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Abstract: Fucoidans represent a type of polyanionic fucose-containing sulfated polysaccharides
(FCSPs) that are cleaved by fucoidan-degrading enzymes, producing low-molecular-weight fucoidans
with multiple biological activities suitable for pharmacological use. Most of the reported fucoidan-
degrading enzymes are glycoside hydrolases, which have been well studied for their structures
and catalytic mechanisms. Little is known, however, about the rarer fucoidan lyases, primarily
due to the lack of structural information. FdlA from Flavobacterium sp. SA-0082 is an endo-type
fucoidan-degrading enzyme that cleaves the sulfated fuco-glucuronomannan (SFGM) through a
lytic mechanism. Here, we report nine crystal structures of the catalytic N-terminal domain of FdlA
(FdlA-NTD), in both its wild type (WT) and mutant forms, at resolutions ranging from 1.30 to 2.25 Å.
We show that the FdlA-NTD adopts a right-handed parallel β-helix fold, and possesses a substrate
binding site composed of a long groove and a unique alkaline pocket. Our structural, biochemical,
and enzymological analyses strongly suggest that FdlA-NTD utilizes catalytic residues different from
other β-helix polysaccharide lyases, potentially representing a novel polysaccharide lyase family.

Keywords: fucoidan lyase; polysaccharides; crystal structure; catalytic mechanism

1. Introduction

Fucoidans are a class of sulfated, fucose-rich polysaccharides produced by brown algae
and certain marine invertebrates [1,2]. The backbone of fucoidans is generally linked via an
α-1,3- and/or α-1,4-glycosidic bond and is highly variable in length and monosaccharide
composition. In addition to fucose (Fuc), fucoidans also contain galactose (Gal), mannose
(Man), glucuronic acid (GlcUA), and other types of monosaccharide [3]. Moreover, the
L-fucose residues in fucoidans are usually sulfated at different hydroxyl group positions,
including C-2, C-3, and C-4 [4]. The diverse composition in monosaccharides, the variation
in sulfate ester pattern and content, and the different branching sites for sugar chains
result in considerable structural variation among fucoidans produced by different brown
algae [5,6]. Furthermore, the structural complexity of fucoidans is influenced by other
factors, including the geographical locations of macroalgal species, the specific time of
harvest of brown algae, as well as the methods used for isolation and purification of
fucoidans [7].

Fucoidans represent a suitable candidate drug possessing antiviral activity, as they
were recently reported to effectively inhibit SARS-CoV-2 [8]. It was shown that fucoidans
tightly bind to the S-protein of SARS-CoV-2, thus acting as a decoy that interferes with the
binding of the S-protein to the heparin sulfate co-receptor present at the surface of host cells,
potentially inhibiting viral infection [8]. In addition to their antiviral activity, fucoidans
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show antithrombotic, anticoagulant, anti-inflammatory, antitumor, and immunomodula-
tory effects [9,10]. One report indicated that the sulfate patterns (the sulfate content and the
position of the sulfate groups) present on fucoidans are important for their bioactivity [11].
However, native fucoidans are usually characterized by high molecular weight, high vis-
cosity, and irregular structures, considerably hindering their application as therapeutic
agents. In contrast, low-molecular-weight fucoidans (LMWFs) are easily absorbed and
possess higher bioavailability, rendering these polysaccharides a more promising target
for pharmaceutical use [9,12]. Therefore, depolymerization of HMWFs into LMWFs using
specific enzymes is a suitable approach, as it preserves the integrity of the specific structure
of fucoidans and generates relatively homogeneous degradation products.

Fucoidan-degrading enzymes are promising tools for producing bioactive fucoidan
oligosaccharides for a range of biomedical applications [13,14]. Fucoidan-degrading
enzymes differ in their mode of action and are usually classified into exo- or endo-
enzymes [12]. Exo-fucoidan-degrading enzymes are capable of cleaving fucoidans from
the terminus of the sugar chain, usually producing monosaccharides. Endo-fucoidan-
degrading enzymes break the glycosidic bond from the middle of the sugar chain to
produce oligosaccharides exhibiting different degrees of polymerization [15]. Currently,
all fucoidan-degrading enzymes that have been identified act as endo-hydrolases, and
are classified into glycoside hydrolases (GHs) family 107 (GH107, endo-α-1,4-L-fucanase
(EC 3.2.1.212)), and 168 (GH168, endo-α-(1,3)-L-fucanase (EC 3.2.1.211)) in the Carbo-
hydrate Active enZymes database (CAZy database, http://www.cazy.org, accessed on
1 July 2022) [16,17]. The marine bacterium Flavobacterium sp. SA-0082 was earlier reported
to produce a novel type of extracellular endo-fucoidan lyase that cleaves the sulfated
fucoglucuronomannan from Kjellmaniella crassifolia (Kj-fucoidan) [18,19]. Two genes that
encode for putative fucoidan lyase have been identified in the genome of this marine
bacterium (Flavobacterium sp. SA-0082), and their gene products were termed FdlA and
FdlB [19]. These two enzymes are 56% identical at the amino acid sequence level. The
enzymatic activity of FdlA is higher than that of FdlB when acting on Kj-fucoidan [20].

Earlier studies carried out biochemical characterization and enzymatic analysis for
native FdlA, demonstrating that the optimal conditions for catalytic activity of FdlA are a
temperature of 40 ◦C, slightly alkane pH of pH 7.5, as well as the presence of NaCl at 0.4 M
concentration [12,21]. Previous studies found that polysaccharides lacking sulfated fucose
are not cleaved by native FdlA, indicating that the sulfated fucoses of fucoidans are impor-
tant components for their recognition and cleavage by the lyase [19]. The final products
of Kj-fucoidan cleaved by FdlA were identified as three types of trisaccharides, charac-
terized by an identical backbone structure termed ∆4,5GlcpUAβ1-2L-Fucpα1-3D-Manp.
Nevertheless, these trisaccharide molecules possess different numbers of sulfate groups
and/or different sulfation positions, namely monosulfated (Molecular weight (Mw) 564
Da, Fucp(3-O-sulfate)), disulfated (Mw 644 Da, Fucp(3-O-sulfate)α1-3D-Manp(6-O-sulfate)),
and trisulfated (Mw 724 Da, Fucp(2,4-O-disulfate)α1-3D-Manp(6-O-sulfate)) trisaccharides
(Scheme 1), with the monosulfated form being the major degradation product [21]. Based
on the structures of the final products, it can be deduced that FdlA acts on the α-1,4-linkage
between D-mannose and D-glucuronic acid in Kj-fucoidan, which possesses a branched
sulfated fucose linked on the C-3 hydroxyl group of D-mannose [5,21]. However, de-
spite the extensive body of biochemical and enzymological analysis, the precise catalytic
mechanisms responsible for FdlA activity remain elusive.

