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Abstract
In dry biomes, spatio-temporal variation in surface water resource stocks is pervasive, with

unknown effects on the ranging behaviour of large predators. This study assessed the effect

of spatial variation in surface water resources on the ranging behaviour of the African wild

dog (Lycaon pictus). We analyzed data for 1992 (dry year with 20 water points) and 2000

(wet year with 30 water points) against presence-only data for five packs of L. pictus in a

part of Hwange National Park and adjacent smallholder communal farming areas in western

Zimbabwe. Modelling the potential habitat for L. pictus using Maxent with distance from

water points (Dw) and Normalized Difference Vegetation Index (NDVI) as predictor variables

was successful for 2000 (AUC = 0.793) but not successful for 1992 (AUC = 0.423), with L.
pictus probability of occurrence near water points being more for year 2000 than for year

1992. The predicted L. pictus range was wider in 1992 (~13888.1 km2) than in 2000

(~958.4 km2) (Test of Proportions, χ2 = 124.52, df = 1, P = 0.00). Using the 2nd order Multi-

type Nearest Neighbour Distance Function (Gcross), we also observed significant attraction

between L. pictus and water points within only ~1km radius for 1992 but up to ~8km radius

for 2000. Our study reinforced the notion that surface water resources attract wild dogs in

the savannahs but paradoxically less so when water resources are scarce. In particular, our

study furthers current understanding of the effects of changing water availability regimes on

the endangered L. pictus, providing evidence that the endangered predator’s home range

encroaches into potential ecological traps (i.e., smallholder communal farming areas) when

water resources are scarce.
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Introduction
In dry biomes, the relationship between wildlife (particularly large mammals) and surface
water resources is well documented (e.g., [1, 2–6]). In tandem with the resource gradient
hypothesis (sensu [7]) reviewed in [8, 9] water is a key driver of biological diversity and popula-
tion dynamics [10–12]. In particular, water stress is regarded as a primary factor regulating the
distribution and abundance of fauna in dry biomes (e.g., bighorn sheep (Ovis candadensis),
camel (Camelus spp), dingoes (Canis lupus dingo) [13–15] and ungulates migration in the Ser-
engeti [16, 17]). Wildlife (e.g., large ungulates) were observed to be more attracted to water
when water resources were scarce than when water resources were abundant [18, 19]. Conse-
quently, wildlife managers have (since the 1940s) developed surface water resources in dry
environments to enhance wildlife habitats [20, 21].

The availability of surface water is a major driver of selected ungulate distribution in most
dry wildlife areas [22–24]. This is particularly true for grazing animal species [e.g., impala
(Aepyceros melampus)] that need to drink water on a daily basis [25, 26] and carnivorous ani-
mal species (e.g., dingoes) that do not need to drink water daily [27]. However, water is not an
important factor driving the distribution of some dry-biome animals e.g., bighorn sheep [13]
and oryxes (Oryx leucoryx) [28, 29]. While surface water may directly influence the distribution
of ungulates [19, 30], it is likely to indirectly influence the distribution of key predator species
of those ungulates. For example de Boer [3] reported that the spatial distribution of lion
(Panthera leo) kills was determined by the water dependency of prey species in Klaserie Private
Nature Reserve, South Africa. Also, Arjo et al. [6] speculated that additional surface water
sources relaxed the arid limitation for coyotes (Canis latrans) in the Great Desert Basin, Utah,
USA.

In the African savannahs, a wet year with total annual precipitation that is above long term
average, provides ample surface water resources for wild animals [31]. Additionally, in wetter
years, the amount of preformed water available to both prey and predators populations likely
increases [32]. However, during a dry year, most water points dry up so there is increased com-
petition for water and other resources at the few remaining viable water sources [19, 26]. As
such, surface water is a key driver of wildlife distribution during dry years as grazing centres
around water points as a copying strategy to enhance access to the water [30, 33]. Conse-
quently, predators [e.g., lion, cheetah (Acinonyx jubatus), spotted hyena (Crocuta crocuta),
African wild dog (Lycaon pictus) etc.] may be attracted to these water points as a strategy to
enhance hunting success [30, 33, 34]. However Groom and Harris [35] found that the availabil-
ity of surface water had no significant effect on the likelihood of grazers being present, even in
the dry season, suggesting that the relationship between wildlife and water resources may not
necessarily be straightforward for all fauna.

