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A B S T R A C T

Objective: The liver reacts to hypoglycemia by increasing its glucose output. This response is assumed
to depend both on glucose sensing at the liver and the brain, as well as efferent impulses from the brain
to the liver. We tested the importance of this signaling pathway by studying the hepatic response to insulin-
induced hypoglycemia in hepatic complete denervated pigs.
Materials/methods: Two weeks prior to the metabolic study, 36-kg pigs underwent either total hepatic
denervation (DN; n = 12) or sham operation (sham; n = 12). On the metabolic study day, measurements
were performed at baseline conditions and during a hypoglycemic hyperinsulinemic (5 mU/kg/min) clamp.
Endogenous insulin and glucagon secretions were inhibited by somatostatin, and glucagon was re-
placed at baseline levels. Endogenous glucose production (EGP) and glucose utilization (Rd) were determined
by [3-3H] glucose infusion.
Results: Baseline plasma concentrations of glucose, insulin, EGP and Rd did not differ significantly between
the two groups of animals. During insulin infusion, the plasma glucose concentration was clamped at
~3 mmol/L in both groups of animals resulting in an increase in plasma concentrations of epinephrine
and norepinephrine in sham pigs (both P < 0.05), while this effect was abolished in DN pigs. While insulin
action (P = 0.09) and glucose utilization (P = 0.44) were similar, EGP was markedly decreased in the DN
pigs (P < 0.05).
Conclusion: The findings indicate a blunted hepatic counterregulatory response to hypoglycemia fol-
lowing complete hepatic denervation. This implies that intact neural impulses to and from the liver are
necessary to maintain the increase in EGP that protects the organism against hypoglycemia.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Plasma glucose concentration is 4–5.5 mmol/L following an over-
night fast and rarely exceeds 7–8 mmol/L after eating [1–5]. An
important mechanism for the prevention of hypoglycemia is the
ability of the liver to increase hepatic glucose production [6]. This
protective response depends on combined neuronal and humoral
factors, but the role of the individual factors is a subject of debate.

It is well established that efferent signals from glucose sensing re-
ceptors in the central nervous system to the liver play a key role
[7], but evidence also points toward the existence of glucose sensors
located in the periportal region of the liver [8,9] with afferent im-
pulses stimulating centers in the central nervous system [8,10]. Both
ways act by sympathoadrenal stimulation of hepatic glucose pro-
duction, i.e. via increased activity of the sympathetic nervous system
that acts on the adrenal medulla of the kidneys to release epineph-
rine and norepinephrine [11,12].

The importance of hepatic innervation on hepatic glucose me-
tabolism has been examined in a variety of animal experiments.
Pagliassotti el al. demonstrated that orally ingested glucose in hepatic
denervated dogs results in glucose intolerance [13]. Similarly, studies
by Adkins-Marshall et al. concluded that intact nerve supply is vital
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for the normal hepatic response to an intraportally delivered glucose
load [14]. In a canine study by Donovan et al. [15] mild hypogly-
cemia was created using a peripheral insulin infusion. When hepatic
euglycemia was maintained by glucose infusion into the portal vein,
a decrement of about 40% in the response to hypoglycemia was ob-
served. Likewise, experiments by Donovan et al. [16] and Hamilton-
Wessler et al. [17] both demonstrated that the sympathoadrenal
response to hypoglycemia is determined by the concentration of
glucose in the portal vein, and experiments by Adachi et al. [18]
suggested that afferent impulses conducted by the vagal nerve are
conveyed to glucose sensing sites in the brain. A recent study by
Ionut et al. demonstrated that portal vein denervation impairs
hypoglycemic counterregulation due to a suppression of the
sympathoadrenal response [19] and impaired glucose tolerance has
been observed following portal vein denervation during GLP-1 re-
ceptor stimulation [20]. Overall, these experiments support that the
portal vein is an important sensing site for hypoglycemia and of hor-
mones such as GLP-1. In contrast, experiments by Jackson et al. [21]
and Moore et al. [22] failed to find a metabolic effect of hepatic and
portal vein denervation [21] and studies by Wasserman et al. [23]
and Kjær et al. [24] both concluded that hepatic nerve supply is not
required for the exercise induced stimulation of EGP in euglycemic
liver transplant patients.