To date, FdlA has not been classified into any enzyme family in the CAZy database.
However, as it acts as a uronic acid-containing polysaccharide lyase, it presumably belongs
to the family of polysaccharide lyases (PL). At present, 42 PL families have been identified
in the CAZy database, and are grouped into six classes based on their overall folding,
namely into the right-handed parallel β-helix class (termed β-helix henceforth), the (α/α)n
barrel class, the β-jelly roll class, the β-propeller class, the β-sandwich and β-sheet class,
as well as the triple-stranded β-helix class [22]. Members from the same PL family show
high sequence similarity and possess essentially conserved catalytic residues. However,
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FdlA exhibits low amino acid sequence homology with all these PL members, rendering
it impossible to classify FdlA into the existing PL families without information about its
structure and key catalytic residues [5,23].
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Despite possessing different folds, all PLs degrade uronic acid-containing polysaccha-
rides via a β-elimination mechanism, utilizing Brønsted base and acid to cleave the scissile
glycosidic bond [24]. This reaction process yields a new non-reducing end with an unsatu-
rated bond in the sugar products. The catalytic mechanisms of PLs are generally divided
into two groups based on the neutralizers used for the C-5 carboxyl group: (i) His/Tyr
β-elimination and (ii) metal ion (usually Ca2+)-assisted β-elimination. In the former type,
amino acid residues are used as a neutralizer, and a histidine and a tyrosine usually act as
Brønsted base and acid, respectively. In the latter, a metal ion serves as a neutralizer, and
an arginine and a lysine commonly act as Brønsted base and acid, respectively [25]. One
previous report found that metal ions are unable to stimulate FdlA activity [19], suggesting
that FdlA adopts the His/Tyr β-elimination mechanism for catalysis. However, the key
residues for catalysis and their locations in FdlA remain unclear.

While previously obtained structural and enzymatic data provide important infor-
mation for understanding the structure and function of fucoidan hydrolases and polysac-
charide lyases, the overall folding and the catalytic mechanism of fucoidan lyases remain
to be elucidated. Here, we report crystal structures and enzymological characterization
of wild type (WT) and eight single mutants of the catalytic N-terminal domain (NTD)
of FdlA, revealing its unique substrate binding pocket and identifying the key catalytic
residues. Our results provide detailed structural information on fucoidan lyase and there-
fore should facilitate a deeper understanding of the catalytic mechanisms used by uronic
polysaccharide lyases.

2. Results
2.1. Purification and Biochemical Characterization of FdlA-NTD

As shown in Figure S1, the full-length FdlA from Flavobacterium sp. SA-0082 contains
697 amino acid residues including a secretory signal peptide (Met1–Thr24). Based on
the conserved domain database (CDD), the C-terminal region (residue 472–697) of FdlA
contains an F5/8 type C domain (known as the discoidin domain) and a por secretion tail
(known as a secretion system C-terminal sorting domain) [26,27], thus it may not be related
to FdlA lyase activity, while its NTD is likely to constitute the catalytic domain of FdlA.
This assumption was supported by sequence alignment of FdlA and FdlB, another fucoidan
lyase from Flavobacterium sp. SA-0082. This result showed that both enzymes contain an
N-terminal domain with a high sequence identity of approximately 75% (Figure S1).

As the full-length FdlA tends to aggregate when expressed in E. coli, we constructed a
truncated version of FdlA solely consisting of the NTD (FdlA-NTD, residue 25–471), and
successfully expressed and purified the truncated recombinant enzyme (Figure S2A,B).
Size exclusion chromatography indicated that this FdlA-NTD form exists in solution as
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monomers. Circular dichroism (CD) analysis showed that FdlA-NTD is stable at temper-
atures below 35 ◦C for at least 120 min, while its secondary structure starts to change at
40 ◦C following a short incubation of 10 min (Figure S2C). This observation suggested
that FdlA-NTD is characterized by low heat resistance. Furthermore, our FdlA-NTD form
exhibited superior pH stability under neutral and alkaline pH conditions, preserving its
secondary structure at pH 6.0–11.0, even after extended incubation of 17 h (Figure S2D).

2.2. Enzymatic Properties of FdlA-NTD

We next evaluated the activity of FdlA-NTD under various conditions by measuring
the 232 nm absorption of the products of Kj-fucoidan degraded by FdlA-NTD (Figure 1),
according to a previously described method [19]. FdlA-NTD shows relatively high salt
tolerance, displaying the highest activity in the presence of 0.5 M NaCl (Figure 1A). The
optimal pH and temperature for catalytic activity of FdlA-NTD were pH 7.5 and 40 ◦C after
1 min-incubation (Figure 1B,C). However, we found that FdlA-NTD activity was greatly
decreased after incubation at 40 ◦C for 5 min and its enzymatic activity was almost com-
pletely lost following 30 min-incubation (Figure 1D). Our enzymatic data were consistent
with the CD results obtained for FdlA-NTD (Figure S2C). On the basis of these findings, we
next performed all enzyme reactions under the optimal conditions but at room temperature
(25 ◦C) instead of 40 ◦C.
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Figure 1. Biochemical and enzymatic characterization of FdlA-NTD using Kj-fucoidan as the substrate.
(A) Effects of NaCl on FdlA-NTD activity. (B) Effects of pH on FdlA-NTD activity. (C) Effects of
temperature on FdlA-NTD activity. (D) The kinetics of the thermal inactivation of FdlA-NTD at 20 ◦C
(black diamond), 30 ◦C (yellow circle), 35 ◦C (red square) and 40 ◦C (green triangle). (E) Effects of
metal ions and chemical reagents on FdlA-NTD activity. (F) The catalytic kinetics of FdlA-NTD. Error
bars represent standard deviation (n = 3 independent experiments).

Enzymes of the PL family are commonly found to be associated with metal ions,
especially Ca2+. These ions participate in the catalytic step through a metal-dependent
β-elimination mechanism. One earlier study demonstrated that native FdlA does not
require metal ions for catalysis [19]; therefore, we tested the effect of metal ions and a
variety of chemical reagents on the enzymatic activity of FdlA-NTD. As shown in Figure 1E,
most metal ions, including Ca2+ and Ba2+, failed to affect the catalytic activity of FdlA-NTD,
while Cu2+ and Fe3+ greatly inhibited the catalytic activity of FdlA-NTD. A small number
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of chemical reagents, including EDTA, slightly stimulated FdlA-NTD activity. Together,
these results strongly suggested that the activity of FdlA-NTD, similar to that of the native
full-length protein, is independent of metal ions [19]. On the basis of these findings, we
concluded that the truncated FdlA-NTD possesses identical enzymatic properties as its full-
length native protein, and it may adopt the His/Tyr elimination mechanism for catalysis.

