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ABSTRACT

Immunological tolerance is a fundamental arm of any functioning immune system. Not only 
does tolerance mitigate collateral damage from host immune responses, but in doing so 
permits a robust response sufficient to clear infection as necessary. Yet, despite occupying 
such a cornerstone, research aiming to unravel the intricacies of tolerance induction is 
mired by interchangeable and often misused terminologies, with markers and mechanistic 
pathways that beg the question of redundancy. In this review we aim to define these boarders 
by providing new perspectives to long-standing theories of tolerance. Given the central role 
of T cells in enforcing immune cascades, in this review we choose to explore immunological 
tolerance through the perspective of T cell ‘resistance to activation,’ to delineate the contexts 
in which one tolerance mechanism has evolved over the other. By clarifying the important 
biological markers and cellular players underpinning T cell resistance to activation, we aim 
to encourage more purposeful and directed research into tolerance and, more-over, potential 
therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need 
of reclassification and consideration, and in this review, we hope to open that conversation.

Keywords: T cells; Immune Tolerance; Immunotherapy; T-Cell Exhaustion; Senescence; 
Clonal Anergy

INTRODUCTION

Randomised recombination events that generate TCRs represent a double-edged sword 
in immunity: whilst they endow the immune response with remarkable flexibility and 
robustness, they also potentiate debilitating autoimmune diseases. Despite being vetted 
in the thymus to reduce autoimmune threat, autoreactive T cells remain in the repertoire 
and such is their nature that, if chronically activated, they can severely damage the host. 
Thus, tolerance mechanisms that intercept or cease effector functionality of rogue T cell 
clones are a backbone for a functioning immune system. However, as the field progresses, 
it is becoming increasingly clear that tolerance is not clear cut for good reason: tolerance 
mechanisms can and do work together in physiological contexts, and even within these 
tolerance programmes there are regulatory parameters in place, whether it be cellular (e.g. 
Tregs, dendritic cells [DCs]), spatial (Ag restriction to thymus and tissue) or simply a game of 
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numbers (moderate instead of severe impairment of proliferation) to ensure a robust immune 
responses can be mounted to pathogen or tumours if required.

Thymic selection provides an early opportunity to observe this paradigm in action. 
Typically, autoreactive cells are culled as they develop, however it is imperfect and inevitably 
necessitates peripheral interventions. Evidence suggests 25%–40% of T cells reactive to 
a single self-epitope escape central tolerance (1). Yet, Yu et al. (2) argue this may be by 
evolutionary design: a perfectly efficient culling of auto-reactive cells leaves too many 
‘holes’ in the T cell repertoire, lending itself to invasion by opportunistic pathogens. The 
phenomena of molecular mimicry as a precedent for some autoimmune diseases may provide 
contextual evidence for this (2). Instead, the risk is offset by mechanisms of peripheral 
deletion, ignorance, exhaustion and anergy, functioning under the peripheral tolerance 
umbrella to supress self-destructive T cell activity, even at the expense of chronic infection 
and cancer progression.

Unsurprisingly, there is considerable overlap in how these states of tolerance are described, 
and at time warrants reconsideration of how we discuss ‘tolerance.’ Some tolerance 
mechanisms share tantalisingly similar phenotypes, making it hard to differentiate them and 
begging the question of why the immune system evolved several mechanisms that achieve 
similar results. However, certain contexts reveal the value of one mechanism over another, 
or how certain combinations can help to offset risks. In addition, the response capacity 
of T cells can also be influenced by mechanisms beyond classical peripheral tolerance, for 
example by senescence associated with ageing. There are instances wherein nomenclature 
can only go so far to describe the shared cellular state across diseases, such as the use of 
exhaustion to described T cells within chronic infection models, cancer and autoimmune 
disease, wherein it is still unclear if their cellular programming is indeed the same (3,4). 
Finally, semantically, we would not consider HIV-1 under a ‘tolerance’ framework, however its 
employment of peptide evolution shaped by host immune selection could be considered akin 
to ignorance, and is not wholly unique (5).

Though it is ever important to refine definitions of tolerance states and mechanisms, 
we suggest also taking a step back to consider the wider shared feature of ‘resistance to 
activation’. In doing so, we propose how this framework might garner new perspectives as it 
has done already in improving some therapies. Kondo et al. (6) were able to enforce sharper 
specificity of chimeric Ag receptor (CAR) T cell responses towards tumour, by coupling the 
classical activation ‘resistance’ mechanism of endogenous TCR self-discrimination towards 
weak Ag alongside the standard CAR-construct. In a similar vein, inclusion of a stimulatory 
step is widely adopted in tolerogenic DCs (tolDCs) protocols, and logically makes sense in 
order to ensure utilisation of mature DC characteristics—e.g. migration and peptide-MHC 
(pMHC) presentation—that allow engagement with T cells. In this context tolDCs are not 
passive and are partially resistant to activation/maturation.

In this review, we will explore the concept of peripheral T cell tolerance or more broadly T 
cell resistance to activation. First, we will examine the different nature of external signals 
driving T cell resistance. Next, we will emphasise the molecular and cellular origins of T 
cell resistance in the context of T cell (non-)activation, and we will discuss the types of 
immune cells considered professional inducers of T cell resistance. Finally, we will review the 
therapeutic potential of the mechanisms of T cell resistance.
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EXTERNAL SIGNALS MODULATING PERIPHERAL T CELL 
ACTIVATION AND DIFFERENTIATION
Types of peripheral T cells
T cell progenitors migrate from the bone marrow to the thymus, where they are subjected 
to a complex process of maturation and selection for weak recognition of self pMHC, before 
being released to the periphery as naive T cells. Each naive T cell has a unique TCR that 
can recognize a degenerate set of peptides on the same pMHC or, in some cases, non-self 
pMHC (alloreactivity). Once they encounter the relevant Ag presenting cell (APC) or target 
cell with one of the possible cognate pMHC, the activation process begins. Effector T cells 
(CD4+, CD8+, Treg cells) are short-lived populations that originate from the expansion and 
differentiation of activated T cells. Effector T cells carry out specific activities in response 
to antigenic stimulation and play a key role in steering the immune responses to execute 
immune functions. Effector T cells can promote, redirect or curtail different types of immune 
responses. Memory T cells are a long-lived population that survive the contraction phase of 
the immune response and retain the Ag-specificity. Together, memory T cells and naive T 
cells prepare the immune system to encounter both previously seen and novel foreign Ags.

Types of extracellular signals integrated during T cell activation
Efficient T cell activation, expansion and differentiation are dependent on exposure to, at 
least, four types of signals: Ag recognition by the TCR (signal 1), activation of co-stimulatory 
receptors (signal 2), cytokines (signal 3) and synaptic vesicles (SV; signal 4) (Fig. 1). The 
timing, strength and identity of such signals will determine the fate of the lymphocyte.
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Figure 1. When a T cell (orange) contacts an APC (purple) or target cell, the contact progresses from an early 
kinapse to a stable immunological synapse. During this contact, distinct types of internal and external signals are 
integrated to coordinate the process of T cell activation and subsequent differentiation. When a specific antigen 
is recognized by the TCR S1), the activation is initiated and signalling microclusters, containing the TCR and other 
co-activator molecules (S2), are immediately formed. The architecture of a multifocal synapse (shown here) is 
less well characterised than a monofocal synapse wherein microclusters migrate to the centre of the contact. The 
cytokine milieu (S3) during and after the contact will affect the differentiation of the T cell into effector or memory 
cell, for example. Release of synaptic vesicles will follow (S4) to mediate the horizontal transfer of biological 
material between the two cells involved. 
S1, signal 1; S2, signal 2; S3, signal 3; S4, signal 4.



Signal 1: Ag
Recognition of the relevant Ag through the pMHC-TCR interaction in F-actin-dependent 
protrusions or microclusters initiates T cell activation (7,8). Such interaction is unique and 
narrows the activation process towards a specific clone of T cell. The TCR is a heterodimer 
(αβ) that lacks an intracellular signalling domain. It associates with signal transduction 
subunits CD3ε, γ, δ, and CD247 (also referred to as ζ-chain), which contain intracellular tails 
bearing include Tyr-based activation motif and other signalling motifs that initiate multiple 
signalling pathways in response to Ag recognition (9). The specific MHC-TCR interaction 
is possible in the presence of different types of peptides, with a broad range of affinities. 
Depending on the strength of the pMHC-TCR interaction, the T cell output can differ.