Taken together, evidence implies that hepatic impulses may play
a role for hypoglycemic counterregulation, but the mechanism and
the significance of these impulses remain controversial. There-
fore, in the present study in anesthetized pigs, we wished to test
the hypothesis that hepatic glucose production is reduced follow-
ing complete hepatic denervation and that this impairs the ability
of the liver to increase its glucose production during hypoglycemia.

Materials and methods

Animals

Twenty-four male Göttingen minipigs, 2 years old and with a
mean body weight of 35.8 ± 3.9 kg (mean ± SD) were used. Twelve
pigs were randomly selected for hepatic denervation (DN) and twelve
for sham operation (sham). The experiments were conducted ac-
cording to institutional and national guidelines for animal welfare
on a license granted by the Danish Ministry of Legal Affairs.

Surgical procedure

The surgical procedure was performed 2 weeks before the met-
abolic study and under halothane anesthesia. Denervation of the
liver was achieved by surgically dividing the connective tissue com-
ponents surrounding the hepatic veins from the region of the upper
edge of the liver parenchyma to the inferior caval vein. The coronal
ligaments were also divided resulting in a complete separation of
the liver from the diaphragm. Subsequently, the gastroduodenal lig-
ament was exposed and the connective tissue surrounding the
common bile duct, the hepatic artery and the portal vein was
removed. This procedure was meticulously performed from the level
of the porta hepatis to the superior margin of the duodenal arch.
The procedure was extended also to involve the connective tissue
on the inferior surface of the liver leaving it completely exposed
solely attached to the hepatic artery, the hepatic and portal veins
and the common bile duct. To ensure the completeness of any re-
sidual neural tissue left on these anatomical structures, the procedure
was completed by painting 90% phenol on the exposed surfaces of
the hepatic and portal veins, on the hepatic artery and on the
common bile duct (7). Ampicillin (Anhypen®) 1 g per day was given
intramuscularly during the first 3 days after the operation. During
the sham procedure the tissue along the hepato-duodenal and the

coronal ligaments was manipulated, but the innervation was not
interrupted. Prior to the hepatic denervation and at the end of the
metabolic study, liver tissue samples from two different liver lobes
were taken for measurements of norepinephrine concentration and
immune histology of hepatic nerves in order to validate the liver
denervation procedures.

Experimental design

Two weeks prior to the denervation procedures and 3 days prior
to the metabolic study the amount of food given to the pigs was
increased from 400 g standard pig food per day (DLG, Aarhus,
Denmark) to 600 g food plus 200 g sucrose per day to avoid glyco-
gen depletion during the fasting period of 12 hours before the
experiments. On the metabolic study day and after an overnight fast
general anesthesia was introduced by an intravenous infusion of
ketamine 4–8 mg/kg/hr and midazolam 0.4–0.8 mg/kg/min. Air con-
taining 40% oxygen was given via an endotracheal tube by a Servo
900C® ventilator. Catheters were placed in a femoral vein for infu-
sions and in a femoral artery for blood sampling and pressure
measurements. When the catheters were in place, the pigs were
allowed to stabilize for 1 hour before the first blood samples were
drawn. Each study consisted of a 2-hour baseline period (–120 to
0 min) followed by a hyperinsulinemic hypoglycemic clamp (0–
150 min) (Fig. 1). At 10.00 (–120 min) a primed-continuous infusion
of [3-3H] glucose (20 μCi prime, 0.20 μCi/min continuous) was com-
menced and continued until the end of the study. At 12.00 (0 min)
an unprimed infusion of insulin (5 mU/kg/min), somatostatin
(300 μg/hour) and glucagon (0.5 ng/kg/min) was started and the
blood glucose concentration was allowed to fall to 2.8 mmol/L. When
this level was reached we initiated an infusion of hot-GINF ([3-3H]
glucose added to glucose solution (50 mg/mL) to obtain a concen-
tration of 0.2 μCi/mL). The infusion rate was adjusted to maintain
glucose concentrations at 3.0 mmol/L. Mean baseline values were
calculated from measurements from 11.30 to 12.00 (−30 to 0 min)
(Fig. 1) and mean steady-state values were calculated from 14.00
to 14.30 (120–150 min) during the hyperinsulinemic hypoglyce-
mic clamp (Fig. 1).