We next determined the kinetic parameters of the catalytic reaction of recombinant
FdlA-NTD with Kj-fucoidan concentrations ranging from 0.2 to 2% (w/v) for 1 min, under
the optimized conditions (Figure 1F), using the Lineweaver-Burk equation [28]. The
kinetic values obtained were only the apparent parameters, as saturation of Kj-fucoidan
towards FdlA-NTD was not reached, even at an almost saturated concentration of Kj-
fucoidan. The calculated apparent Km and kcat values of FdlA-NTD towards Kj-fucoidan
were 7.7 ± 0.5 mg/mL and 59.0 ± 4.3 s−1, respectively, resulting in the kinetic efficiency
(kcat/Km) of 7.66 ± 0.011 mL/mg/s.

2.3. Analysis of Degradation Products of the FdlA-NTD

To identify the degradation products of FdlA-NTD, we purified its degraded oligosac-
charide products through high-performance liquid chromatography (HPLC) before charac-
terizing these products by mass spectrometry (MS) (Figure 2). Analysis of the primary MS of
peak at m/z 563.146 (Figure 2B). The molecular weight was consistent with a monosulfated
trisaccharide, the major trisaccharide product previously reported for native FdlA [21]. Fur-
ther analysis of the secondary MS of the peak at m/z 563.146 identified the exact structure of
the degradation product as44,5GlcpUAβ1-2(L-Fucp(3-O-sulfate)α1-3)D-Manp, matching
well with the previously the digested products showed that the major degradation product
corresponded to the reported monosulfated trisaccharide product.
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Figure 2. Identification of products of the Kj-fucoidan digested by FdlA-NTD. (A) The HPLC
purification of Kj-fucoidan products degraded by FdlA-NTD. (B) Mass spectrum (negative ESI-MS)
of the products of Kj-fucoidan cleaved by FdlA-NTD. The secondary MS result is shown in the inset.

2.4. Overall Structure of FdlA-NTD

We solved the crystal structure of FdlA-NTD WT at 1.3 Å resolution using the single-
wavelength anomalous diffraction (SAD) method (Table S1). In the FdlA-NTD structure,
two molecules are present in an asymmetric unit and adopt nearly identical conformations,
with a root-mean-squares deviation (RMSD) of 0.11 Å for all Cα atoms (Figure S3).

FdlA-NTD forms a right-handed parallel β-helix (Figure 3A), one type of the six PL
classes, shaping like a fish skeleton with a dimension of 67 Å × 22 Å × 47 Å. Here, we
adopted the nomenclature of Yoder and Yurnak in describing the β-helix structure [29].
The β-helix fold comprises three parallel β-sheets, PB1, PB2, and PB3, together with three
turns (T) linking two β-strands, T1 (between PB1 and PB2), T2 (between PB2 and PB3), and
T3 (between PB3 and PB1). In most β-helix proteins, PB1 and PB2 form an antiparallel β
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sandwich, while PB3 is positioned nearly perpendicular to PB2. The regular β helix unit
can be regarded as one coil with a specific order of PB1-T1-PB2-T2-PB3-T3 (Figure 3A).
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Figure 3. Overall structure of FdlA-NTD. (A) Cartoon representation of FdlA-NTD. The PB1 (orange),
PB2 (violet), PB3 (green), and accessory elements, including four α helices (α1–α4, light cyan) and
two pairs of antiparallel strands (β1–β2 and β3–β4, slate) are indicated. Coil 4 as a representative
coil of β-helix structure was shown in the inset. (B) The groove formed by PB1 (orange) and T3
(light pink), and enclosed by α3–α4, β1–β2 and T3 loops from coils 4 and 6 (cyan) at one side, β3–β4
(slate) at the opposite side, and the T1 loop from coil 11 (yellow) at the C-terminal end. (C) The
unusual cysteine ladder as well as four aliphatic stacks and a short asparagine ladder located inside
the β-helix structure of FdlA-NTD. The residues constitute various ladders and stacks are shown as
sticks, and in different colors for carbon atoms. (D) Electrostatic surface representation of FdlA-NTD
(blue and red represent the positive and negative charge, respectively). Three sulfate groups in the
‘groove-pocket’ region are shown in ball-and-stick mode. S1 is located in the alkaline pocket at the
C-terminal end of the groove (marked by dotted circle).
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The FdlA-NTD molecule contains 13 coils, with coils 1–6 being complete, while the
other coils lacking either PB1 or PB3. The T3 loops at coils 1–9 together with the adjacent
PB1 sheets form a 30-Å long concave groove at the surface of the β-helix (Figure 3B). PB2s
and PB3s are located at the bottom face of the β-helix, beneath PB1s and T3s, respectively,
supporting the shape of the groove from below.

In addition, FdlA-NTD possesses several accessory elements, including four α-helices
(α1–α4) and two pairs of antiparallel strands (β1–β2 and β3–β4) (Figure 3A). The α1 is
an amphipathic helix lying at the N-terminal end of the β-helix, with the hydrophobic
region facing towards the β-helical interior. Two helices (α3 and α4) as well as one pair
of antiparallel strands (β1–β2) are located at the T3 loop of coil 5. Together with the long
flexible T3 loops at coil 4 and coil 6, these fragments form a side wall at one side of the
groove, while the other pair of antiparallel strands (β3–β4) inserts into the T1 loop of coil
6, and shapes the opposite side-wall of the groove. At the C-terminal end, the groove
is sealed by the T1 loop, which is located in coil 11 and protrudes upwards (Figure 3B).
This structural arrangement suggests that these accessory elements play a pivotal role in
encircling the elongated groove, and this semi-open groove presumably constitutes the
substrate binding site for FdlA-NTD.

2.5. Structural Elements for FdlA-NTD Stabilization

A β-helix fold usually contains a number of characteristic residues whose side-chains
are stacked or aligned either within the interior, or sometimes at the exterior space, of the
β-helix [29–31]. These residues greatly contribute to the stabilization of β-helix proteins
and are generally divided into three types: asparagine ladders, aliphatic stacks (comprising
mainly residues Val, Ile, and Leu), and aromatic stacks [32]. When analyzing the FdlA-NTD
structure, we identified four aliphatic stacks and one short asparagine ladder (Figure 3C).
The longest aliphatic stack on PB2 is located opposite the other three shorter aliphatic stacks
lying on PB1 and PB3, and contains 12 hydrophobic residues located on coils 2–13, almost
spanning across the entire molecule. In addition to these common stacks and ladders, we
also found an unusual cysteine ladder composed of five cysteine residues (Cys168, Cys192,
Cys267, Cys290, Cys309) that are located at the T2-PB3 juncture of coils 4–8 (Figure 3C),
beneath the potential substrate binding groove. Together, these stacks and ladders stabilize
the β-helix folding of FdlA-NTD.