In addition to water, numerous other factors have been reported as important drivers of
wildlife distribution in the savannah ecosystem. For example: Matawa et al [36] reported that
the distributions of the African elephant (Loxodonta africana) and the buffalo (Syncerus caffer)
are driven by human landscapes (e.g., roads and human settlements) in the Sebungwe region,
Zimbabwe. Also, Winterbach et al [37] reported that the distribution of the large carnivore
guild consisting of lion, leopard (Panthera pardus), brown hyena (Hyaena brunnea), and chee-
tah depends primarily on prey availability, interspecific competition, and conflict with humans
in Botswana. Additionally, Ogutu et al [38] reports the availability of water and human settle-
ments as major drivers of big herbivore distribution in the Mara region of southwestern Kenya.
Understanding the factors that drive wild fauna distribution is an important step in wildlife
conservation particularly endangered species in the savannahs, [39, 40]. This study investigates

An Ecological Paradox

PLOS ONE | DOI:10.1371/journal.pone.0146263 January 27, 2016 2 / 14



how the availability of water resources influence the distribution of the African wild dog in the
savannahs.

The African wild dog (hereafter wild dog) is a medium sized predator [41] whose population
has largely been extirpated in most of Africa’s wilderness [42, 43]. Recent studies suggest that
the wild dog populations in protected areas continue to fall despite increasing efforts to con-
serve the predator [44]. Consequently, many studies have attempted to understand the preda-
tor’s feeding, breeding and roaming behaviour, conflict with humans, and kleptoparasitism in
an effort to enhance its conservation status (e.g., [45, 46–51]). While studies that test the distri-
bution of the wild dog are many (e.g., [52, 53, 54]), few of these to the best of our knowledge,
explain how the distribution and viability of surface water resources could contribute to wild
dog conservation.

In this study, we tested whether or not the occurrence of wild dogs is explained by the distri-
bution of surface water resources in the Hwange National Park and adjacent smallholder com-
munal farming areas, north western Zimbabwe. We particularly asked whether attraction
intensity of wild dogs to surface water points was the same for two dry seasons with noticeable
differences in number of viable water points. We hypothesized that wild dog attraction to
water points would increase when there are less water points. To test this hypothesis, we used
data from years exhibiting contrasting surface water availability conditions (i.e., 1992 and
2000).

Materials and Methods

Ethics statement
Handling of wild dogs for GPS collaring and data collection for this research was approved
under DM 173: PERMIT # 11(1)(C)(2)2000 issued by the Zimbabwe Parks andWildlife Man-
agement Authority.

Study site
Our study system was a 3128km2 rectangle comprising partly of the Hwange National Park
and adjacent smallholder communal farming areas (hereafter communal farming areas) in
north western Zimbabwe. The study system lies between latitudes 18.57°S– 18.96°S and longi-
tudes 26.73° E– 27.43°E (Fig 1). Most of the study site lies on Kalahari sandy veld with vegeta-
tion dominated by African teak (Baikiaea plurijuga), Silver cluster-leaf (Terminalia sericea)
and bushwillows (Combretum spp) [55]. Common herbivore species in the study system
include: elephant, buffalo, impala, giraffe (Giraffa camelopardalis), sable (Hippotragus niger),
and kudu (Tragelaphus strepsiceros) [56]. Large predators in the area include: lion, spotted and
brown hyena and leopard. The ephemeral Gwayi River system is the major drainage feature
cutting through the study area, with riparian vegetation covering the mainly alluvial soils domi-
nated river valley. The system is prone to drought, with precipitation largely in the form of
rainfall (long-term mean of 606mm), received between October and April [57]. Hence the area
experiences dry and wet years making it interesting to monitor the wild dog ranging behaviour
in response to contrasting conditions of water stress. The mean annual temperature for 1992
(�X = 23°C, σ = 3.87) and year 2000 (�X = 21.42°C, σ = 3.47) were almost the same, so we
expected the ranging behaviour of wild dogs not to be influenced differently by temperature for
the two years periods.

The area generally lacks natural surface water due to its climate and geology. During the dry
season (May to September) artificial water points (pumps that draw water from the aquifer)
are maintained to provide drinking water to fauna [58]. During years when rainfall exceeds the
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long term average, it is expected for all water points to be viable but during a drought year
some water points dry up. As such, the study system provides ideal conditions to test our
hypothesis. For example it is possible to know the number and location of viable water points
during any dry season. We also considered this area as ideal for this study because it lies within
the known range of five packs of Global Position System (GPS) collared wild dogs. The wild
dogs in our study system breed (have pups) in May–July in ground burrows (dens) [59]. Before
the pups are weaned, wild dogs, which are group breeders, abandon their nomadic way of life
and become sedentary canids that hunt within the locality of their dens to nourish the pups
[46]. By the end of August the pups at about eight weeks old are weaned and the packs resume
their nomadic way of life [59].