Materials
[3-3H] glucose was purchased from Dupont New-England Nuclear,

Boston, Mass. USA. Human insulin (Actrapid®) and glucagon was pur-
chased from Novo, Copenhagen, Denmark. Somatostatin was
purchased from Ferring Pharmaceuticals, Switzerland.

Figure 1. Experimental design. Glucose kinetics was determined in the baseline con-
dition (SS1) from −30 to 0 min and at steady state during the hypoglycemic,
hyperinsulinemic clamp (SS2). Infusions of glucose (GINF), insulin, glucagon and
somatostain were started at 0 min. The plasma concentration of glucose during the
hypoglycemic hyperinsulinemic clamp did not differ between hepatic denervated
and sham pigs.
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Blood sample analyses
Arterial plasma glucose concentrations were measured every

5–10 min throughout the glucose clamp. Blood samples for mea-
surement of plasma glucose, insulin, glucagon, epinephrine and
norepinephrine were obtained throughout the study. Blood samples
were placed immediately on ice, centrifuged at 4 °C, and plasma
samples were stored at −20 °C until assay. Plasma concentration of
glucose was measured using the glucose oxidase method by a
Beckman glucose analyzer (Beckman Instruments, Inc., Fullerton,
California). Specific activity of [3-3H]-glucose was measured by high-
performance liquid chromatography. Plasma and liver tissue
concentrations of epinephrine and norepinephrine were deter-
mined by high performance liquid chromatography followed by
electrochemical detection. With an intra assay coefficient of vari-
ation between 0.5 and 10 % [25]. Plasma samples for determination
of epinephrine and norepinephrine were frozen immediately at
−80 °C and analyzed within 2 weeks. Serum insulin was measured
by an enzyme-linked immunosorbent assay employing a two-site
immunoassay [26] with an intra-assay coefficient of variation of 2.0%
(n = 75) at a plasma level of 200 pm. Plasma glucagon was mea-
sured by RIA using wick chromatography as described [27] with the
modification that polyethylene glycol (PGE) was used for separa-
tion before determination and that plasma was extracted with
ethanol. The intra-assay coefficient of variation was 4–6.8% at plasma
concentration of glucagon about 150 pmol/L with a recovery higher
than 90% and no detectable cross-reactivity. Serum free fatty acids
(FFAs) were measured enzymatically using a Wako NEFA
(nonesterified fatty acid) test kit (Wako Chemicals, Neuss, Germany).

Calculations
All data are expressed as the mean ± SEM. Rate of glucose infu-

sion (GIR), EGP and Rd are expressed per kg total body weight. Tracer-
determined rates of EGP and Rd were calculated using the equations
for non-steady state as described by Steel et al. [28]. Rate of glucose
appearance (Ra) equals the sum of exogenous glucose infusion (GIR)
and endogenous glucose production (EGP), i.e. Ra = GIR + EGP. Con-
sequently, EGP was calculated by subtracting GIR from the tracer
determined rate of glucose rate of appearance (EGP = Ra – GIR). Mean
values during the 30 min before the start of the clamp (i.e. −30 to
0 min) were considered as baseline values. Mean values during the
hyperinsulinemic hypoglycemic clamp (120–150 min) were con-
sidered as steady state values. The volume of distribution of glucose
was assumed to be 200 mL/kg, with a pool correction factor of 0.65.
Glucose specific activity was calculated as the ratio between the
tracer concentration and the prevailing plasma glucose concentration.

Histology

The liver tissue samples were immediately fixed in 10% buff-
ered formalin and embedded in paraffin after 24 hours. Subsequently,
slides were prepared for immunohistochemistry. In a pilot study a
number of antibodies to human neural antigens were tested on liver
biopsies from control pigs. The following antibodies were found to
give the same staining reactions in human and porcine liver:
(1) Protein gene product 9.5 (PGP) (polyclonal, Biogenesis, England),
(2) neurofilament protein (NFP) (clone 2F11, DAKO, Denmark) and
(3) glial fibrillary acidic protein (GFAP) (polyclonal, DAKO, Denmark).
PGP and NFP have been demonstrated in neurons and neuroendo-
crine cells (11, 32) whereas GFAP has been demonstrated in Schwann
cells (21).