2.6. FdlA Uses a Unique Positively-Charged ‘Groove-Pocket’ for Substrate Binding

Enzymes belonging to five PL families (PL1, PL3, PL6, PL9, and PL31) adopt right-
handed parallel β-helix folding, similar to FdlA-NTD. We compared our FdlA-NTD
structure with lyase structures selected from each of the five families (PL1-pectate lyase:
2ewe [30]; PL3-pectate lyase: 4z04 and 4ew9 [33]; PL6-alginate lyase: 6itg and 6a40 [34];
PL9- pectate lyase: 5olq and 5olr [35]; PL31-alginate lyase: 6kfn [36]), and found that
FdlA-NTD failed to superimpose well with these PLs (r.m.s.d of 2.5–3.6 Å for all Cα atoms).
Besides this, FdlA-NTD exhibits low sequence homology (lower than 15%) and possesses
non-conserved catalytic residues with all other structurally characterized PL proteins
(Figure S4).

One common feature of all these β-helix PLs is that they possess a surficial groove that
was previously shown to be the substrate binding groove of these PLs [30,33–36]. However,
the T1 and T3 loops of these enzymes exhibit a wide range of lengths and adopt different
conformations, resulting in the different sizes and shapes of these grooves (Figure S4).
These structural variations may facilitate specific substrate recognition, in agreement with
the fact that these enzymes differ in their substrate selectivity.

In contrast to other PL enzymes, which form a planar groove, FdlA-NTD extends its
C-terminal part of the surficial groove into a deep pocket, measuring 11 Å × 13 Å × 8 Å
(Figure 3D). The region comprising the deep pocket and the C-terminal part of the groove
(between coil 5 and coil 9) is characterized by a strong positive charge (Figure 3D), which is
unfavorable for metal binding due to the electrostatic repulsion. This feature is in agreement
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with the results of our enzymatic assays, showing that FdlA-NTD catalysis is independent
of metal ions. In agreement with this result, the β-helix PLs (from PL1, PL3, PL9, and
PL31) adopting metal-dependent elimination mechanism possesses an acidic active region
(Figure S4), which presumably stabilizes the binding of metal ions.

Moreover, we observed several bulbs of non-protein densities in the ‘groove-pocket’
region, and modeled these densities as three sulfate groups (S1–S3) (Figures 3D and S5A),
based on the density shape and the fact that high concentration of sulfate ammonium
was added in the crystallization reagent. One sulfate S1 is located in the alkaline pocket
(Figure 3D), strongly indicating that the positively charged pocket facilitates the attraction
and interaction with the negative charged sulfate groups of fucoidans, explaining the
previous observation that FdlA can only cleave fucoidans containing sulfated fucoses.
We docked a monosulfated trisaccharide into the FdlA-NTD structure and found that
the alkaline pocket can well accommodate the trisaccharide (Figure S5B), thus the pocket
may act as an anchor to grasp the bent sugar chain tightly into the ‘groove-pocket’ region.
Compared with a planar groove, the ‘groove-pocket’ mode is more suitable for the branched
polysaccharide chain and thus may play an essential role in substrate recognition and
stabilization. Such a structural design can be very efficient in the degradation of high
molecular weight polysaccharides with branched chains.

2.7. Enzyme-Substrate Docking Model Reveal the Catalytic Site

As we failed to obtain the structures of FdlA-NTD in complex with substrate or product
or their analogues, we then docked [37] representative substrate oligosaccharides, namely
hexasaccharide (HS), nonasaccharide (NS), and dodecasaccharide (DS) ((44,5GlcpUAβ1-
2(L-Fucp(3-O-sulfate)α1-3)D-Manp)-α1-4GlcpUAβ1-2(L-Fucp(3-O-sulfate)α1-3)D-Manp)1-3,
into the FdlA-NTD structure, and established three docking models, namely FdlA-NTD-HS,
FdlA-NTD-NS, and FdlA-NTD-DS (Figure 4). When we analyzed the FdlA-NTD-HS model,
we observed that one trisaccharide unit is accommodated in the alkaline pocket, while
another trisaccharide unit is bound within the groove. In FdlA-NTD-NS and FdlA-NTD-DS,
models of FdlA-NTD binding to longer oligosaccharides, we found that the first trisaccha-
ride unit is deeply inserted inside the pocket, and the second trisaccharide is positioned
at the opening of the pocket. The remaining one or two trisaccharide units are located
within the groove (Figure 4A). These results confirmed our hypothesis that the alkaline
pocket is responsible for binding a trisaccharide unit of the sugar substrate. Interestingly,
the sulfate groups of different substrates are not located at the same position within the
alkaline pocket, which is probably because the entire pocket is positively charged, thus
enabling the sulfate group of trisaccharides to bind at multiple sites. This observation also
explains the finding of a previous study, showing that the native FdlA is able to degrade
fucoidans of different sulfated levels and produce three types of trisaccharides [21].

Previous results suggested that the site within the oligosaccharides that is attacked
by FdlA is the glycosidic O (C-4 oxygen) atom between two neighboring trisaccharide
units [21]. Our docking models showed that these oligosaccharides contain two trisac-
charides located at similar positions, independent of their length. The glycosidic O atom
between the two units can be well superimposed among three docking models (Figure 4A),
suggesting this C-4 oxygen atom represents the cleaved site. According to the nomencla-
ture of sugar-binding subsites proposed by Davies et al. [38], the monosaccharides are
numbered as the subsite +1, +2, +3, +n, starting from the cleaved site to the reducing end
of the polysaccharides, and −1, −2, −3, −n to the non-reducing end of the polysaccha-
rides. The proceeding of β-elimination catalysis requires neutralization of the C-5 carboxyl
group at +1 subsite. The carboxyl groups in the three docking models are also located at
similar places. In addition, both glycosidic O atoms between −1 and +1 subsites and the
carboxyl group at +1 subsite are hydrogen bonded with Tyr242 (Figure 4A), implying the
essential role of Tyr242 for FdlA-NTD catalysis. Tyr242 in the substrate binding groove
is located at the edge of the alkaline pocket (Figure 4A). This arrangement, together with
our observation that the pocket is able to accommodate a trisaccharide unit (Figure S5B),
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strongly suggests that Tyr242 directly participates in cleaving the substrate to produce
trisaccharides, and the alkaline pocket assists in orientating the polysaccharide substrate
into a position close to Tyr242. This suggestion is in line with findings from our enzymatic
analysis that the cleaved products of FdlA-NTD are exclusively trisaccharides (Figure 2).