Signal 2: co-stimulatory receptors
Co-stimulatory receptors are a structurally diverse group of molecules that share the ability 
to positively modulate TCR signalling and to promote the activation and expansion of 
the T cell in a manner that is dependent upon concurrent Ag recognition. Co-stimulatory 
receptors are activated by ligand recognition, which can be another surface molecule on the 
APC/target cell in trans or a ligand expressed on the T cell that can engage the receptor in 
cis (10,11). Down-stream signalling events emerging from co-stimulatory receptors largely 
overlap with those from the TCR (12) and are often dependent on the expression of the TCR 
(13). Co-stimulatory signals can be overcome by co-inhibitory signals, which can compete for 
the ligand and/or counteract the intracellular signalling events (14). Both co-stimulatory and 
co-inhibitory receptors are strategically reorganised within protrusions/microclusters and the 
distal supramolecular activation clusters within the immunological synapse (IS) interface to 
boost or attenuate TCR signalling, respectively (15). The original concept was that signal 1, in 
the absence of signal 2, can induce a permanent state of anergy, and even death, in the T cell 
(16,17). Integrin lymphocyte function-associated Ag-1 (LFA1) interaction with intercellular 
adhesion molecule 1 (ICAM1) can also induce co-stimulatory signals. Even though LFA1-
ICAM1 interaction is spatially segregated from the TCR-pMHC interaction, LFA1 function is 
stimulated by the TCR, and integrin signalling is highly correlated with TCR signalling (8). 
However, analysis of steady state DCs that induced anergy or deletion of T cells reveals that 
they present intermediate levels of co-stimulatory ligands like CD86 and ICAM1, suggesting a 
more complex picture (18).

Signal 3: cytokines
Combination of signal 1 (Ag) and signal 2 (co-stimulation) are enough to initiate the clonal 
expansion of the relevant T cell subset. However, T cells require the presence of additional 
cytokines (signal 3) to properly orchestrate their differentiation and to achieve optimal 
effector or memory functions (19). These signals can include soluble ligands, like IL-2, or 
membrane anchored or trans-presented cytokines, like 4-1BB and IL-15. Signal 3 output 
depends on the composition of the cytokine milieu during T cell expansion and on the timing 
of exposure. For example, strong signal 3 before the signal 1 and 2, can lead to a reversible 
state of unresponsiveness to the Ag (16), while absence of signal 3 can irreversibly impair 
the effector function of primed cells (20). Beyond the temporal sequence of signal delivery, 
the spatial relationship between signals can also influence T cell outcomes. For example, 
simultaneous presentation of IL-2 and Ag at the IS—both spatially and temporally—can 
markedly enhance T cell responses to both signals. This highlights that the spatial context, 
in addition to the timing, of signal presentation is crucial for optimizing T cell activation and 
function (21).
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Signal 4: SV
Recently, a fourth signal has been proposed. During the immune synapse, there is a 
bidirectional release of extracellular vesicles, known as SV, which transfer information that 
can modulate and mediate the function of the T cell. SV delivered by the T cell towards the 
synaptic cleft have a unique molecular composition that includes specific immune receptors, 
miRNA and RNA-associated proteins (22), mediating the horizontal transfer of biological 
material between neighbouring T cells or T cells and APC/target cells.

In addition to these four types of signals, factors regulating T cell metabolism also assume a 
fundamental role in influencing T cell activation, representing a significant aspect rather than 
the conventional notion of being another T cell activation signal. Hongbo Chi's proposition 
regarding the involvement of metabolism in T cell activation has gained substantial 
recognition and support in recent years (23). It is now widely acknowledged that metabolic 
reprogramming is crucial following the initial signals of Ag recognition, co-stimulation, 
and cytokine signalling. Metabolic cues are instrumental in shaping the trajectory of T cell 
responses. It plays a crucial role in determining the fate of T cells, whether they undergo 
activation, exhaustion, senescence, or other functional states (24).

INTRINSIC MECHANISMS OF T CELL RESISTANCE

We introduce the concept of T cell resistance to activation to define a heterogeneous group of 
responses observed in T cells that oppose (or resist) Ag-induced activation. We will discuss 
different types of resistance mechanisms based on their molecular and cellular origins and 
their (patho-)physiological implications. We will focus first on intrinsic mechanisms within 
the T cell, but we acknowledge up front that these operate in tandem with extrinsic processes 
that we will discuss in section 3.

Ignorance
T cell ignorance is one of the means of peripheral T cell tolerance dependent upon resistance 
to activation, where T cells do not appear to notice or be affected in any way by the relevant 
autoAgs and is more likely to occur when there is no thymic expression of the Ag.

Naive T cell sensitivity to self pMHC is attenuated following thymic development. For 
example, differentiation from single positive thymocyte to naive T cell is accompanied 
by down-regulation of miR-181a, which results in upregulation of a multiple negative 
regulators of signalling that reduce the naive T cell’s sensitivity to pMHC (25). Non-response 
of naive T cells in response to self-pMHC is further favoured by the following factors: low 
Ag expression, low affinity between TCR and pMHC and low affinity between peptide 
and MHC. When ignorance is operative, naive autoreactive T cells ignore islet Ags and 
recirculate without causing damage unless activated by an external stimulus. However, the 
discriminatory power of the TCR is imperfect and T cells can respond to very low affinity 
pMHC, which explains why self-Ags can sometimes trigger autoimmune reactions (26). 
Additionally, a subset of naive T cells, such as those expressing high levels of CD5 or low 
levels of Ly6C, has been shown to retain higher self-reactivity in the periphery (27,28). These 
cells, upon stimulation, are more prone to Foxp3 expression and Treg differentiation (28,29), 
suggesting an alternative tolerance mechanism beyond ignorance. Thus, while ignorance 
typically prevents activation by self-Ags, these examples show that self-reactive naive T cells 
may take on a regulatory role, contributing to peripheral tolerance through Treg induction.
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Studies have shown that the failure of T cell ignorance leads to multiple autoimmune diseases 
like type 1 diabetes and systemic lupus erythematosus (SLE) (30). However, few studies in 
the late 90s report that immunological ignorance aids in tumour evasion due to the failure 
of immune surveillance against cancer. Linette et al. (31), 2019 show that immunological 
ignorance of clonal neoantigens leads to ineffective T cell immunity against melanoma.

Interestingly, Kurts et al. (32), 1999 showed that the states of T cell tolerance and ignorance 
were determined by the concentration of the Ag. In fact, the concept of ignorance was derived 
from the existence of rare diseases where physical damages to an organ result in changed Ag 
availability and an autoimmune state (30). Ignorance might engender a unique state in naive 
T cells, reminiscent of the concepts proposed by ElTanbouly and Noelle (17). Throughout 
the early naive T cell phase, quiescence and ignorance actively contribute to maintaining 
tolerance. In circumstances where co-stimulation is lacking, anergy assumes a central role, 
rendering T cells unresponsive. As T cells progress to the effector stage through successful 
stimulation, exhaustion and senescence step in, mitigating excessive inflammation and 
preventing potential immunopathological consequences.

Quiescence
T cell quiescence is a reversible state of indolence in which the T cell is not proliferating but 
maintains the potential to quickly enter the cell cycle. It is defined by small cell size with 
limited cytoplasmic volume, low rates of cell metabolism, transcription, and translation 
activities (33). A majority of the lifetime of peripheral T lymphocytes is spent in quiescence. 
Quiescence allows cells to remain non-dividing for long periods of time while also enacting 
mechanisms to defend themselves from injury (34).

Cells must precisely govern their entry into quiescence, maintenance of this phase and their 
exit from quiescence to ensure a reversible state of arrest and thus necessitate the activation 
of key cell-cycle regulators, which in turn respond to extracellular and intracellular signals 
as well as inputs from upstream factors (34). Quiescence is promoted by cyclin-dependent 
kinase inhibitors, and quiescent cells often have high quantities of these proteins. As a 
result, a cell's decision to enter or exit quiescence is influenced by a number of cell cycle and 
transcriptional factors. In 2018, Newton et al. (35) showed that FOXO1 has a critical role in 
regulating specialized lymphocyte functions and maintaining T cell quiescence. In this study, 
by sustaining FOXO1 activity beyond normal cell activation, the authors observed disruptions 
in the homeostasis of CD4 conventional and regulatory T cells. While continuous FOXO1 
activity led to increased activation of Akt kinase and an intrinsic proliferative advantage, it 
also resulted in decreased survival and cell division under competitive conditions or limited 
growth-factor availability (35). In 2014, Miller et al. (36) revealed that the survival of quiescent 
T cells is, in part, reliant on the interaction between the soluble factor IL-7, produced by 
various stromal cells, and the IL-7 receptor (IL-7R) present on the surface of T cells. This study 
demonstrated that naive T cells possess a basal nuclear level of the NF-κB transcription factor, 
which played a pivotal role in maintaining IL-7R expression, ensuring their survival (36).

The active maintenance of a quiescent state in naive T lymphocytes increases their survival 
and persistence. During quiescence exit, T cells rapidly acquire biomass which necessitates 
an increase in amino acid, lipid, and cholesterol biosynthesis and uptake from their 
surrounding via glucose and amino acid transporters in order to allow for increased protein 
and membrane synthesis (37,38). Ag and co-stimulatory receptor engagement cause T cells to 
exit quiescence, permitting clonal proliferation and functional differentiation, both of which 

T Cell Resistance to Activation

https://doi.org/10.4110/in.2024.24.e42 6/32https://immunenetwork.org



are necessary for generating an appropriate immune response (Fig. 2). Extensive alteration 
of cellular morphology and metabolism is connected with the prompt exit from quiescence, 
which occurs before activation-induced proliferation (39).

