with short 3′  UTRs than all the other seven species 
investigated. The small number of such genes highlights the importance of miRNA-dependent regulation 
in the human lineage. This observation together with our previous data, in that human genes are regulate 
by more miRNAs than their homologues in other species, indicate that human genes are under a tighter 
regulation regiment.

Surprisingly, though, when we divided those genes into CNV and non-CNV categories, we observed 
that while in all the other species the majority of short 3′  UTR genes belongs in the non-CNV category, 
human follow the exact opposite trend suggesting an alternative mechanism of regulation of these genes 
in human lineage. If CNV genes require a higher degree of miRNA regulation, then why are these short 
3′  UTR genes enriched in that category? Assuming that the formation of new miRNA binding sites on 
genes is linked directly or indirectly to CNV-formation, short 3′  UTR genes in humans will be pertained 
with a higher frequency in CNV regions, as these genes may favor the formation of miRNA binding sites 
in the regions such as the 5′  UTR. Indeed, our data demonstrated that in the absence of 3′  UTR, the 
category of CNV genes in humans specifically accumulate more miRNA binding sites on the mRNA 5′  
UTR region. This may represent a compensatory mechanism in response to the loss of the “canonical” 
miRNA regulation. Evolution of the “non-canonical” regulation will probably be favored only on CNV 
regions in the human lineage.

Pathway analysis of the short 3′  UTR genes revealed two pathways which are significantly enriched in 
the majority of species in all the three categories. The Olfactory- and Taste-transduction pathways were 
found significant for six (cfa, hsa, mml, mmu, ptr and rno) out of eight species. It is interesting to note 
that in humans, genes with short 3′  UTRs are enriched only in the above mentioned pathways. As these 
genes lose the “canonical” miRNA-dependent regulation, they are expected to have deregulated levels 
of expression and mRNA stability21,22. However, the presence of such genes might not be permitted in 
dosage-sensitive or disease-related pathways in humans. In support of this, alternative polyadenylation 
and 3′  UTR shortening were observed in carcinogenesis22. In addition, two species, cow and mouse, 
seem to be of considerable interest with regard to short 3′  UTR gene functional distribution. None of the 
identified pathways in this study were significant in cow. On the contrary, most of the identified pathways 
were found significant in mouse. Although, these observations cannot be readily explained from our 
data, the enrichment of many disease-related pathways with genes with reduced expression regulation, 
might question the suitability of the use of mouse as a model for various diseases. On the other hand, our 
results suggest that the rat profile may resemble more the human profile. This difference in expression 
regulation between the species may obscure scientific conclusions or result in false responses. Therefore, 
expression profiling studies between mouse and human in response to pathological interventions would 
be required to further support this hypothesis.

So what is happening when genes loose the “canonical” miRNA regulation? Numerous studies have 
demonstrated that miRNAs can bind in a “non-canonical” fashion on the 5′  UTR and coding sequences 
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of mRNAs and regulate their expression23–26 in humans and drosophila. So far, only a few resources such 
as miRWalk27 supply miRNA binding site predictions within the complete sequence (promoter, CDS, 
5′  and 3′ UTR regions) of genes. Such binding interactions can result in both translational activation 
and translational inhibition via different mechanisms. The increased number of miRNA binding sites 
observed on the 5′  UTR of human CNV genes lacking 3′  UTR (Fig.  3), may indicate the presence of 
an evolutionary compensatory mechanism to counteract the absence of “canonical” miRNA-mediated 
expression regulation for those genes. This appears to be human specific reinforcing the notion that 
human CNV genes are under a tighter gene expression regulation than in other species. A similar pattern 
was observed during the SNP distribution analysis on CNV and non-CNV genes. Moreover, all human 
genes demonstrated a higher SNP density in all gene regions as compared with other species indicating 
an evolutionary connection with miRNA binding site accumulation that is confined to the “canonical” 
miRNA-dependent regulation.

The complex and rigid expression regulation of CNV genes is also evident from their higher DER 
values. Is this tight regulation advantageous for the human lineage? Certainly, more studies are required 
to confirm this. One could assume that this differential CNV gene regulation may have contributed to 
the specific physiologic characteristics of the human species. At the same time, however, it may act as 
an obstacle to any spontaneous compensation of gene expression levels under a pathologic insult and 
contribute to the development and progression of human diseases.

It should be emphasized that the results of this study should be interpreted with caution. Compared 
to humans, genomic data in other species are limited. As a result, we had to utilize human miRNAs and 
human CNV genes to interrogate other species genomes. This might create an unavoidable bias. More 
importantly, SNP comparison analysis is only indicative of a potential trend. As a result of numerous 
population studies in humans many more SNPs were discovered as compared with other species. We 
attempted to minimize the aforementioned limitations by data normalization and distribution analysis 
but certainly further validation is needed. Nevertheless, despite these limitations our data support the 
notion of a complex and tight regulation of CNV genes in general and specifically of human CNV genes.