Figure 4. Docking models of FdlA-NTD with three types of oligosaccharides. (A) Docking models of
FdlA-NTD with hexasaccharide (FdlA-NTD-HS, cyan), nonasaccharide (FdlA-NTD-NS, yellow), and
dodecasaccharide (FdlA-NTD-DS, deep salmon). Oligosaccharides are shown as sticks, the glycosidic
O atom at the putative cleavage site is highlighted as a red ball. Residue Tyr242 is shown as magenta
sticks and indicated. The bottom box shows the residues of FdlA-NTD potentially interacting with
HS in the FdlA-NTD-HS docking model. Residues are shown as sticks in different colors according to
their locations. Residues close to Tyr242 (His176, Phe179, Glu236, and Asn243) are shown as green
sticks for carbon atoms, residues shaping the alkaline pocket (Asp137, Arg272, His279, and Tyr322)
are shown as blue sticks for carbon atoms, residues Lys141 and Arg240 near the +1 subsite are shown
as yellow sticks for carbon atoms. Residues involved in the interaction with different subsites of HS
are listed. (B) The potential interactions between Tyr242, His176, and HS. Glycosidic O atom (red
ball) and carboxyl group at +1 subsite are hydrogen-bonded with Tyr242. (C) Interactions between
residues of FdlA-NTD and the C-5 carboxyl group at +1 subsite of HS. (D) Interactions between
residues of FdlA-NTD and the +2 and +F subsites of HS.
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2.8. Residues Essential for Enzymatic Activity of FdlA-NTD

Based on our crystal structure and docking models, we selected 11 residues poten-
tially essential for FdlA-NTD activity (Figure 4), and generated 12 single mutants, by
replacing each of the 11 residues with alanine as well as mutating Tyr242 to phenylalanine
(Figure S2B). We first measured the enzymatic activity of 12 mutants (Figure 5A) and found
that eight of them (D137A, K141A, H176A, F179A, E236A, R240A, Y242A, and Y242F)
almost completely abolished their activities, H279A mutant retained approximately 65%
of the activity compared with WT, while mutations of Asn243, Arg272, and Tyr322 to
Ala only negligibly affect their activities. These results are consistent with our docking
models, which showed that Asn243, Arg272, and Tyr322 are located slightly distant from
the substrate compared with other residues (Figure 4A). Circular dichroism (CD) spectra
showed that all inactive mutants possess similar secondary structures to the wild-type
protein (Figure 5B), indicating that the loss of activity of these mutants is due to the residue
mutations, but not protein conformational changes.
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Figure 5. Characterization of FdlA-NTD mutants. (A) Enzymatic activities of the WT and mutant
forms of FdlA-NTD towards Kj-fucoidan. (B) CD spectra of the WT and mutant forms of FdlA-NTD.
(C) Binding affinity of FdlA-NTD (wild type and inactive mutants) with the substrate (Kj-fucoidan).
The representative result of WT with Kj-fucoidan is shown.

To assess whether these mutations affect the interaction between FdlA-NTD and the
polysaccharide substrate, we next measured the binding affinity of FdlA-NTD (wild type
and inactive mutants) with the substrate (Kj-fuoicdan) using the MicroScale Thermophore-
sis (MST) method (Figures 5C and S6). We found that the inactive FdlA-NTD mutants
exhibited similar Kd values as the wild-type form. These binding assay data clearly demon-
strated that while our inactive mutants lost their catalytic activity, they maintained their
substrate binding ability. This experimental observation is in agreement with the fact that
the substrate of FdlA-NTD is a type of high molecular weight macromolecule, hence it may
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form multiple interactions with the protein. Thus, a single mutation of the enzyme does
not significantly affect its binding affinity with the substrate.

2.9. Crystal Structures of FdlA-NTD Mutants

To analyze the potential function of these residues, we further solved 11 crystal
structures of FdlA-NTD mutants (eight inactive and three active mutants) except for H279A,
which yielded no crystals (Figure S7, Table S1). The overall structures and the putative
active region of the three active mutants (N243A, R272A, and Y322A) are nearly identical to
that of the WT (Figure 6A, R272A as a representative), well explaining how full activities of
these mutants were maintained. Furthermore, we found that the inactive mutants failed to
exhibit significant structural changes compared with the wild type, which is consistent with
our CD results (Figure 5B). However, we identified changes around the potential active
site in several inactive mutants (Figure 6), implying the potential roles of these residues
in catalysis.

Mutation of Y242A resulted in a large structural change at the potential active site
(Figures 6B and S7A), with a 3 Å shift of Asn243, which narrows the substrate groove in
the mutant structure. However, the Y242F mutant, which also lost its catalytic activity,
possesses a potential active site nearly identical to the wild-type form (Figures 6C and S7B).
This result highlighted the importance of the hydroxyl group of the Tyr242 side chain. In
our docking models of FdlA-NTD with fuco-oligasaccharide, the hydroxyl group of Tyr242
side chain is located within a hydrogen bond distance with the glycosidic O atom between
−1 and +1 subsites (Figure 4A), thus allowing Tyr242 to donate a proton to glycosidic O
atom and function as a catalytic acid. This suggestion was supported by a previous report
showing that a conserved tyrosine residue in β-helix PL31 family members serves as the
Brønsted acid [36].

Brønsted base is responsible for proton extraction from C-5 atom in β-elimination
reaction [39]. Two positively charged residues Lys141 and Arg240 have their side chains
pointing closely to the C-5 atom at the +1 subsite (Figure 4C), hence are potential candidates
for a catalytic base. Our structures showed that the K141A mutant possesses an active
site almost identical to the WT (Figures 6D and S7C), similar to the Y242F mutant. In
contrast, the R240A mutant exhibits visible structural changes around the active site.
Specifically, the Try242 residue was rotated approx. 90 degrees, and shifted toward Ala240
(Figures 6E and S7D). As it constitutes the catalytic acid, the hydroxyl group of the Tyr242
side chain is essential for the enzymatic activity, and its improper positioning may severely
affect the catalysis of the enzyme. These structures suggested that the loss of activity of the
R240A mutant may be due to the shift of the Tyr242 side chain. In contrast, Lys141 possibly
functions as a catalytic base by capturing a proton from the C-5 atom at +1 subsite.

Similar to R240A, the mutant form F179A also exhibited a structural rearrange-
ment around the active site, with a 3.8 Å shift of the Tyr242 side chain towards Ala179
(Figures 6F and S7E). Residue His176 is located close to Tyr242, and the H176A mutation
shows a slight influence on the Tyr242 side chain conformation (Figures 6G and S7F).
Therefore, mutation of Phe179 and His176 possibly results in the dysfunction of Tyr242
and hence loss of the catalytic activity of FdlA-NTD. In addition, His176 forms a hydrogen
bond (2.8 Å) with the hydroxyl group of Tyr242 side chain in WT (Figure 4B), implying
another possibility that it might play a role in providing a proton to Tyr242 to facilitate the
catalytic reaction.