Adoptive T cell and checkpoint blockade therapies are progressively gaining traction as effective 
cancer therapies. The efficacy of these therapies could be improved by altering the quiescence 
exit hallmarks. The anticancer responses of adoptively transplanted CD8+ T cells are improved 
by enforcing phosphoenolpyruvate production or oxidative phosphorylation, suggesting 
that altering the metabolic signatures of quiescence exit can improve cancer adoptive T cell 
treatments. Checkpoint blockade medicines targeting PD-1 and CTLA-4 can also improve 
endogenous T cell accumulation and activity in the tumour microenvironment (40).

Anergy
Anergy is commonly defined within two frameworks, either: in vitro, sometimes referred to 
as ‘clonal anergy,’ wherein anergy accompanies some retained effector cellular function; 
or that induced in vivo, termed ‘adaptive tolerance,’ and associated with a complete loss of 
effector functionality (41). In the absence of co-stimulation, clonal anergic T cells in vitro can 
be rescued from their refractory state, or anergy staved off altogether with exogenous IL-2. But 
this is not possible in vivo (42). Equally, cells anergised in vivo can be rescued and slowly regain 
effector function in the absence of persistent Ag exposure, otherwise not observed in vitro (43). 
Thus, continual Ag exposure appears necessary for regulating anergic states in vivo (43).

Much research has identified candidate transcriptional inducers and mediators of anergy, 
and their activating pathways. More challenging has been identifying any consistent surface 
molecules involved. Expression of ligands commonly associated with anergic pathways, such 
as PD-L1, do not strictly define tolerogenic capacity, neither is lack of co-stimulation a pre-
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Figure 2. Cartoon representing the cell cycle phases and a T cell (orange) exiting quiescence after being activated 
by an effective contact with an APC (purple). T cells will enter the cell cycle each time they recognize an antigen 
in order to expand and respond. T cells of old individuals will, after multiple rounds of cell-cycle entry, naturally 
enter a permanent state of senescence that will impair their activation potential. Shortening of telomeres has 
been suggested to drive senescence. APCs can transfer telomeres within vesicles across the immunological 
synapse to rescue a T cell from senescence.



requisite (44,45). These suggest other parameters, independent of ligand specificity, might 
equally regulate anergy induction.

For example, nuclear export of the transcription factor NFAT has been reported to be slower 
than its transcription partner AP-1 (46). Whilst NFAT is heavily implicated in anergy, it 
preferentially forms high-affinity complexes with AP-1 upon sufficient signalling to trigger 
typical effector genes (47). Thus, in the absence of sufficient signalling, it is possible that the 
residual pool of NFAT begins to self-associate into low affinity homodimers that target so 
called ‘anergy associated genes’ (47). Therefore, parameters such as cell-cell contact duration 
alongside synapse maintenance and organisation etc. could also affect NFAT accumulation, 
particularly if considered within threshold or ‘summing’ models of T cell activation (48). Such 
parameters might better dictate activation or anergy, and crucially emphasise less the necessity 
of a cell to express certain receptors to be characterised as activating or tolerogenic (44).

Research already suggests the DC maturation state encourages formation of a stable synapses 
and thus parameters such as contact duration and stability between a T cell and APC may 
predilect activation over tolerance induction (49,50). Interestingly, when primary human 
naïve and memory CD8 and CD4 T cells were observed interacting with a 2D stimulatory 
surface only human CD8+ memory T cells preferred formation of stable synapses. All other 
subsets formed motile, asymmetric contacts termed kinapses, which, nonetheless led to 
equal duration of contact between T cells and Ag presenting cites (51). This supports a 
consensus that prolonged contact tends towards T cell activation, regardless of contact 
phenotype, i.e. synapse vs. kinapse, provided there is sufficient recruitment of signalling 
machinery (52).

Kinapses have also been associated with anergic states. Murine CD4+ T cell blasts that 
had been treated with ionomycin to induce a NFAT dependent anergy programme formed 
kinapses, whereas non-anergized counterparts formed stable synapses over the same time 
frame. Kinapses can be a signature of a T cell’s ongoing search for pMHC to engage the TCR, 
or in the case of anergic T cells, the impact of degrading signalling proteins that are required 
to sustain TCR signalling and a stable synapse or productive kinapse. In ionomycin induced 
anergy, a number of key signalling proteins are targeted for degradation by E3 ubiquitin 
ligases, including phospholipase Cγ (PLCγ), linker for activation of T cells (LAT), protein 
kinase C-θ (PKC-θ), and zeta-chain-associated protein kinase 70 (ZAP70) (53). PLCγ, LAT, 
and ZAP70 are all required for cytoplasmic Ca2+ increases associated with stable synapse 
formation. Equally, lipid rafts that coalesce and localise these signalling molecules in the 
central SMAC appear dysfunctional in orally tolerised cells (54). Expression of E3 ubiquitin 
ligases such as c-Cbl and Cbl-b have also been observed at the c-SMAC of some anergic cells 
and thus may also maintain their hyporesponsive state (55). The interpretation of the kinapse 
mode of interaction must be considered in a functional context as kinapses can be part of a 
mitogenic/activatory programme, or anergy.

A passive model of anergy induction could be under steady-state conditions wherein anergy 
is induced by many transient unstable interactions with homeostatic/spontaneously matured 
immature DCs that present low levels of innocuous Ag (56,57). It would be interesting to 
explore what contact tolDCs—DCs which are semi-mature and ‘professionally’ tolerogenic—
form with T cells. Given their semi-mature state, they may actively promote instability, 
perhaps through PD-L1 mediated inhibition of co-stimulation and productive TCR signalling. 
Equally, as they present lower levels of MHC, they may encourage more durable, stable 
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contacts through other means such as using their own integrins to hold the T cells and 
sufficiently deliver partial signals leading to anergy. So far few or no studies have investigated 
the tolDC synapse, most likely because of the complexity of analysing T-DC synapses in 
general and that there is a lack of consensus on how to generate tolDC ex vivo (see tolDC 
section for more information).

Exhaustion
Exhausted T cells are a heterogeneous population that shows attenuated (but not absent) 
function in the context of persistent Ag exposure. This prevents excessive tissue damage and 
immunopathology in response to chronic viral infections and cancer. However, mechanisms 
leading to T cell exhaustion can be exploited by viral-infected cells or cancer cells to escape 
immune responses (58).

Exhausted T cells survive the contraction phase and are thought to originate from a 
progenitor exhausted population, with self-renewal capacity (T-cell factor; TCF+), that is 
transcriptionally and epigenetically different from the effector and memory populations. 
Progenitor exhausted T cells progressively lose proliferative and re-activation potential, to 
become a terminally differentiated exhausted population (TCF−). Effector function is not 
completely lost but reduced. Terminally differentiated exhausted populations co-express 
effector and inhibitory receptors, such as granzyme B and PD-1, respectively (58).

Mechanisms mediating exhaustion are not fully understood but involve the integration 
of different cellular and molecular inputs (Fig. 3). Repeated TCR activation by chronic Ag 
exposure is a key aspect for the initiation of the exhausted programme and TCR-dependent 
pathways, like NFAT, are involved in the exhausted phenotype (59,60). Interestingly, forming 
a signalling axis with NFAT, the NR4A subfamily of orphan nuclear receptors have been 
implicated in T cell exhaustion and anergy by impeding AP-1 signalling – thus perhaps 
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Figure 3. Cartoon representing the molecular mechanisms involved in exhaustion of T cells after repeated 
exposure to an antigen. In the context of antigen persistence, several co-inhibitory receptors, like PD-1 or CTLA4, 
counteract TCR signalling pathways. Other mechanisms driving T cell exhaustion involve the cytokine milieu. 
For example, while IL-2 can potentiate TCR signalling to reverse exhaustion, IL-10 impairs it. Exhaustion is also 
intimately linked to the metabolic state of the T cell. Hypoxia or low glucose availability, usually related to the 
tumour microenvironment, can dramatically impair mitochondrial function and therefore, T cell activation.



promoting NFAT dimerization (see Anergy section) – and aiding expression of inhibitory 
receptors such as PD-1, T-cell immunoglobulin and mucin-domain containing-3 (TIM3) and 
c-Cbl. Expression of the NR4A subfamily receptors are immediate following TCR mediated 
signals, suggesting the possibility of an early negative feedback that is intrinsic to all TCR 
signalling events setting the stage for anergy in the absence of costimuation, or exhaustion 
programmes in the face of chronic TCR signalling (61).