Materials and Methods
Compilation of CNV and non-CNV genes, and their classification into long, and short 3′ 
UTR.  Homologous CNV and non-CNV gene information acquisition was accomplished as described 
by28. Briefly, first, the information on CNV and all known human genes was collected from the Database 
of Genomic Variants29 and Gene database (ftp://ftp.ncbi.nih.gov/gene/DATA/), respectively. Second, the 
homologous gene datasets for 7 other species: chicken (gga), dog (cfa), cow (bta), rat (rno), mouse 
(mmu), macaque (mml) and chimpanzee (ptr) were gathered from HomoloGene (ftp://ftp.ncbi.nih.gov/
pub/HomoloGene/). Third, in order to build a comprehensive list of homologous CNV and non-CNV 
gene categories, human CNV genes were mapped to homologous gene datasets of 7 other species 
(Supplementary Data as Table S6). Thereafter, these two categories (CNV and non-CNV genes) were 
further classified into two different classes: long and short 3′  UTR genes, by estimating 3′  UTR length of 
all known genes of the 8 species. In order to estimate 3′  UTR lengths, information on all known mRNAs 
of the 8 species was downloaded from RefSeq (ftp://ftp.ncbi.nih.gov/refseq/)30. A customized “Perl script” 
(http://www.perl.com) was written to parse only the information of interest (EntrezID, RefseqID, mRNA 
length, CDS start and end positions). The parsed data (mRNA information) was then compiled in a file 
and mapped to CNV and non-CNV genes. During this mapping step, some of these genes were found 
to match with more than one transcript; therefore, in order to maintain this list non-redundant, only the 
longest mRNAs were selected for every gene. Following this, the 3′  UTR length for each gene was calcu-
lated by subtracting the end positon of CDS region from its mRNA length and the genes were categorized 
into two classes: long and short 3′  UTR. The long 3′  UTR class contains those genes having at least 8nt 
long 3′  UTRs, whereas the remaining genes were assigned under the short 3′  UTR class.

Classification of human miRNAs into CNV- and non-CNV classes.  The sequence of human miR-
NAs (n =  2,578) and their coordinates were obtained from miRBase release 20 (ftp://mirbase.org/pub/
mirbase/20/)31, whereas, the genomic coordinates of human CNV genes were downloaded from NCBI 
ftp site (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/). Following this, the genomic locations of downloaded 
miRNAs were scanned against the coordinates of human CNV genes by a customized “Perl script”. The 
miRNAs that overlapped within CNV regions were designated as “CNV-miRNAs”, while, the remaining 
miRNAs were termed as “non-CNV-miRNAs”.

miRNA binding site predictions and their enrichment analysis within CDS, 5′ and 3′ UTR 
regions.  The mRNA sequences of CNV and non-CNV genes of 8 species were retrieved from 
RefSeq (ftp://ftp.ncbi.nih.gov/refseq/). A screening was carried out by locally executing two differ-
ent miRNA-target prediction algorithms: miRWalk (http://zmf.umm.uni-heidelberg.de/apps/zmf/
mirwalk2/)27 and Targetscan32 to identify the possible interactions between human miRNAs and the 
downloaded sequences of CNV, and non-CNV genes of 8 species. It has previously been shown that by 
considering the miRNA binding site prediction datasets resulting from different algorithms helps to min-
imize both, the number of putative target genes as well as false positive targets genes7,28,33. Information 
on miRNA-target interactions obtained from the miRWalk algorithm (16 datasets: CNV and non-CNV) 

ftp://ftp.ncbi.nih.gov/gene/DATA/
ftp://ftp.ncbi.nih.gov/pub/HomoloGene/
ftp://ftp.ncbi.nih.gov/pub/HomoloGene/
ftp://ftp.ncbi.nih.gov/refseq/
http://www.perl.com
ftp://mirbase.org/pub/mirbase/20/
ftp://mirbase.org/pub/mirbase/20/
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
ftp://ftp.ncbi.nih.gov/refseq/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
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and Targetscan (16 datasets: CNV and non-CNV) was preprocessed to remove unnecessary data and 
separated into several lists (n =  32). To attain only those interactions predicted with both algorithms, 
the lists of Targetscan were then mapped to the ones resulted from miRWalk as described elsewhere7,28. 
Thereafter, the binding site interactions between human miRNAs and CNV and non-CNV genes pre-
dicted with both algorithms were compiled and subjected to further analysis. To identify the enrichment 
of miRNA binding site within CNV and non-CNV categories including short and long 3′  UTR genes, 
a customized “R script” was employed using Fisher’s exact test with Benjamini and Holm (BH) method 
with 5% level of significance as previously described 7. Briefly, first, the total number of miRNA binding 
sites within 5′  UTR, CDS and 3′  UTR regions of all known genes (CNV and non-CNV) of 8 species was 
computed. These values were further stored into various files (for example, cnv-ncnv.txt i.e., comparison 
between CNV and non-CNV genes including short and long 3′  UTRs) having 5 columns. In a next 
step, an overrepresentation analysis was carried out to evaluate the enrichment of miRNA binding sites 
within the different regions of known genes belonging to short and/or long 3′  UTR (CNV and non-CNV 
categories).

Pathway enrichment analysis.  The short 3′  UTR homologous genes belonging to two different 
categories (CNV and non-CNV regions) of 8 species were interrogated to identify significantly enriched 
KEGG pathways34 using a customized “R script” by implementing Fisher’s exact test with the Benjamini 
and Hochberg (BH) as a multiple testing (background correction) method with 5% level of significance.

Acquisition of DERs and SNPs.  Differential Expression Ration (DERs) values for human genes were 
attained from fitSNPs database18. The DER value of a human gene represents its observed frequency of 
differential expression that is calculated by analyzing all human microarray profiling studies documented 
under the Gene Expression Omnibus (GEO at http://www.ncbi.nlm.nih.gov/geo/).

Information on single nucleotide polymorphisms (SNPs) on CDS, 5′  and 3′  UTR regions of human, 
mouse, rat and chicken was extracted from SNP database by using the user interface (http://www.ncbi.
nlm.nih.gov/snp/limits).

Statistical comparison of mean values.  In order to evaluate the statistical significance on the mean 
values (such as miRNA binding sites, SNPs and DERs per gene) among different species, analysis of var-
iance (ANOVA) was firstly applied to test the null hypothesis (i.e., Ho: all means are equal) followed by 
the multiple comparison using Wilcoxon rank-sum test with 5% level of significance (p <  0.05).
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