In the WT structure, both Asp137 and Glu236 form hydrogen bonds with Arg272,
while Arg272 participates in the shaping of the alkaline pocket (Figure 6H–J). In both D137A
and E236A mutant structures, the side chain of Arg272 switches to the opposite direction
compared with that in WT due to the loss of the acidic residue (Arg272 in E236A mutant
also exhibits an alternative conformation similar to that in WT), and partially occupies
the deep substrate pocket (Figures 6J and S7G,H). These results suggest that the steric
hindrance of Arg272 in the two mutants may interfere with the substrate fully entering the
pocket and hence the correct positioning of the glycosidic O atom, thus resulting in the
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complete loss of activities of D137A and E236A mutants. This hypothesis is supported by
the fact that the R272A mutation does not significantly affect the enzymatic activity, as this
mutant form possesses an identical active site (Figure 6A) hence a similar pocket compared
to that of the WT form.
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Figure 6. Comparison between the active sites of the inactive mutants and WT of FdlA-NTD.
(A–I) Comparison of mutants R272A (A), Y242A (B), Y242F (C), K141A (D), R240A (E), F179A (F),
H176A (G), D236A (H), D137A (I) with WT. Key residues are shown as sticks. The carbon atoms are
shown in green for WT in (A–I), brown for R272A in (A), magenta for Y242A in (B), pink for Y242F
in (C), yellow for K141A in (D), slate for R240A in (E), cyan for F179A in (F), orange for H176A in
(G), light pink for D236A in (H) and gray for D137A in (I). Residues are labeled with the mutated
residues labeled in red. (J) The side chain of Arg272 (gray stick) in D137A mutant (grey surface)
partially occupies the deep substrate pocket present in WT (green surface).

3. Discussion

In this study, we purified recombinant FdlA-NTD and identified its cleaved product
of Kj-fucoidan as the monosulfated trisaccharide, which is the same as the major product
of native FdlA [21]. However, native FdlA produced two additional types of trisaccharides
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using Kj-fucoidan as substrate, all of which contained an identical backbone with the
monosulfated trisaccharide product but carried a different number of sulfate groups. One
possible explanation for this observation is that the substrate (Kj-fucoidan) that FdlA
and FdlA-NTD cleave exhibits slightly different structures, resulting in different product
profiles for FdlA-NTD and FdlA. The Kj-fucoidan used in the previous study was isolated
from brown algae harvested in the sea of Hokkaido, Japan. In contrast, the Kj-fucoidan
used in our work was obtained from brown algae growing near Dalian, China. Despite
being harvested from the same species, the different geographical locations of brown algae
may result in the production of fucoidan characterized by different structures/sulfated
levels [4], which may account for the small discrepancy of the enzymatic products between
the present work and the earlier report.

We performed an enzymatic assay on FdlA-NTD and identified its optimal catalytic
conditions. In addition, we showed that the sulfhydryl reagent (iodoacetamide) reduces the
activity of FdlA-NTD (Figure 1E). An earlier report showed similar results for native FdlA,
implying that FdlA constitutes a sulfhydryl enzyme [19]. However, our crystal structure of
FdlA-NTD suggested that it is not a sulfhydryl enzyme, as the five cysteine residues are
actually located beneath the hypothetical substrate binding groove (Figure 3C). Thus, the
cysteine residues may not directly participate in the catalysis, but rather help to stabilize
the groove from the bottom by forming the cysteine ladder. Therefore, the inhibition of
FdlA/FdlA-NTD by sulfhydryl reagents may be due to the conformational disturbance
upon the modification of the cysteine ladder.

FdlA-NTD possibly belongs to the β-helix PL family; however, its unique structural
features, as well as the non-conserved nature of its catalytic residues compared with other
known PLs with β-helix fold suggested that FdlA constitutes a novel β-helix PL family
hitherto not identified. In addition, FdlA may use unique catalytic residues functioning
as Brønsted base and acid for the β-elimination catalysis. While it remains considerably
challenging to unambiguously identify residues responsible for proton abstraction and
transfer without structures of FdlA-NTD in complex with substrates or products, we were
able to infer from our crystal structures and docking models that Tyr242 and Lys141 serve
as the potential Brønsted acid and base, respectively.

Our biochemical data demonstrated that FdlA-NTD lyase favors the β-elimination
catalytic mechanism independent of metal ions, and thus is likely to use positively charged
amino acid residues to neutralize the negative charge of the substrate. Usually, more than
one residue functions as a neutralizer in PLs [40], thus the potential neutralizer residues
are difficult to identify, since mutation of a single neutralizer residue may not greatly
affect its activity. Based on our structural and docking models, several positively charged
residues such as Arg240, His176, and Lys141, located near the +1 subsite, potentially serve
as neutralizers in FdlA-NTD, weakening the negative charge of the C-5 carboxyl group at
+1 subsite, and making the C-5 proton susceptible to the attack by a Brønsted base.

On the basis of our structure and biochemical analysis of wild-type and mutant
proteins combined with docking models, we propose the following model describing
the catalytic process of FdlA (Figure 7). First, the substrate binds in the groove of the
enzyme and the binding is stabilized through multiple interactions. One trisaccharide unit
is inserted into the deep alkaline pocket, which is critical for substrate recognition and the
proper positioning of the cleaved glycosidic bond. Next, the positively charged residues
including Arg240 and His176, which are located near the +1 subsite, neutralize the C-5
carboxyl group of D-GlcUA at +1 subsite, thus reducing the pKa of the C-5 proton, making
it more susceptible to the attack by a base. Subsequently, abstraction of the proton occurs
on C-5, a process that is presumably accomplished by Lys141, leading to the formation of
an enolate intermediate. The hydroxyl group of the Tyr242 side chain is directed to the
glycosidic oxygen of the scissile bond where it may function as a Brønsted acid to break
the glycosidic bond between −1 and +1 subsites, generating a 4,5-unsaturated sugar at the
new non-reducing end of the product. Lastly, a new catalytic cycle is repeated after the
cleaved products leave the putative active site.
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colored blue. During catalysis, the positively charged residues (such as Arg240 and His176) stabilize
the negatively charged carboxylate group at +1 subsite, thus facilitating the depriving of the proton at
the C-5 position (+1 subsite) by a catalytic base (possibly Lys141). Tyr242 may serve as a catalytic acid
to donate a proton, then the glycosidic bond between −1 and +1 subsites are broken and generate a
4,5-unsaturated sugar at the new non-reducing end of the product.

4. Materials and Methods
4.1. Materials

Unless specified, all chemicals are of analytical grade and were purchased from Sigma
(St. Louis, DE, USA) or Aladdin (Shanghai, China). Escherichia coli Trans10 and BL21 (DE3)
were purchased from TransGen Biotech (Beijing, China). Crystallization screen commercial
kits were purchased from Hampton Research (Aliso Viejo, CA, USA). Ni2+-NTA column,
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SuperdexTM 200 10/300 GL, and DEAE Sepharose Fast Flow were purchased from GE Life
Sciences and GE Healthcare ((Chicago, IL, USA). Fucoidan from Kjellmaniella crassifolia
used in this experiment was given by Professor Qiukuan Wang of Dalian Ocean University
(Dalian, China).