Activation of co-inhibitory receptors, concomitantly to TCR activation, also have a central 
role in driving exhaustion. PD-1 forms a non-covalent dimer on T cells and is highly expressed 
in exhausted T cells (62). PD-1 is activated by ligand binding with PD-L1 or PD-L2, which also 
can form non-covalent dimers through the transmembrane domains. Phosphorylation of the 
PD-1 intracellular tail leads to the recruitment and activation of phosphatases that counteract 
the TCR downstream signalling, thereby suppressing T cell activation and function (63). 
Similarly, other co-inhibitory receptors are highly expressed in exhausted T cells, like CTLA-
4, lymphocyte-activation gene 3 (LAG-3), and the TIM3 (64).

CTLA-4 and PD-1 pathways are non-redundant checkpoints for T cell activation, and 
their blockade has been at the frontline of current anti-cancer therapies (65). CTLA-4 
out-competes with CD28 for the binding to CD80, preventing the CD28-dependent co-
stimulation required for a proper T cell activation and leading the cell to a state of anergy. 
CTLA-4 can also prevent the formation of a stable contact between the T cell and the APC 
(66) or directly inhibit TCR-dependent pathways (67).

The cytokine milieu is also an important player driving T cell exhaustion. For example, IL-10 
produced during chronic infections promotes exhaustion, and simultaneous blockade of 
IL-10 and PD-1 improves reversion of exhaustion (68). On the contrary, IL-2 treatment can 
improve virus control by CD8+ T cells, and combination of IL-2 treatment with PD-1 blockade 
strongly reversed exhaustion during viral infections (69).

TCR-dependent pathways can also be integrated with metabolic pathways to induce the 
exhausted phenotype (70). For example, repeated activation of the TCR under hypoxic 
conditions (like the tumour microenvironment) inhibits mitochondrial adaptations to 
hypoxia, causing a dramatic increase in the ROS production that rapidly promotes exhaustion 
of CD8+ (71,72). The simultaneous deprivation of oxygen and glucose in the tumour 
microenvironment is also a key inducer of mitochondrial dysfunction and ROS production 
that can lead to exhaustion of cytotoxic lymphocytes. In addition, PD-1 signalling can also 
favour the accumulation of depolarized mitochondria, enhancing the process (70).

Senescence
Ageing is a natural biological process that occurs due to the accumulation of a wide variety of 
molecular and cellular damage over time and results in the decline of physiological functions. 
The immune system also undergoes age-related changes called immunosenescence, which 
results in the deterioration of the immune response. Immunosenescence affects both innate 
and adaptive immunity and is one of the major reasons for increased susceptibility of aged 
individuals to infections and diseases (73,74).

T cells near the end of their lifespan become senescent i.e., undergo cell-cycle arrest while 
staying viable and metabolically active (Fig. 2). Senescent T cells have also been described as 
those cells which do not proliferate in response to TCR stimulation, produce inflammatory 
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cytokines and increase in number during ageing (75,76). Immunosenescence is marked by 
a gradual decline in the efficiency of the adaptive immune system, particularly in B and T 
cells, might contribute to inflammaging. As individuals age, their reliance on the innate 
immune system increases, which can trigger a chronic low-grade inflammatory response. 
This shift in the balance of the immune system dynamics can give rise to persistent, low-
level inflammation. Additionally, the chronic and mild inflammation associated with 
inflammaging can have detrimental effects on the immune system. It can lead to the 
exhaustion of immune cells, a decrease in their functionality and an increased production 
of proinflammatory cytokines. This inflammatory environment can expedite the aging of 
immune cells, thereby exacerbating immunosenescence (77,78). Also, studies have shown 
that senescent T cells acquire characteristics of NK cells (79,80).

Many cellular mechanisms have been shown to trigger T cell senescence. Replicative 
senescence is a process that occurs as a result of many rounds of replication leading 
to shortened telomeric length and subsequent senescent state to prevent its potential 
progression toward malignancy (76). Premature senescence is a telomere-independent 
mechanism, which is induced by external factors like cellular stress (81). Involution of thymus 
has been described as one of the causes of immunosenescence. The functional tissues of 
the thymus get replaced with fat soon after birth (82). Subsequently, the output of newly 
generated naive T cells is greatly reduced in the elderly contributing to immunosenescence.

T cell surface markers are known to act as guides throughout the differentiation journey of T 
cells. Likewise, some of the surface markers act as hallmarks of senescent T cells. Senescent 
T cells lose the cell surface stimulatory molecules such as CD27 and CD28 while they acquire 
killer cell lectin like receptor G1 and CD57 (83). These cells also express senescence related 
molecules such as Atm, phosphorylated histone H2AX, the cyclin inhibitor p16, sestrins, and 
p38 mitogen-activated protein kinase (84). High level of expression of senescence related 
β-galactosidase has been observed in senescent T cells (85). Re-expression of CD45RA can 
occur in senescent T cells (76). Although these cells have lost their proliferative capacity, they 
have potent cytotoxic activity (79,84).

Senescent T cells have been implicated in chronic viral infections, autoimmune disorders and 
cancer (76). Evidence suggests that malignant tumours evade immune system by using T cell 
senescence as one of the strategies. Thus, the role of signalling network of senescent T cells 
in tumour microenvironment has paved way for its use as prognostic biomarkers in several 
cancers (86). Evidence also suggest that senescent T cells are involved in the pathogenesis 
of various inflammatory conditions, cardiovascular diseases such as atherosclerosis, acute 
coronary syndrome and essential hypertension (87). Also, the possibility of preventing 
senescence in tumour-specific T cells makes these senescent T cells potential therapeutic 
targets. In fact, it has been recently shown that APC can transfer telomeres to the T cell 
during the IS, favouring the lifespan of the Ag-specific T cells (88). This represents a new 
telomerase-independent mechanism to prevent T cell senescence in the context of normal 
immune responses through a process initiated by terminally differentiated APCs. Hence, 
further exploration of characteristics and roles of senescent T cells can help in using these 
cells as potential therapeutic targets in many diseases.

Cell death
Cell death is a key regulator of immune homeostasis, allowing processes such as the 
controlled termination of adaptive immune responses once the pathogen is cleared or 
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the pruning of the T cell repertoires by negative selection during development. There are 
different mechanisms that can lead to a controlled T cell death. These include extrinsic and 
intrinsic apoptosis, necroptosis and ferroptosis, among others.

Apoptosis is executed by the serial activation of several caspases, a type of cysteine-aspartic 
proteases, which cleave cellular components and irreversibly cause cell death. This process 
can be initiated intrinsically by the cell itself or extrinsically by a surrounding cell.

Intrinsic apoptosis involves the formation of pores at the outer mitochondrial membrane, 
which allow the release of cytochrome C into the cytosol. This induces the assembly of the 
apoptosome and initiates the cascade of caspase activation. Perforation of the mitochondrial 
membrane is regulated by the B-cell lymphoma-2 (Bcl-2) protein family. Members of the Bcl-2 
family can be classified in three groups: the pro-apoptotic Bax and Bak members (i), which 
form the pores that permeabilize the outer mitochondrial membrane; the pro-survival Bcl-2 
members (ii), which inhibit the pro-apoptotic members of the family by direct interaction; 
and the BH3-only proteins (iii), which sense the state of the cell and initiate apoptosis 
by directly activating Bax and Bak or by repressing the pro-survival Bcl-2 members (89). 
Initiation of the intrinsic apoptotic pathway is regulated by the balance between pro- and 
anti-apoptotic Bcl-2 proteins expressed in the T cell. For example, during negative selection 
in the thymus, too strong TCR signalling increases expression of Bim, a pro-apoptotic BH3-
only protein (90). Bim expression is also crucial for the apoptosis of activated CD8+ T cells 
after an acute or chronic viral infection (91,92) or during cytokine withdrawal-induced cell 
death (93). On the contrary, homeostatic signals, like IL-7, can upregulate members of the 
pro-survival Bcl-2 family, thus protecting from apoptosis (94,95).

Extrinsic apoptosis is initiated by the activation of a death receptor (DR) by ligand 
recognition. DRs are members of the TNF receptor (TNFR) superfamily that contain a 
cytoplasmic death domain. When the corresponding ligand binds to the DR, adaptors and 
procaspases are recruited to the cytosolic tails of the DR to form the death-inducing signal 
complex (DISC). Assembly of DISC initiates the cascade of caspase activation. The extrinsic 
apoptotic pathway is important during activation-induced cell death (AICD), a process that 
leads to apoptosis following TCR activation. AICD allows for an efficient termination of the 
immune response, but it is also important for the removal of autoreactive T cells, which are 
activated without proper co-stimulatory signals. For this reason, DRs, like FAS or TNFR, have 
been linked to various autoimmune disorders (96).

Apoptosis is a non-immunogenic mode of cell death as tissue cells, including macrophages, 
can phagocytose the corpses of apoptotic cells without activating innate immunity, 
consistent with it being a normal developmental and homeostatic process.