MaxEnt modelling
Firstly, we obtained the month of September presence-only location data of wild dogs from five
GPS-collared wild dog packs with home ranges that overlap with the study area (S2 Table).
The wild dog packs were fitted with GPS collars during the period from 1991 to 2002 by
Painted Dog Conservation as described by van der Meer et al. [57]. At least one pack member

Fig 1. Location of the study system comprising of part of the Hwange National Park and adjacent communal smallholder farming areas in
Zimbabwe

doi:10.1371/journal.pone.0146263.g001
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from all packs occurring in the study area was GPS-collared during both periods. Our analyses
are restricted to the dry season fixes of wild dogs for the month of September recorded in 1992
and 2000 because we wanted to document the ranging behaviour of wild dogs during a time
when surface water availability was limited to artificial water points and the wild dog packs will
have returned to their nomadic way of life after weaning pups. The GPS fixes followed a ran-
dom pattern for both day and night to cover the wholesome ranging behaviour of the wild
dogs.

Secondly, we computed normalised difference vegetation index (NDVI) [60] from Landsat
TM and Landsat ETM images for the month of September 1992 and 2000 for the study area.
We used the images of the month of September (dry season) because the wild dog location data
used in our analyses were collected during the dry season. NDVI is a proxy for vegetation vig-
our where high values represent green vegetation whereas low values represent dry vegetation
[61]. We used vegetation vigour in our analyses because we assumed that herbivores and spe-
cifically wild dog prey species select areas of high forage quality and quantity. The foraging
behaviour of wild dogs was assessed during the dry season at a time when most vegetation is
dry and leafless and herbivores are likely to be attracted to the green vegetation patches.

Thirdly, we calculated the distance of locations from the nearest water point (Dw) using the
Euclidian distance algorithm in ArcGIS (Environmental Systems Research Institute: Redlands,
California, USA). We obtained the study area data (shapefiles) of the distribution of water
points from the monthly monitoring database made available by the Zimbabwe Parks and
Wildlife Management Authority (ZPWMA). In most of the communal farming areas where
surface water data were not readily available, water points were digitized from high resolution
satellite images freely available on the Google Earth platform. Twenty viable water points in
year 1992 (drier year, mean annual rainfall = 579.4mm) and 30 viable water points for year
2000 (wet year, mean annual rainfall = 826.3 mm) were used in our analyses (S1 Table).

Fourthly, we built two models (the first for 1992 and the second for 2002) predicting the
potential distribution of wild dogs based on NDVI and distance from water using Maximum
Entropy (MaxEnt) [62, 63]. The MaxEnt algorithm models the potential distribution of target
species based on presence-only data and a set of relevant environmental variables. In this
study, wild dog location data collected in the study area in 1992 and 2000 were used as the pres-
ence only data while distance from surface water and NDVI data described in previous sections
were used as the explanatory variables. We selected MaxEnt for our analyses because it has
been shown to perform better than other candidate spatial distribution models [64].

MaxEnt model evaluation
We evaluated the predictive ability of each of the two MaxEnt models using the Area Under
Curve (AUC) of the Receiver Operating Characteristic (ROC) curve technique [65, 66]. The
response of wild dogs to distance from surface water and NDVI was tested using the response
curves for both MaxEnt models. In addition, the individual contribution of distance from
water and NDVI to the model was obtained from the analyses of variable contribution results
in MaxEnt. We also used the logistic threshold of equal training and test sensitivity to produce
a binary map showing potential presence and absence of wild dog for both 1992 and 2000. We
then determined areal extent of the predicted distribution using the area calculation algorithm
in ArcGIS.

Statistical analyses
We used the 2nd order Multitype Nearest Neighbour Distance Function (Gcross) [67] imple-
mented in R software [68] to analyze spatial aggregation of wild dogs at water points using the
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wild dog and water points data for 1992 and 2000. We used the 2nd order Gcross function
because we assumed that wild dogs are territorial [69]. To test for significance of spatial aggre-
gation, we generated 95% Confidence Interval (CI) simulation envelopes under Complete Spa-
tial Randomness (CSR) using 499 simulations following Perry et al. [70]. We then deemed
significant aggregation of wild dogs to water points as occurring when the observed line (of the
Gcross function) was above the simulation envelopes. We also considered significant segrega-
tion to occur when the observed line was below the simulation envelopes (Fig 2). To test for dif-
ference in the size of the predicted wild dog potential distribution between 1992 and 2000, we
used the proportions test (χ2 test) described by Wilson [71] which we implemented in R
software.