4.2. Cloning, Expression, and Purification

The codon-optimized sequence of full-length FdlA encoding a fucoidan lyase (fucoglu-
curonomannan lyase) from Flavobacterium sp. SA-0082 (GenBankTM accession number
AAO00510.1) was synthesized by Shanghai Sangon Biotech Co. Ltd. (Shanghai, China).
Sequence analysis showed that the NTD of FdlA is likely the catalytic domain. Therefore,
the cDNA encoding FdlA-NTD (residue 25–471) without signal peptide was cloned into
pET28a between the Nde I and Xhol I restriction sites, with an N-terminal 6 × his tag.
All point mutations of FdlA-NTD were generated through the QuickChange site-directed
mutagenesis method (Stratagene Ltd., La Jolla, CA, USA) by overlap-PCR [41].

The above plasmids were transformed into Escherichia coli BL21 (DE3) and the clones
were cultured in Lucia-Bertani (LB) medium containing 25 µg/mL Kannamycin at 37 ◦C
until the OD600nm reached 0.6–0.8. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was
then added at a final concentration of 1 mM and the cells were cultured at 18 ◦C for an
additional 18 h. The cells were harvested and resuspended in lysis buffer (20 mM Hepes
pH 7.5, 400 mM NaCl, 5% glycerol, 10 mM imidazole). After sonication, the cell lysate was
centrifuged at 18,000 rpm for 30 min at 4 ◦C and the supernatant was loaded onto the Ni2+-
NTA affinity column. The target protein was eluted by imidazole of 300 mM concentration
and further purified through size-exclusion chromatography (SuperdexTM 200 10/300 GL
colume) in a buffer containing 20 mM Hepes pH 7.5, 100 mM NaCl, 5% glycerol. The purity
of the enzyme was analyzed via SDS-PAGE in 12% polyacrylamide gels.

To obtain the selenomethionine (SeMet)-labeled FdlA-NTD (FdlA-NTDSeMet), the
protein was expressed in E. coli B834 (DE3). The cells grown overnight in LB medium
were harvested when the OD600nm reached 0.6–0.8 and then transferred into M9 medium
supplemented with various amino acids (60 mg/liter L-SeMet, 100 mg/liter L-lysine, L-
threonine, L-phenylalanine; 50 mg/liter L-leucine, L-isoleucine, L-valine). The cells were
incubated at 37 ◦C for 40 min, then cooled to 16 ◦C for 30 min and IPTG was added. Finally,
the culture was incubated at 16 ◦C for 18 h. The purification steps of FdlA-NTDSeMet were
the same as those of the native protein described above.

4.3. Crystallization, Data Collection, and Structure Determination

Crystals were grown at 18 ◦C through the sitting-drop vapor diffusion method by
mixing 0.7 µL of the protein solution (14 mg/mL) with an equal volume of various reservoir
solutions. FdlA-NTD crystals were formed in a reservoir solution containing 0.1 M CAPS,
pH 10.5, 0.2 M Li2SO4, 2 M (NH4)2SO4, 1% (v/v) Pluronic F-68 at 18 ◦C. Crystals of FdlA-
NTDSeMet were obtained under the same conditions without Pluronic F-68. Crystals of
mutants D137A and E236A were grown in a reservoir solution containing 0.1 M Tris, pH
8.5, 0.2 M Li2SO4, 30% (w/v) polyethylene glycol (PEG) 4000, and crystals of mutant R240A
were grown in a reservoir solution containing 0.1 M Hepes sodium, pH 7.5, 10% (v/v)
2-Propanol, 20% PEG 4000. Other mutants were crystallized under the same conditions
as wild-type.

The crystals were cryoprotected by adding 20% (v/v) glycerol to each crystallization
solution. The X-ray diffraction data of FdlA-NTD and various mutants were collected at
beamlines BL17U1, BL18U1, BL19U1, and BL02U1 of the Shanghai Synchrotron Radiation
Facility (SSRF) in China [42,43]. All diffraction data were processed using the program
HKL2000 [44]. Data collection statistics are shown in Table S1.

The initial phase of FdlA-NTD was solved by single-wavelength anomalous diffraction
(SAD) method using Autosol in the Phenix program (version 1.15.2) [45]. The structural
model was automatically built through AutoBuild in the Phenix program. Structures of
FdlA-NTD mutants were determined by molecular replacement (MR) method through
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Phaser-MR in the Phenix program using the WT FdlA-NTD structure as the initial model.
All structures were refined through Refine in Phenix program and Coot (version 8.6.1) [46]
alternately. The statistics of structural refinement were summarized in Table S1.

4.4. Circular Dichroism

CD spectra were recorded by Chirascan Plus (Applied Photophysics Ltd., London,
UK) and used to evaluate the structural stability of FdlA-NTD by detecting its secondary
structural change under different conditions. Protein was diluted to a final concentration
of 0.2 mg/mL. The pH stability was estimated by measuring the CD spectra of protein
incubated in Britton-Robinson (B & R) buffer systems at different pH (5.0–12.0) for 17 h at
room temperature. For thermal stability, FdlA-NTD was incubated at different temperatures
for 120 min in a buffer containing 50 mM sodium phosphate buffer (pH 7.5), and the CD
spectra were recorded starting at 5 min.

4.5. Enzymatic Activity Assay

Fucoidan from Kjellmaniella crassifolia was used as the substrate of FdlA-NTD enzyme
assay. Kjellmaniella crassifolia was cultured along the coast of Dalian, China and Kj-fucoidan
was extracted following the extraction procedure reported in earlier literature [19,21]. The
standard reaction mixture (200 µL) of enzymatic assay consists of 1% (w/v) Kj-fucoidan and
appropriately diluted enzyme solution. The lyase activity of FdlA-NTD toward Kj-fucoidan
was measured by monitoring the increase of 232 nm absorbance, which was caused by
the production of 4, 5-unsaturated glucuronic acid-containing oligosaccharides, in the
mixture. The extinction coefficient of the 4, 5-unsaturated bond at 232 nm was assumed as
5.5 L/(mmol·cm). One unit of the enzyme was defined as the amount of enzyme needed to
catalyze the production of 1 µmol unsaturated oligosaccharides per minute, and the activity
of one-milligram enzyme was defined as the specific activity of FdlA-NTD. Absorption
at 232 nm was measured continuously at room temperature for 10min using a U-3900
UV-Visible spectrophotometer (Hitachi High-tech, Tokyo, Japan). Each measurement was
repeated at least two times.

4.6. Biochemical Characterization of FdlA-NTD

To determine the optimal catalytic pH of FdlA-NTD, B & R buffer systems (pH 5.0–12.0)
were used at a concentration of 50 mM for the reaction using 1% (w/v) Kj-fucoidan as the
substrate. To determine the optimal temperature, reactions were performed at different
temperatures, ranging from 10 ◦C to 70 ◦C. All enzymatic reactions under different tem-
peratures were incubated for 1min, and then the reaction mixtures were boiled to stop
the catalysis. To determine the thermal inactivation of FdlA-NTD, the reaction system
was pre-incubated at 20 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C, respectively, for varied time intervals
(5 min to 120 min) at pH 7.5, and then chilled on ice for at least 10 min. The activities were
measured under standard conditions (pH 7.5, 40 ◦C for 1 min). To determine the optimal
NaCl concentration, the activity of FdlA-NTD was measured under standard conditions
with different NaCl concentrations (0.092 M–2 M).