Necroptosis is a type of regulated necrosis that occurs under caspase-inhibitory conditions 
and is dependent on the activity of receptor-interacting protein kinases (RIPK). In T cells, 
necroptosis can be triggered by activation of DRs when caspase 8, the initiator caspase of the 
extrinsic apoptotic pathway, is absent or inhibited. In this context, RIPK can aggregate to form 
the necrosome, which phosphorylates and activates mixed lineage kinase domain-like protein, 
the main executor of necroptosis that eventually leads to the disruption of the plasma membrane 
through gasdermin-mediated pores (97,98). Necroptosis is considered immunogenic in that 
signals released lead to DC maturation and amplification of the immune response. However, T 
cell necroptosis is also linked to the pathology of some viral infections, like HIV (99).
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Ferroptosis, is a type of programmed cell death induced by iron-dependent lipid peroxidation 
that causes an irreversible damage to cellular membranes, including the plasma membrane. Iron 
is at the core of many metabolic processes involved in ROS production. Ferroptosis is observed in 
resting T cells, making it a mechanism of TCR-independent cell death (100). Due to membrane 
damage and release of damage associated molecular patterns, ferroptosis is immunogenic.

EXTRINSIC MEDIATORS OF T CELL RESISTANCE

T cells can intrinsically promote their resistance to activation as part of their physiological 
(non-)response to the Ag. However, these intrinsic processes are calibrated to work with 
APCs and Tregs, that set levels for signals 1–4. The main APC for T cells are DCs, which exist 
in different states including operationally defined tolDC. In this section we will also discuss 
other immune cells involved in the control of T cell resistance to activation.

TolDCs
DCs bridge innate and adaptive responses through their ability to capture and present Ags 
to T cells, driving their differentiation for a tailored immune response. Naturally, this places 
DCs in a powerful position to induce T cell resistance to control the immune response.

Previous dogma characterised immature DCs as tolerogenic and mature DCs as 
immunogenic. In this context, maturation accompanies upregulation of MHC, co-
stimulatory receptors, cytokines, and extracellular vesicles that can overcome T cell 
resistance to activation (101). However, immature DCs might better be seen as non-
stimulatory as they lack surface MHC II expression needed for any CD4+ T cell functional 
engagement. Experimentally, immature DC are inherently susceptible to maturation stimuli 
that are difficult to control in cell culture conditions, such that immature DC are a transient 
state in vitro that rapidly became contaminated with semi-mature and mature DC over 
the course of experiments with T cells. In fact, T cells produce CD40L which leads to DC 
maturation. Over the past decade, active approaches to generate stable and expertly tolDCs 
have been developed ex vivo as a potential therapeutic for autoimmune disease (102). But 
while anti-inflammatory and tolDC signatures have been identified from bulk and scRNA seq 
analysis in vivo (103,104), these are provisional, and many aspects are poorly characterised. 
Though regulatory DC subsets have been identified in vivo, their ontogeny is unknown (105). 
Indeed, physiologically, whether tolDCs even represent a stable lineage, as opposed to a 
transient maturation state, is far from certain (106).

A leading challenge to understanding what constitutes a tolDC is consolidating any 
functional signature from the myriad of protocols now published to generate tolDC in vitro 
and ex vivo (107). Many tolDC phenotypes have been described, often exhibiting capacity 
for one or few tolerance mechanisms. Nonetheless, recent attempts revealed elements of a 
transcriptomic signature and confirm an active transcriptional programme that differentiates 
them from immature and mature DCs (108).

This still leaves much up to speculation, but there is some consensus on what could constitute 
a tolDC. Ag-specific tolerance mediated by DCs can be abrogated upon stimulation with anti-
CD40 Ab, confirming their semi-mature status as a useful identifier and even crucial to their 
functionality (109). A higher ratio of inhibitory to co-stimulatory receptors (e.g high PD-1 and 
CTLA-4) is also expected, as well as a similar imbalance towards soluble inhibitors such as 
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indoleamine-pyrrole 2,3-dioxygenase and IL-10 (109). TolDCs are also thought to delete cells 
from the repertoire through expression of FASL and/or TNF-related apoptosis-inducing ligand, 
and both are attractive targets to enhance tolDC generation ex vivo (110).

Though therapy with tolDCs is promising, the methodology to administrate tolDCs 
generated ex vivo raises significant challenges regarding their stability and migratory capacity 
(see T cell resistance as a target for immunotherapy section). This has prompted strategies 
to stabilise or induce tolDCs in situ. Early pioneering animal studies into tolerance targeted 
the DEC-205 receptor of DCs with Ag-conjugated Abs. In the absence of adjuvants, targeting 
DCs this way established peripheral tolerance, likely mediated by IL-10 producing Ag-specific 
Treg populations (111). These early studies suggested the capacity to generate tolDCs in 
situ which then propagate tolerance through their close relationship with Tregs (see Tregs 
section). More recent efforts in the clinical field have utilised bio-degradable nanoparticles 
that encapsulate Ag and an immunomodulatory agent, such as rapamycin, already validated 
to generate tolDCs ex vivo (112). Notably, the concomitant delivery of Ag and rapamycin 
within a particle appears crucial, supporting a central role of APCs, most likely DCs, which 
phagocytose the particle to undergo tolerogenic re-programming. Again, tolDCs were 
thought to propagate FOXP3+Ag-specific Tregs to establish a tolerance that was durable 
against inflammatory stimuli (112,113).

Tregs
As discussed, much evidence supports the heavy interlinking functionality of tolDCs and 
Treg activity, as both induce differentiation of the other in some models and contexts, and 
Tregs are potent mediators of immune suppression and tolerance in their own right (114,115). 
However, much like the current state of tolDC research, diverse suppressive mechanisms and 
lack of consistent surface markers have hampered further characterisation of Tregs beyond 
the initial classical markers defined in the early 2000s.

Today, CD4+ Tregs are frequently characterised by expression of CD25 (IL-2Rα) and a reliance 
on IL-2, which maintains their regulatory state, and intracellular expression of FOXP3 which 
drives their induction and correlates negatively with CD127. Thus, they are often defined as 
CD3+CD4+CD25hiFoxp3+CD127lo. Further surface markers to differentiate Tregs induced in 
the periphery (pTregs) or in the thymus (natural or nTregs) during negative selection are 
not yet known, however expression of Helios (116) across species and neuropilin-1 in mice 
(117) may identify the former. FOXP3 stability may also differentiate subtypes. pTregs exhibit 
unstable expression of FOXP3, and reports suggest proinflammatory autoimmune conditions 
may trigger loss of FOXP3 and trans-differentiation into pathogenic Th-17-like cells termed 
exFOXP3 Th-17 (118). Strong methylation of the Conserved Noncoding Sequence 2 (CNS2, 
also termed Treg-specific demethylated region or TSDR) enhancer locus of FOXP3 may confer 
this instability in pTregs, whereas the CNS2 locus is demethylated in nTregs and ensures 
stable FOXP3 expression (119). In fact, whilst FOXP3 expression is necessary, it appears not 
sufficient to define a stable Treg lineage, and instead hypomethylation patterns within the 
FOXP3 locus are a more stringent characteristic (120). Overall, it is generally believed that 
nTregs predominately confer tolerance against restricted autoantigen, but can do so in both 
the thymus and periphery, whilst pTregs generally recognise foreign Ag (121).

The suppressive action of Tregs appears integrated with their heterogeneity. In mice, for 
each CD4+ effector population there are reports of a ‘sister’—Treg population that expresses 
FOXP3 alongside effector transcription factors (122). Tregs expressing T-bet, that otherwise 
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defines the Th-1 lineage, selectively suppress these effector cells (123). Similarly, IFN 
regulatory factor 4 (IRF-4) expression, whilst essential for Th-2 generation, is expressed 
highly in Tregs with enhanced suppression of Th-2 cells (124), and there are similar 
reports of Treg expression of retinoic acid-related orphan receptor gamma t and STAT3 
for Th-17 (125) and BCL-6 and T-follicular helper (126,127) cell suppression. Together, this 
paradigm suggests some Tregs adapt to their cytokine milieu to acquire specific suppressive 
functionality, responding to IFN-γ to express T-bet for example, ensuring suppression of a 
Th-1 response. Such targeted suppression is likely through tailored mechanisms: Tbet+ Tregs 
express T-cell immunoreceptor with Ig and ITIM domains (TIGIT) which in turn induces 
DCs via CD155 to express IL-10 and downregulate IL-12 (128). Similarly, IRF-4 induces 
expression of RBJ transcription factors alongside inducible T-cell costimulator and CTLA-4, 
all implicated in Th-2 specific suppression (129).