Statistical analyses

Sample size calculation was based on a power of 80%. Statisti-
cal type 1 error was set to 5% and type 2 to 20%. Anticipating a

MERIDIF of EGP of 1 mg/kg/min and a SD of 0.7 mg/kg/min a non-
paired analysis would require 12 pigs in each group, which was the
number enrolled. Data are expressed as mean ± standard error of
the mean (SEM). ANOVA for repeated measurements and, in the case
of significant time effects, Student’s T-test (paired or unpaired as
relevant) were used as statistical tests for significance of differ-
ences. Wilcoxon test was used for data not fulfilling criteria for
normal distribution. A p-value less than 0.05 was considered to in-
dicate statistically significant difference.

Results

Glucose, insulin, FFA, glucagon, epinephrine and norepinephrine
concentration

Baseline plasma concentration of glucose (4.60 ± 0.18 vs
5.02 ± 0.29 mmol/L; P = 0.22), insulin (11 ± 2 vs 12 ± 3 pmol/L; P = 0.72)
and FFA (0.38 ± 0.05 vs 0.33 ± 0.06 mmol/L; P = 0.54) did not differ
between DN and sham pigs (Tables 1 and 2). During the euglycemic
clamp insulin increased similarly in DN and sham pigs (712 ± 106
vs 712 ± 44 pmol/L; P = 0.99) and plasma concentrations of glucose
were allowed to fall to the same moderately hypoglycemic levels in
both groups (3.00 ± 0.06 vs 3.07 ± 0.08 mmol/L; P = 0.47). During the
clamp, the glucose infusion rate (GIR) did not differ between the
groups (Fig. 2) (8.51 ± 0.77 vs 6.70 ± 0.65 mg/kg/min; P = 0.09) dem-
onstrating no difference in net insulin action. FFA concentrations
fell similarly in both groups (Table 2).

Baseline plasma concentrations of glucagon (151 ± 29 vs
179 ± 27 pmol/L; P = 0.50), epinephrine (215 ± 51 vs 99 ± 27 pg/mL;
P = 0.08) and norepinephrine (167 ± 24 vs 151 ± 23 pg/mL; P = 0.63)
were not significantly different between DN and sham pigs. In sham
pigs, the clamp resulted in significant increments in plasma con-
centrations of both epinephrine (99 ± 27 vs 521 ± 290 pg/mL;
P = 0.046) and norepinephrine (151 ± 23 vs 285 ± 57 pg/mL; P = 0.028)
(Table 1). In DN the clamp resulted in significant increments in plasma
concentrations of norepinephrine (167 ± 24 vs 265 ± 48 pg/mL;
P = 0.028), whereas plasma concentrations of epinephrine (215 ± 51
vs 195 ± 63 mg/mL; P = 0.46) remained unaltered. The hypoglyce-
mic clamp did not change plasma concentrations of glucagon in

Table 1
Plasma concentrations of epinephrine, norepinephrine and glucagon following an
overnight fast (baseline) and during insulin-induced hypoglycemia (insulin) in DN
and sham pigs

Epinephrine
(pg/mL)

Norepinephrine
(pg/mL)

Glucagon
(pg/mL)

DN Baseline 215 ± 51 167 ± 24 151 ± 29
Insulin 195 ± 63 265 ± 48* 102 ± 32

Sham Baseline 99 ± 27 151 ± 23 179 ± 27
Insulin 521 ± 290* 285 ± 57* 228 ± 68

* Statistical difference (P < 0.05) within the group (baseline vs insulin).
**Statistical difference (P < 0.05) between groups.

Table 2
Plasma concentrations of insulin and FFA following an overnight fast (baseline) and
during insulin-induced hypoglycemia (insulin) in DN and sham pigs. The glucose
infusion rate (GIR) at steady state (120–150 min; SS2) is a measure of net insulin
action determined during the hypoglycemic hyperinsulinemic clamp

Insulin (pmol/L) FFA (pmol/L) GIR (mg/kg/min)

DN Baseline 11 ± 2 0.38 ± 0.05 –
Insulin 712 ± 106* 0.07 ± 0.02* 7.64 ± 0.85

Sham Baseline 12 ± 3 0.33 ± 0.06 –
Insulin 712 ± 44* 0.10 ± 0.02* 6.22 ± 0.67
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neither DN (151 ± 29 vs 102 ± 32 pg/mL; P = 0.11) nor in sham op-
erated animals (179 ± 27 vs 228 ± 68 pg/mL; P = 0.56).