The effects of metal ions or chemical reagents (1 mM) on the catalytic activity of
FdlA-NTD were determined by adding 1 mM of various metal ions or chemical reagents
[Pb(CH3COO)2, NiSO4, MnSO4, CuSO4, BaCl2, CoCl2, CaCl2, MgCl2, FeSO4, Fe2(SO4)3,
KCl, LiCl, SDS, EDTA, β-mercaptoethanol, iodoacetamide] to the standard enzyme assay
system as above. Since phosphate in B & R buffer might impact the assay, 50 mM Tris-HCl
(pH 7.5) was used instead. The system without supplying metal ions or chemical reagents
was used as the control.

Kinetic parameters were determined under initial rate conditions using non-linear
regression analysis of the Michaelis–Menten equation. The lyase activity was measured at
room temperature using Kj-fucoidan as substrate at concentrations ranging from 0.2 to 2%
(w/v) in a 50 mM B & R buffer (pH 7.5) after being incubated for 60 s.
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4.7. Analysis of Degradation Products

The molecular weight (MW) of Kj-fucoidan is within a range since it is a mixture of
heterogeneous polysaccharides. To estimate the average MW of Kj-fucoidan, the samples
were analyzed by High-Performance Gel Permeation Chromatography (HPGPC) with
TSK GEL GMPWXL column, and the polysaccharides were eluted with mobile phase
containing double distilled water at a flow rate of 0.5 mL/min and detected by Evaporative
Light-scattering Detector (Acchrom, Beijing, China). The average MW of Kj-fucoidan was
estimated as 80 kDa.

High-performance liquid chromatography (HPLC) analysis was used to purify the
degradation products of Kj-fucoidan cleaved by FdlA-NTD. FdlA-NTD was incubated with
1% (w/v) Kj-fucoidan in 50 mM sodium phosphate buffer (pH 7.5) for 3 h at 37 ◦C, and the
enzyme was then inactivated by heating in a water bath at 100 ◦C for 10 min. The reaction
mixture was centrifuged at 12,000 rpm for 10 min, and the supernatant was subjected to
high-performance liquid chromatography analysis. HPLC analysis was performed on an
Acchrom S6000 HPLC system (Acchrom Technologie, Dalian, China) and the separation
was performed on an Acchrom XAmide column (4.6 mm × 250 mm, 5 µm, Acchrom
Technologies, Dalian, China). The mobile phase consisted of water (A), acetonitrile (B), and
ammonium formate (C) with the following elution gradients: mobile phase A from 0 to
40%, mobile phase B from 90% to 50%, and mobile phase C at 10% within 40 min, at a flow
rate of 1.5 mL/min and a column temperature of 40 ◦C. The enzymatic digestion products
were detected at 232 nm with a UV detector.

Mass spectrometric (MS) analysis was used to identify the degradation products of
FdlA-NTD. The purified enzymatic digestion products were mixed with the matrix DHB
and analyzed by a matrix-assisted laser resolved ionization-time of flight mass spectrometer
(UltraflextremeTM MALDI-TOF/TOF, Brucker, Karlsruhe, Germany) in reflection mode.

4.8. Microscale Thermophoresis Assay

Microscale thermophoresis (MST) assay was performed on NT.115 Monolith instru-
ment from NanoTemper Technologies using standard treated capillaries (NanoTemper,
Munich, Germany). The purified wild-type and mutant proteins (10 µM) were labeled
using a Protein Labeling Kit RED-NHS 2nd Generation. The substrate Kj-fucoidan (45 µM)
was prepared in a ligand buffer containing 25 mM Hepes pH 7.5, 100 mM NaCl, and done
two-fold dilution in series. For the MST assay, 150 nM labeled protein was incubated with
a series of substrates in a ligand buffer containing 0.05% Tween-20 for 5 min in NT.115 cap-
illaries separately. Each capillary containing the mixed enzyme and substrate was tested by
Monolish NT.115 at 25 ◦C, 20% excitation power, and medium MST power. Thermophoresis
data were analyzed by MO. Affinity Analysis software (version 2.3, NanoTemper) [47].
Each measurement was repeated at least two times.

4.9. Molecular Docking

Molecular docking analysis of FdlA-NTD with various oligosaccharides (substrates)
was performed to identify the amino acid residues potentially critical for the active
site formation and catalysis of FdlA-NTD. The structural coordinates of oligosaccharide
molecules containing a sulfate group were built with a CHARMM-GUI server online
(http://www.charmm-gui.org/, accessed on 15 July 2021) [48] and converted into mol2
format by Open Bable tool for Ledock program (version 1.0) [37,49]. A root-mean-squares
deviation (RMSD) value and the number of binding poses were set to 1 and 500, respec-
tively. All docked results were sorted by score energy ranking. The docking results ranking
on the top of the list were chosen for analysis in the next step.

5. Conclusions

FdlA from Flavobacterium sp. SA-0082 is the first fucoidan lyase reported so far. Here,
we determined the atomic-resolution crystal structures of the FdlA N-terminal catalytic
domain. In addition, we performed extensive biochemical and enzymatic analysis on the

http://www.charmm-gui.org/
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wild-type and mutant forms of FdlA-NTD, revealing key residues essential for the catalysis.
Compared with other β-helix PLs, FdlA-NTD possesses a similar overall folding, but
considerably different active site and key residues that potentially serve as the catalytic acid
and base in β-elimination reaction. Moreover, we revealed that FdlA-NTD uses a unique
‘groove-pocket’ for substrate binding and the alkaline pocket is suitable to accommodate
a trisaccharide unit, thus rationalizing the observation that the final product of FdlA-
NTD is exclusively trisaccharide. Together, our work identified the unique structural and
catalytic features of FdlA-NTD, providing novel insights into the mode of action of PLs,
and enriching our knowledge on the fucoidan-degrading enzymes. Our results may further
aid the applied research in designing mutated forms of FdlA-NTD that would be used in
producing specific products for industrial use.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/md20080533/s1, Figure S1: Sequence alignment of FdlA
and FdlB; Figure S2: Purification and characterization of FdlA-NTD; Figure S3: Structural superposi-
tion of two molecules in an asymmetric unit of FdlA-NTD crystal structure; Figure S4: Comparison of
FdlA-NTD with representative members of other β-helix PL families; Figure S5: The sulfate groups
and docked trisaccharide in the ‘groove-pocket’ region of FdlA-NTD; Figure S6: The MST curves of
inactive mutants of FdlA-NTD with the substrate (Kj-fucoidan); Figure S7: Electron density maps of
the mutated site in inactive mutants; Table S1: Diffraction data and refinement statistics of WT and
mutants of FdlA-NTD.
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