Concurrent expression of FOXP3 with effector transcription factors appears paradoxical yet 
may be integral to their functionality. Interestingly, human Tregs exposed to only strong—
not weak—TCR and APC signals undergo transient loss of regulatory capacity and instead 
contribute to an IL-17-driven inflammatory response in co-cultures (130). If applicable in vivo, 
this has been suggested to ensure a sufficient inflammatory response before contraction 
(130). Of note, however, Tregs in arthritic mice have been reported to lose FOXP3 expression 
and differentiate into a Th17-like phenotype, thus potentially exacerbating disease. Indeed, 
the pTreg and Th17 lineage are inherently connected by TGF-β mediation and as discussed, 
FOXP3 expression is considered unstable in pTreg populations (131).

Similar to tolDCs, Tregs express an arsenal of co-inhibitory receptors including CTLA4 (132), 
PD-1 (133), LAG-3 (134), herpesvirus entry mediator (135), and TIGIT (128) which sustain and 
enhance their many and varied suppressive activities. Characterising the Treg synapse has 
been challenging because systems by which to study the synapse vary substantially across 
studies. Unstable cell-cell synapses have been reported in Ag-specific systems between 
human Tregs and cognate APCs (136) and mouse Tregs with DCs (137). However elsewhere, 
anti-CD3 and ICAM-1 loaded bilayers confer stable synapses with human Tregs with a notable 
dislocation of PKC-θ away from the contact, which is otherwise a key component of the 
signalling machinery in effector T cell synapses (138).

Interestingly, within lymph nodes, Tregs appear to form stable aggregates around DCs, greatly 
inhibiting their contact with naive cells (139,140). Such Treg synapses exhibit constitutive 
recruitment of CTLA-4, but not CD28, compared with other cell types (141), which in turn 
outcompetes CD28 binding from naive cells further limiting their activation (140). Treg can 
also use CTLA-4 to down-regulate CD80/86 on APCs through a capture mechanism of trans-
endocytosis, also employed to downregulate cognate-pMHC-II in a CTLA-4 independent 
manner (142,143). As a result, DCs with reduced CD80/86 expression form weaker and fewer 
contacts with non-Treg cells (144). Indeed, anti-CTLA-4 Ab in vivo abrogates Treg contacts 
with DC, permitting formation of stable DC-effector cell contact that induce proliferation 
(145). Such ‘hyper-stable’ Treg-DC synapses have been reported elsewhere, wherein Tregs 
appear to sequester fascin-1, an actin bundling protein of the cytoskeleton, to their immediate 
contact with DCs (146). DCs periodically regulate components of their actin cytoskeleton 
to optimally contact and activate many T cells within a given time (147). In this instance, 
sequestration of fascin-1 to the Treg contact appears to restrict LFA-1 mobility leading to a 
hyper-stable Treg-DC synapse, but an in-ability of DCs to adhere sufficiently to new target 
cells, leading to reduced priming capacity of the Treg engaged DC (146).
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Finally, as touched upon earlier, clustering and recruitment of PKC-θ and other kinases, 
crucial for IL-2 expression and T cell activation, are also greatly diminished from the 
cSMAC of Treg synapses and become sequestered once CD4+ T cells acquire the regulatory 
phenotype (148). In this context, PKC-θ accumulates on the distal pole of the IS by binding 
to the cytoskeletal protein vimentin (149). Interestingly, inhibiting PKC-θ or disrupting 
the vimentin intermediate filament networks promotes Treg suppressive capacity (150). 
However, PKC-θ deficiency in mouse Tregs (149), or deletion of downstream signalling 
components, such as CARMA1 (151), impairs differentiation and stability. Thus, it appears 
localisation of PKC-θ to the distal pole acts as a break for Treg activity (149), emphasising the 
influence of IS organisation on cell functionality.

CD8+ regulatory subsets have also been reported, though have received far less attention. 
What is understood is often extrapolated from research pertaining the MHC Ib Qa-1/HLA-E 
restricted CD8+ regulatory subset (152), which has been aided considerably by mouse models 
and investigations into germinal centre tolerance (153) and experimental autoimmune 
encephalomyelitis (EAE) (154). The more recently identified classically restricted MHC-I 
CD8+ Tregs in the context of EAE has opened the field further (155).

Similar to peripheral CD4+ Tregs, Helios maintains CD8+ Treg identity though the subset 
is best identified by triad expression of CD44+CD122+Ly49+ (156), and lack of FOXP3. 
Interestingly, Helios may play a more crucial role in the suppressive activity of CD8+ Tregs. 
Ablation of CD8+ specific Helios results in mass organ infiltration of immune cells, and 
Helios deficiency in CD8+ Tregs immune cells promotes lupus-like disease in mice and 
SLE in humans (157). Here, the entwinement of Tregs and tolDCs is further demonstrated 
as tolDCs—compared to their mature and immature counterparts—have been reported to 
greatly upregulate helios expression in CD8+ Tregs of healthy mice. Most interestingly, tolDC 
mediated upregulation was impaired in the LPR SLE mouse model (158). The cytolytic and 
cytotoxic abilities uniquely differentiates CD8+ Tregs from CD4+ Tregs. Naturally this relies 
on the intimate contact achieved through organisation of an IS allowing for the targeted 
release of membrane lysing proteins such as perforin (159). Evidence for this as primary 
suppression mechanism of CD8+ Tregs is supported by reports that Prf1−/− negative mice are 
incapable of supressing TFH in Rag2−/− mice (160) and proliferation of Ag-activated CD4+ T 
cells in EAE model (161). Equally, as mentioned, expression of Ly49 identifies CD8+ Tregs and 
is homologous to the inhibitory killer cell immunoglobulin-like receptors (KIRs) on human 
NK cells. CD8+KIR+Tregs—not CD8+KIR− Tregs—are capable of supressing CD4+ T cell 
expansion, and could be abrogated by separation via membrane insert, demonstrating again 
that such suppression was cell-contact dependant and likely operates through formation of 
an IS (162).

Macrophages
Macrophages, because of their excellent scavenging function, play an important role in Ag 
presentation, and therefore, in T cell tolerance. In 1993, Miyazaki et al. (163) demonstrated 
the function of macrophages in Ag presentation and T cell tolerance in class II, I-E restricted 
fashion in vivo, by producing transgenic mice expressing class II MHC I-E molecules only on 
macrophages. It was seen that Ag presentation and T cell priming were impaired in these 
I-E restricted mice. With respect to T cell tolerance, I-E reactive T cells were anergised, but 
not clonally deleted. These results clearly demonstrate that macrophages by themselves are 
defective in efficient I-E restricted Ag presentation, so that T cells exposed to Ags expressed 
on macrophages are led to anergy.
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Research on T cell anergy also indicates that the anergy of T cells against superantigens is 
incomplete only in the presence of macrophages. Only certain cells which have a high affinity 
for superantigens may be anergised by macrophages. This suggests that the T cells interact 
with the superantigens associated with macrophages and led to tolerance. This also indicates 
that the defective clonal deletion of T cells is not due to the impaired presentation of the 
endogenous superantigens by macrophages solely because of the strict tissue distribution 
of the superantigens. It was not clear if the superantigens presented by macrophages are 
produced by macrophages or picked up by the cells. But it was evident that macrophages 
fail to stimulate normal T cells. There were two possible reasons for this scenario. First, is 
that low Ag concentration on cell surface leads to defective presentation of Ag and to anergy 
induction. Second, is the potential differences in accessory molecules. It has been proposed 
that for the high avidity T cell-APC interaction, APCs not only have to present Ag-MHC 
complexes but also need to deliver appropriate 'second signals' through certain accessory 
molecules. Although the precise function of APC second signals is still obscure, a consensus 
is emerging that T cell recognition of Ag in the absence of these signals tends to cause 
anergy, rather than deletion in the thymus or stimulation in the periphery. It is possible in 
macrophages that the accessory molecules on the cell surface might be different from those 
on other APCs capable of induction of clonal deletion, thus resulting in a lack of delivery of 
the appropriate second signals.

Interestingly, several works have also shown that nitric oxide (NO) generated by macrophages 
and fibroblasts when treated with IFN-γ, lead to the inhibition of T cell activation. A study by 
Yamazaki et al. (164) uncovered that anti-PD-L1 Abs inhibit naive CD4+ T cell proliferation 
but boost the production of IL-2 and IFN-γ when macrophages are involved. The inhibition 
of T cell proliferation by anti-PD-L1 Abs is primarily due to increased IFN-γ production, 
with a subsequent rise in NO production by macrophages (164). In 2011, Lukacs-Kornek 
et al. (165) also revealed that fibroblastic reticular cells and lymphatic endothelial cells in 
lymphoid organs also inhibit activated T cell proliferation through a tightly regulated process 
dependent on NO synthase 2 (NOS2). The expression of NOS2 and NO production was 
triggered by a combination of IFN-γ, TNF, and direct contact with activated T cells (165).