Results
The test for spatial aggregation of wild dogs at water points using the Gcross function showed sig-
nificant attraction only within ~1.0km radius for the 1992 data, but to within~8.0km radius for
the 2000 data (observed pattern� the simulation 95% confidence interval envelopes; Fig 2).

MaxEnt modelling with Dw and NDVI as environmental variables successfully explained
the distribution of wild dogs for the year 2000 (AUC = 0.793) but failed to do so for the year
1992 (AUC = 0.423) (Fig 3). The MaxEnt results also showed that the contribution of surface
water to the models was 79.3% in year 1992 and 90.6% in year 2000.

MaxEnt results also revealed lesser influence of water points to the probability of occurrence
of wild dogs with increasing distance from water for 1992 than for 2000 (Fig 4).

Fig 2. 2nd order Multitype Nearest Neighbour Distance Function (Gcross) graphs showing significant spatial aggregation of wild dogs (a) within
~1km for 1992 (drought year), and (b) within ~8km for 2000 (wet year) radii around water points (observed pattern� the simulation 95% confidence

interval envelopes). bGobs
Dog;water ðrÞ = observed Gcross function;Gtheo

Dog;water ðrÞ = theoretical Gcross function; shaded grey area = 95% confidence interval around

the theoretical Gcross function and; bGhi=lo
Dog;water ðrÞ. = upper and lower confidence level about the theoretical Gcross function.

doi:10.1371/journal.pone.0146263.g002
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We also observed that the area predicted (using MaxEnt) as wild dog habitat was larger
(~13888.1 km2) in 1992 than (~958.4 km2) in 2000 (Z test: χ2 test = 124.52, df = 1, p< 0.0001),
representing a drop from 44.3% of the study area to 30.6% (Fig 5).

Discussion
Contrary to our expectations that wild dogs would aggregate more around water points when
water points are few than when water points are more, our findings suggest that wild dogs
aggregate more near water points when water resources are abundant than when they are
scarce (see Fig 4). These findings support previous research e.g., Arjo et. al [6] who reported
amplified coyote activity around water points when water sites were increased in the Great
Basin Desert, Utah. However, our findings contradict Hall et al [32] who found that coyote

Fig 3. Area Under Curve (AUC) of the Receiver Operating Characteristic (ROC) curves for the MaxEnt habitat models based on wild dog presence
only data showing not successful prediction for 1992 (dry year) and successful prediction for 2000 (wet year).

doi:10.1371/journal.pone.0146263.g003
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activity was not higher near water sources. Abundance of water points in the landscape
explained distribution of wild dogs during the wet year whilst its effect was absent during the
dry year. In particular, results from the MaxEnt models suggest higher chances of wild dog

Fig 4. MaxEnt derived response curves showing lesser influence of water on the probability of wild dog presence in (a) 1992 (dry year) than in (b)
2000 (wet year).

doi:10.1371/journal.pone.0146263.g004

Fig 5. Pictures of MaxEnt models showing wider predicted wild dog habitat in (a) 1992 = dry year (~13888.1 km2) than (b) 2000 = wet year (~958.4
km2), together with wild dog presence data and water points.

doi:10.1371/journal.pone.0146263.g005
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occurrence near water points than further away when water resources were abundant than
when they were scarce. Distribution maps from the model also suggest that wild dogs generally
ranged wider when water resources were scarce than when they were abundant.

The high probability of occurrence of wild dogs near water points during wet years could be
explained by the ‘resource gradient hypothesis’, which suggests that the territory of a given ani-
mal species depends on the dispersion pattern of its prey [9]. Impalas, which are the main prey
species of wild dogs in savannah landscapes [52, 53] are water dependent [72]. Consequently,
the distribution of the wild dog could be driven by the occurrence of the impala which in turn
is driven by the spatial spread of drinking water sources [73, 74]. Additionally, the wild dogs
may also be attracted to the water because they need to drink themselves.

Paradoxically, observations made during the drier year (1992) suggest the opposite of the
‘resource gradient hypothesis’ where wild dogs show less attraction to water points and also
range far (Fig 5). Dispersion of wild dogs from their key prey areas could be explained by intra-
guild competition [e.g., (intraguild predation: the predation of mesopredators by apex preda-
tors [75, 76]) and (kleptoparasitism, the competition for kills among predators [50, 77])]. Apex
predators (e.g., lions and hyenas) may suppress wild dogs both by killing them, or instilling
fear, which motivates changes in behaviour and habitat use that limit mesopredator (e.g., wild
dog) distribution [78–81]. It is therefore possible that the key prey areas have high densities of
the apex predators during the drier year hence the wild dogs (being weak competitors) are
driven away (i.e., predation and kleptoparasitism avoidance). Consequently, the wild dogs
retreat to communal farming areas where competition is minimal [82]. Communal farming
areas offer an opportunity for easy prey in the form of domesticated animals. If that is the case,
then these findings made for the dry year also support the “resource gradient hypothesis”
where the ranging behaviour of wild dogs during this time could be explained by distribution
of domestic prey. However communal farming areas are potential ecological traps to wild dogs
as farmers are likely to persecute the dogs for livestock kills [57].