Endogenous glucose production (EGP) and glucose utilization (Rd)

At baseline, there were no difference between DN and sham of
EGP (2.83 ± 0.30 vs 3.32 ± 0.30 mg/kg/min; P = 0.26) or Rd (3.16 ± 0.26
vs 3.11 ± 0.32 mg/kg/min; P = 0.89) (Fig. 3). During the clamp,
Rd increased similarly in DN and sham pigs (7.76 ± 0.61 vs
7.13 ± 0.53 mg/kg/min; P = 0.44). In contrast, EGP remained higher
in sham than in DN pigs (1.13 ± 0.48 vs 0.01 ± 0.20 mg/kg/min;
P = 0.04).

Histology
In the liver tissue samples taken before the denervation there

were numerous PGP (protein gene product 9.5) positive fibers along
the sinusoids and around the central veins. A few NFP (neurofilament
protein) and GFAP (glial fibrillary acidic protein) positive fibers were
seen in the periportal areas of the lobules. In the portal tracts large
nerves as well as small bundles of nerve fibers mainly around ar-
teries, veins and bile ducts were detected. These nerves showed
strong reactions for PGP, NFP and GFAP. More small fibers were de-
tected in the PGP stained samples than in the GFAP stained samples.
In the liver tissue samples taken 2 weeks after the denervation there
were only small GFAP positive nerve bundles in the portal tracts,
whereas NFP and PGP staining were negative.

Liver tissue norepinephrine
Prior to the hepatic denervation liver tissue norepinephrine was

165 ± 28 ng/mL liver tissue and after the denervation it was
2.0 ± 0.0 ng/mL liver tissue (P < 0.001).

Discussion

The main finding of this study in anesthetized pancreatic hormone
blocked pigs is that the ability of the liver to increase its EGP in

Figure 2. Time course of plasma concentration of glucose (top) and glucose infu-
sion rate (GIR) (bottom). Insulin infusion was started at 0 min. Plasma concentration
of glucose (top) and glucose infusion rate (bottom) at baseline and during the clamp
did not differ between hepatic denervated and sham pigs.

Figure 3. Glucose concentration, insulin sensitivity, endogenous glucose production (EGP) and glucose uptake (Rd) following an overnight fast (■) and during insulin-
induced hypoglycemia (□) in pigs undergoing either hepatic denervation or a surgical sham procedure.
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response to insulin-induced hypoglycemia was nearly abolished by
the total hepatic denervation. While it is well established that glucose
sensing receptors in the brain stimulate neurons innervating the liver
during hypoglycemia, the existence of hepatic glucose receptors and
afferent neuronal stimulation of the brain is less clear [8,10,16,21,29].
This shows that the effect of hypoglycemia on EGP is mediated not
only through humoral, but also through neuronal pathways.

As expected, hyperinsulinemia increased whole body glucose
uptake and suppressed plasma concentration of FFA with none of
these effects being altered by hepatic denervation. In both groups
EGP was suppressed by insulin [30]. However, whereas the EGP in
the hepatic denervated pigs was nearly completely suppressed by
hyperinsulinemia, EGP in the sham animals was only suppressed
from baseline by 67%. This finding demonstrates that in the anes-
thetized pigs, the normal liver maintains its ability to increase EGP
in response to insulin-induced hypoglycemia, whereas the dener-
vated liver nearly completely lost this ability. This shows that intact
hepatic nerve supply is necessary to maintain an appropriate hepatic
response to hypoglycemia.

In addition to the present experiments, a variety of animal studies
have examined the role of the liver in maintaining glucose homeo-
stasis. In experiments by Donovan et al. [15] peripheral hypoglycemia
was induced by insulin infusion and the metabolic response ob-
served in the presence or absence of portal vein hypoglycemia. These
studies imply the presence of glucose sensing receptors in the portal
vein, and the results suggest in accordance with our observation
that neural impulses from the liver are required for a complete
counterregulatory response to hypoglycemia. This observation has
subsequently been confirmed by Donovan et al. [16] and by Hevener
et al. [10] in rats. Moreover, a recent study by Hevener et al. sug-
gests that the portal vein is generating afferent signals to glucose
sensing sites in the central nervous system and that these signals
are critical for hypoglycemic detection and for the normal
sympathoadrenal counterregulatory response [8]. In contrast to these
observations are results from canine experiments by Wassernan [23]
and Jackson et al. [21] in which hepatic denervation failed to alter
the hepatic response to hypoglycemia, and by Mikines et al., who
reported a similar findings [31].