In 2020, Diskin et al. (166) revealed that in cancer, the expression of PD-L1 on T cells 
was regulated by tumour Ags and sterile inflammatory signals. PD-L1-expressing T cells 
promoted tumour tolerance through three mechanisms: 1) PD-L1 binding induced STAT3-
dependent 'back-signalling' in CD4+ T cells, leading to reduced activation, diminished 
Th1-polarization, and the promotion of Th17-differentiation. PD-L1 signalling also induced 
an anergic state in CD8+ T cells, which is equally suppressive as PD-1 signalling; 2) PD-
L1+ T cells restrain effector T cells through the conventional PD-L1/PD-1 axis, accelerating 
tumorigenesis, even in the absence of endogenous PD-L1; 3) PD-L1+ T cells interacted with 
PD-1+ macrophages, triggering an alternative M2-like programming that severely impairs 
adaptive antitumour immunity. In summary, their work showed that PD-L1+ T cells exhibited 
diverse tolerogenic effects on tumour immunity (166).

In 2022, A study from Kersten et al. (167) demonstrated an extensive connection between 
the behaviour of tumour-associated macrophages (TAMs) and exhausted T cells within the 
tumour microenvironment. Depletion of TAMs in vivo is shown to diminish exhaustion 
programs in tumour-infiltrating CD8+ T cells, rejuvenating their capacity to function as 
effectors. The study revealed that TAMs and CD8+ T cells engage in prolonged, Ag-specific 
interactions that, paradoxically, do not activate T cells but instead prepare them for 
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exhaustion, particularly under hypoxic conditions (167). In 2022, another study in murine 
breast cancer model by Nixon et al. (168) showed that TAMs induce CTL exhaustion within 
the tumour. The authors demonstrated that deletion of IRF8 specific to TAMs prevents CTL 
exhaustion and hampers tumour growth. This phenomenon was also observed in immune-
infiltrated renal cell carcinoma patients, highlighting the role of IRF8 in CTL exhaustion 
promoted by TAMs across various cancer types (168).

NKs
NK cells (natural killer cells) are an integral part of the innate immune system and have 
been shown to be involved in immunoregulation of autoimmune diseases. In 2019, Galazka 
et al. (169), studied the role of gene related to anergy in lymphocytes (GRAIL) induction in 
maintenance of T cell anergy. The study showed that NK cells in EAE mice can induce anergy 
in CD4+ T cells upon histidine triad nucleotide binding protein 1 (HINT1)/heat shock protein 
70 (Hsp70) treatment rather than inducing necrosis or apoptosis. The authors showed that 
HINT1/Hsp70 treatment generated regulatory NK cells expressing GRAIL, indispensable for 
their inhibitory function. It was seen that GRAIL expression was downregulated by specific 
siRNA and GRAIL overexpression was induced by pcDNA-GRAIL transfection. Though in 
general GRAIL was reported to target p53 degradation mediating p53-dependent cell cycle 
arrest and apoptosis, in NK cells upon HINT1/Hsp70 treatment they seem to play a key role 
in T cell anergy. The deletion of GRAIL in CD4+ T cells reversed inhibitory effects on T cell 
proliferation induced by PLP139–151 autoantigen. Therefore, it was proposed that NK cells 
induce T cell anergy upon HINT1/Hsp70 treatment through GRAIL expression (169).

In 2022, A study by Lindsay et al. (170) revealed that NK cells play a significant role 
in enhancing the expression of homing receptor ligands on tumour vasculature and 
controlled the development of anergic T cells, leading to improved tumour control. The 
work demonstrated that when NK cells were depleted, there was a notable increase in the 
population of intratumoural T cells exhibiting an anergic phenotype. This anergic T cell 
development in the lymph nodes draining the tumour correlated with heightened TCR 
signalling but reduced proliferation and functional activity of effector cells. NK cells have 
been shown to regulate T cell anergy, through the secretion of IFN-γ and expression of 
homing receptor ligands (170).

TISSUE-RESTRICTED Ags AND T CELL RESISTANCE

With such an arsenal of mechanisms to impede activation of autoreactive T cells, an 
outstanding question is how and why one form of tolerance is induced over another. Some 
autoimmune mouse models suggest the organ/tissue localisation—aka. the restriction—of 
Ag is one deciding parameter. This has only come to light from careful consideration of 
transgenic mouse model studies of polyclonal T cell repertoires, rather than monoclonal 
systems which inaccurately report on more physiological contexts (121). Previously, numbers 
of deleted cells were over-estimated for ubiquitous Ag non-exclusive to the thymus, where 
in fact it is possible many of these autoreactive cells actually survive deletion. Instead, 
polyclonal studies suggest a finer ‘tuned’ model of tolerance that is sometimes impermanent 
or otherwise restrained and resonates with our use of ‘resistance’ nomenclature.

Studies by Malhotra et al. (171) and Legoux et al. (121) coupled ‘self ’-Ag to promotors which 
across studies crucially showcased different degrees of tissue restriction and thus expression 
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patterns. Malhotra et al. (171) employed two pancreatic promotors Ins1 and Ins2 in their study, 
but observed partial deletion of T cells when Ag was coupled to only Ins2 which was cited 
to be minimally expressed by medullary thymic epithelial cells (mTECs) in the thymus as 
well as pancreatic beta-cells. Legoux et al. (121) however only studied a pancreatic promotor 
exhibiting no overt thymic expression, and thus observed no deletion. The two pancreas-
exclusive promotor models studied by Malhotra et al. (171) and Legoux et al. (121) both 
exhibited ignorance induction, with expansion of these cells highly comparable to those from 
WT mouse upon immunisation.

Interestingly, both studies observed thymic nTreg involvement under different promotor 
locations: Malhotra et al. (171) for Ag coupled to the ‘promiscuously’ expressed Ins2 pancreatic 
cell promotor; Legoux et al. (121) for promotors coupled exclusively to the lung (CC10) or 
intestine (Vil). Again, the presence of thymic expression for Ins2 appeared to localise the Treg 
tolerance to the thymus. When expression was thymically excluded in the case of CC10 and Vil, 
nTregs were induced in similar levels to WT mice, but tolerance was likely primarily mediated 
by their expansion in the periphery upon Ag exposure, showcasing again how environment 
can shape resistance to activation (121). Interestingly, this peripheral nTreg expansion did not 
induce durable tolerance, as upon secondary Ag challenge robust expansion of auto-reactive 
CD4+ T cells was observed. Legoux et. al emphasise the greater durability of deletional tolerance 
that contrasts the short-lived, and thus flexible Treg tolerance that could allow for cross-
reactive anti-tumour/pathogen responses. Here, a resistance to activation is highlighted again, 
as such cells could treat cancers. Another interesting speculation by Legoux et al. (121) was the 
size and environment of the pancreas, which only saw ignorance, compared to the lung and 
intestines which observed solely Treg induced tolerance and likely provide more efficient and 
rich sampling environments for APCs.

By developing a transgenic mouse incapable of expressing a melanocyte protein, Trp2 
(Dct−/−), Truckenbrod et al. (172) demonstrated tolerance induction which simply impairs 
proliferative capacity, but otherwise leaves autoreactive cells phenotypically similar to non-
tolerised cells specific for the same Ag (i.e. no anergy or exhaustion markers). It is unclear 
where this tolerance mechanism occurred in this study or the extent of Ag expression in the 
thymus, though this was suggested to be minimal and likely not through mTECs. Adoptive 
transfer of Trp2-specific CD8+ T cells between models revealed tolerance was unlikely 
induced nor maintained peripherally, suggesting a permanent rewiring in the thymus unlike 
that reported in the studies previously discussed (121,171,172). The premature plateauing of 
expansion was ascribed to lower expression of CD25 and inability to differentiate into highly 
proliferative cells, meaning they were unable to elicit any deleterious levels of tissue damage 
akin to vitiligo, but were still functional (172). Thus, Truckenbrod et al. (172) emphasised 
that tolerance was not binary, an important parameter which sits centre to our proposal for 
the use of ‘resistance.’ These studies showcase the many layers of sometimes subtle, but 
significant braking mediating tolerance. Multiple mechanisms can contribute together, 
regulated by many extrinsic parts on cellular and spatial levels to achieve activation resistance 
outputs, such as longevity and extent of suppression, that better protect against overt 
pathogenic stimulation.
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T CELL RESISTANCE AS A TARGET FOR IMMUNOTHERAPY

Mechanisms of T cell resistance are widely targeted to either boost or reduce immune 
responses in the context of cancer or autoimmunity, respectively. In this section, we will 
discuss current approaches in immunotherapy, as well as promising and less explored 
targets, to manipulate T cell resistance towards activation.

Fighting T cell exhaustion is at the core of current cancer immunotherapy efforts, with more 
than 5,000 ongoing clinical trials worldwide targeting PD-1/PD-L1 pathways, with a growing 
body of combination therapies; including chemotherapy agents, anti-angiogenic therapeutics 
or other immune modulators, such as anti-CTLA4, anti-LAG-3, or IL-2 variants (173). The 
current challenge of targeting exhausted T cells is to direct these therapies to precursors of 
terminally exhausted T cells, in which the exhaustion programme is still reversible.