Our study however did not test for the evidence and magnitude of possible wild dog klepto-
parasitism competition with sympatric carnivores in the study area during both the dry and
wet years. That analysis was not possible because we did not have data on the density of the
large predators that compete with the wild dogs in the study area and data on kills and kill sites
as well. Future studies that further seek to explain the effect of water on the ranging behaviour
of wild dogs should therefore include analyses on how the densities of lions and hyenas in the
study area affect the ranging behaviour added to the effect of water. In addition, our model pre-
dicting the distribution of wild dog was based on only two predictors (vegetation cover approx-
imated by NDVI and distance from surface water). Inclusion of other key variables like the
density of prey species could improve the predictive ability of models. While herbivore popula-
tion data is available for the park [83], it is largely not available for the communal areas which
also form part of the study site. Despite these shortfalls, we maintain that the two factors used
in our models are key in driving the distribution of prey species [84] and could therefore be
used as proxies for prey species density. We also appreciate that our focal species is territorial
and their ranging behaviour is likely influenced by the desire to minimize encounters with
other packs [59], therefore further studies on the ranging behaviour of wild dogs should
include the effect of territoriality.

Our study is unique in that it is the first to objectively test the effect of surface water distri-
bution on the ranging behaviour of wild dogs in African savannahs. The study is also amongst
the first to employ spatial analyses methods in answering hypotheses on surface water influ-
ences on wild dog ranging behaviour. Results from the study have far reaching implications on
the conservation of the wild dogs and other canids since availability of surface water has been
known to increase kleptoparasitism and thus threaten wild dog populations [52]. For example,

An Ecological Paradox

PLOS ONE | DOI:10.1371/journal.pone.0146263 January 27, 2016 9 / 14



possible management interventions would include provision of more water points in the land-
scape in an effort to reduce intraguild competition. This study could therefore form the basis
for formulation of future hypotheses that test the effect of surface water distribution on wild
dogs and other canids. Future studies exploring similar hypotheses should increase spatial rep-
lication to include several landscapes. This will better enable generalisations to be made with
regards to the effect of surface water on the ranging behaviour of wild dogs.

Conclusions
Our results indicate that availability of surface water influences the habitat preferences of the
African wild dog in two opposing ways. Firstly, as expected and in tandem with the ‘resource
gradient hypothesis’ there is evidence of attraction between surface water and wild dog distri-
bution during wet years. The mechanism of the attraction could be that wild dog prey (e.g.,
impala) aggregate around water points and wild dogs follow prey herds for their nutrition. Sec-
ondly, in complete disagreement with the ‘resource gradient hypothesis’, there is evidence that
wild dogs are not attracted to water points when water points are few. This paradox may be
explained by the intraguild predation and kleptoparasitism concept. During prolonged dry
period (droughts), some water points dry up, consequently there is more concentration of prey
around the remaining water points. This concentration of prey also attracts apex predators
(e.g., lion and hyena) which outcompete wild dogs for kills and possibly prey on wild dogs. As
such wild dogs are driven away from near the water points to peripheral areas free from com-
petition for kills and danger of predators. We recognize that other variables (e.g., human inter-
ference, interaction with other wild dog packs and densities of prey) are likely also to be
important in governing wild dog habitat preference. As such, future studies should assess vari-
ables including kleptoparasitism and density of other predators and analyze these against wild
dog habitat preference. Explicit investigation of the mechanisms linking availability of water
and local habitat-wild dog associations will also be an important direction for future research.
Nevertheless, our research advances current understanding of the linkages between wet and
drought periods to wild dog home ranges, illustrating that water availability does not have a
straight forward relationship with canids’ distribution. For example, dwindling water points
may indirectly cause wild dogs to range wider, consequently encroaching into human settle-
ments, which may lead to increased conflict with humans and exacerbated stress on this
already endangered species.

Supporting Information
S1 Table. Water points.Water distribution points for years 1992 and 2000, coordinates are in
WGS84 UTM ZONE 35S.
(XLS)

S2 Table. Wild dogs.Wild dogs presence only data for years 1992 and 2000, coordinates are in
WGS84 UTM ZONE 35S.
(XLS)
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