In the present study we used somatostatin to inhibit endog-
enous insulin and glucagon secretion. This may in our opinion
provide an explanation for the discrepancy between our and the
results reported by other investigators. Stable concentrations of glu-
cagon were obtained by an exogenous glucagon infusion. This design
was chosen, because glucagon secretion is increased during hypo-
glycemia. Glucagon stimulates EGP [32–34]. Therefore, if endogenous
secretion had not been inhibited the invariable rise in glucagon con-
centration during hypoglycemia would have made it impossible to
determine whether the observed difference in EGP is due to a rise
in glucagon secretion or due to an altered hepatic response to hy-
poglycemia. Furthermore, in studies where somatostatin was not
infused, plasma glucagon concentrations are likely to differ from
those obtained in the present study. This difference is likely to have
affected the hepatic response and thus explain the difference in EGP
observed in response to hypoglycemia.

In the present study glucagon was infused into a peripheral vein
and not the portal vein, which results in comparable portal and pe-
ripheral vein concentrations. Because endogenous glucagon secretion
was inhibited with somatostatin, glucagon concentrations were main-
tained at constant and stable levels. Consequently, glucagon action
was unaltered during the glucose clamp arguing against that the
absence of a glucagon gradient may have had an effect on the present
findings.

Somatostatin also inhibits endogenous growth hormone (GH) se-
cretion, but we did not replace GH. This design was chosen because
in a previous study in humans GH replacement did not affect EGP

following near-complete blockade of GH secretion by a somatosta-
tin analog [2].

Under normal conditions the metabolic counterregulatory re-
sponse to hypoglycemia is thought to result in an inhibition of insulin
secretion followed by a rise in plasma concentrations of glucagon,
epinephrine, norepinephrine and eventually cortisol and growth
hormone concentrations. The present study was designed to maintain
insulin and glucagon concentrations at steady levels during hypo-
glycemia. The difference in EGP between the sham and DN animals
is therefore likely a result of the difference in epinephrine and
norepinephrine concentrations rather than a result of the
counterregulatory effects of glucagon and insulin. Epinephrine and
norepinephrine both have effects on EGP predominantly through
activation of α1- and β2 adrenergic receptors [35,36]. In sham op-
erated animals hypoglycemia resulted in a significant increase in
epinephrine and norepinephrine concentrations, while this re-
sponse was abolished in DN animals. Noteworthy, a five-fold increase
in epinephrine concentration was observed, whereas the rise in nor-
epinephrine, although significant, was less pronounced. This strongly
implies that epinephrine plays an important role for the hepatic
counterregulatory response to hypoglycemia. This observation is
in line with a recent study by Ionut et al., who examined the
counterregulatory response following portal vein denervation in dogs
during a hypoglycemic hyperinsulinemic clamp [19]. As in our study,
portal vein denervation resulted in a reduced epinephrine re-
sponse confirming our observation that epinephrine plays a key role
in the hypoglycemic counterregulatory response to hypoglycemia.
A likely explanation may be that the denervation procedure has in-
terrupted the afferent pathway of the hypoglycemic counterregulatory
circuit from the liver, normally relaying the message of hypogly-
cemia to the brain and the subsequent signaling from the brain to
the suprarenal glands.

In conclusion, the present experiments show that hepatic in-
nervation is necessary for the liver to maintain its capacity to increase
glucose production in response to hypoglycemia, which consti-
tutes a pivotal defense mechanism against the harmful effects of
hypoglycemia. The hepatic response to hypoglycemia by increas-
ing EGP was severely blunted by hepatic denervation. This underlines
the importance of neuronal impulses for the complete
counterregulatory response of the liver to hypoglycemia. Possible
clinical implications of our findings are that patients with hepatic
denervation following liver transplantation or patients with auto-
nomic neuropathy due to long term complications to type 1 diabetes
mellitus may be vulnerable to hypoglycemia.
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