Another T cell resistance mechanism currently under intense study is anergy. Understanding 
what drives anergy has prognostic and therapeutic value, especially in patients with 
autoimmune disorders or transplant recipients in the context of graft-versus-host disease. 
Approved regimens for treatment of autoimmune conditions often fail to induce long-lasting 
remission and given their broad specificity can carry a wealth of side effects that increase 
susceptibility to opportunistic infections and even cancers (174). Harnessing anergy itself 
is thus an attractive target, and much therapeutic research is particularly focused tolDCs 
and Tregs given their capacity to reinstate alloantigen-specific tolerance locally and without 
compromising protective immunity (175).

Clinical trials for both Tregs (176,177) and tolDCs (178,179) are well underway, and have so far 
demonstrated both cellular therapies are safe and have potential, but are not without their 
shared challenges in relation to delivery and efficacy. Though defective Treg behaviour and/or 
diminished numbers appear core to many autoimmune diseases (180,181), a minority of research 
has challenged this (182,183) and suggest the local environment and potential aberrant state of 
host effector cells as equally important considerations for investigating Treg based therapies. 
In any case, addressing the imbalance between tolerance and inflammation is a clear objective. 
As previously mentioned, introduction into an inflammatory environment has the potential 
to convert Tregs to an effector memory phenotype, and tolDCs into their immunogenic ‘fully 
mature’ counterpart and thus may exacerbate disease in each case (184,185). Indeed, this could 
explain early reports that the longevity of transplant tolerance is improved following depletion of 
the host T cell repertoire (186). The phenomenon of bystander suppression might not require such 
longevity, however, as allografted Tregs and tolDCs need only to persist long enough to establish 
the autonomous state of ‘infectious tolerance’ through induction of the other regulatory cell types 
from host precursors (159). Other considerations arise from the various methodologies used to 
isolate Tregs and tolDCs which likely explain the many inconsistencies in their fields (187). Better 
characterisation of tolDC biology would also improve therapy as migration of tolDC to lymph 
nodes or specific tissues has been a significant challenge (79,185). Much like Tregs, the benefit 
of tolDCs lies in their potential for establishing Ag-specific tolerance. However, knowledge on 
what particular auto-Ags drive some auto-immune diseases are limited, and an incorrect choice 
could be deleterious. In this context, rheumatoid arthritis (RA) is linked to citrullinated peptides 
generated through posttranslational modification of arginine residues in proteins. Recent studies 
show that HLA-DR-bound citrullinated peptides are not necessarily arthritis-initiating neo-
Ags; rather, they appear to induce varying degrees of immune tolerance, which may prevent the 
development of RA in the majority of individuals (188).
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In other cases, T cell resistance is not the central target of the therapeutic approach, but an 
unwanted side-effect of some therapeutic strategies, for example, cell death may impact 
on T cell resistance. Anti-neoplastic drugs are designed to kill (cancer cells), and therefore 
their main side-effect is the unwanted collateral death of other healthy cells, and T cells 
are no exception. T cell death associated to cancer treatment leaves the patient not only 
physically weakened, but also immunologically unprotected from surviving cancer cells. 
Current immunotherapies specifically directed to kill cancer cells greatly ameliorate such 
side-effects. However, premature T cell death is still a problem to overcome, largely caused by 
the upregulation of pro-apoptotic molecules in the tumour microenvironment (189-191) and 
during infections. For this reason, protecting tumour-infiltrating lymphocytes (TILs) from 
death pathways is of primary interest. In fact, TILs death, in addition to low immunogenicity, 
may contribute to the “cold” tumours, which are resistant to immunotherapy. Current efforts 
aim to prevent cell death specifically for TILs. For example, low persistence of infused CAR T 
cells (192) can be improved by overexpressing anti-apoptotic BCL-2 in the CAR T cells, which 
increases their persistence and therapeutic efficacy (193).

Another resistance mechanism associated to CAR T cell failure is ignorance. CAR T cell 
therapy is a revolutionary new pillar in cancer treatment. Although treatment with CAR T 
cells has produced remarkable clinical responses with certain subsets of B cell leukaemia or 
lymphoma, many challenges limit the therapeutic efficacy of CAR T cells in solid tumours 
and other haematological malignancies. Since 2017, six CAR T cell therapies have been 
approved by the Food and Drug Administration. Currently available CAR T cell therapies 
are customized for each individual patient. However, the failure of CAR T cells in curbing 
tumours remains evident due to the reduced sensitivity of these receptors to the antigenic 
load on the cancers. This points to the intrinsic mechanism of T cell ignorance, where the 
affinity of CAR to Ag or Ag abundance are too low to elicit T cell activation. Thereby studying 
T cell ignorance paves ways to develop more sensitive CAR T cell therapy where the cells can 
be made sensitive to even low levels of antigenic loads on the tumour.

However, it is also important to consider that constitutive tonic CAR signalling can lead to 
T cell exhaustion, which represents another key barrier to CAR T cell efficacy. Under these 
conditions, transient periods of "rest" or ignorance may actually help prevent exhaustion and 
promote anti-tumour responses by allowing the T cells to recover and regain functionality 
(194). Thus, while ignorance can inhibit CAR T cell activation, it may also serve a protective 
function by reducing exhaustion in the context of tonic signalling, ultimately enhancing 
therapeutic efficacy.

Even though TCR are more sensitive than CARs immunological ignorance is still a cancer-
enabling feature of the TCR mediated oligo-clonal T cell response to melanoma neoantigens 
(31). Ignorance of clonal neoantigens is at the basis for ineffective T cell immunity to 
melanoma and supports the concept that therapeutic vaccination, as an adjunct to 
checkpoint inhibitor treatment, increases the breadth and diversity of neoantigen-specific 
CD8+ T cells.

Finally, some mechanisms of T cell resistance to activation are just emerging as promising 
future targets for immunotherapy, such as the challenge of reversing T cell senescence 
to achieve immune system rejuvenation and more effective vaccine responses or cancer 
immunotherapies. Recent literature suggests that inducing T cell senescence is a key strategy 
used by malignant tumours to evade immune surveillance (195,196). This immune evasion 
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strategy might be responsible for advanced cancer as the accumulation of senescent T cells 
possibly lowers the response rate to chemo(radio)therapy and immunotherapy (86). Apart 
from their role in cancer progression, immunosenescence has other widespread effects and 
impact multiple aspects including ageing, chronic viral infections, and autoimmune disorders 
where Ag stimulation persists (197,198). Further, owing to the immunological relevance of 
senescence in T cells, several ongoing studies aim to delay senescence by developing strategies 
to maintain telomere length and prolong telomerase activity in specific populations of T cells 
(199). Understanding telomerase activity and ageing in T cells will help in the development 
of effective immunotherapies targeting senescence in T cells. Potential immunotherapeutic 
approaches include the replacement, reprogramming, and restoration of the immune 
system, as well as modulation of signalling in tumour sites and shifting immunosuppressive 
microenvironments to become more effector like microenvironments (200).

CONCLUDING REMARKS

In conclusion, the intricate exploration of diverse T cell resistance mechanisms not only 
reveals the complex challenges within the immune landscape but also unveils promising 
avenues for therapeutic interventions across a spectrum of diseases. Anergy, a pivotal 
mechanism under intense study, holds both prognostic and therapeutic value, particularly in 
the realms of autoimmune disorders and graft-versus-host disease for transplant recipients. 
Harnessing anergy, especially through cellular therapies involving tolDCs and Tregs, emerges 
as an attractive target, albeit with challenges that demand ongoing exploration.

The delicate balance between tolerance and inflammation remains a focal point, with Tregs 
and tolDCs playing critical roles in establishing Ag-specific tolerance. Overcoming challenges 
related to their function, numbers, and the intricate interplay with the local environment 
becomes vital for successful therapeutic outcomes. The evolving landscape of T cell resistance 
also unravels unintended consequences, such as T cell death induced by anti-neoplastic drugs, 
prompting innovative strategies to protect TILs and enhance the efficacy of immunotherapies.

T cell ignorance surfaces prominently in the context of CAR T cell therapy, where strategies 
to overcome reduced sensitivity of receptors to tumour Ags are essential for improving 
therapeutic outcomes. This principle extends to therapeutic vaccination strategies aimed 
at augmenting the diversity of neoantigen-specific CD8+ T cells. Additionally, emerging 
mechanisms like T cell senescence offer promising targets for future immunotherapy, with 
ongoing studies exploring strategies to delay senescence and rejuvenate the immune system.

As the field progresses, the multifaceted exploration of T cell resistance mechanisms 
promises transformative breakthroughs in immunotherapy and healthcare. From refining 
cellular therapies to mitigating unintended consequences, the journey into the intricate 
world of T cell resistance opens new horizons for enhancing immune responses and 
addressing dysfunctional states across various disease contexts. This comprehensive 
understanding sets the stage for future advancements that may revolutionize the landscape of 
immunotherapy and improve patient outcomes.
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