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Abstract

This study aims to propose a novel and high-accuracy prediction model of plastic limit (PL)

based on soil particles passing through sieve # 200 (0.075 mm) using gene expression pro-

gramming (GEP). PL is used for the classification of fine-grained soils which are particles

passing from sieve # 200. However, it is conventionally evaluated using sieve # 40 passing

material. According to literature, PL should be determined using sieve # 200 passing mate-

rial. Although, PL200 is considered the accurate representation of plasticity of soil, its’ deter-

mination in laboratory is time consuming and difficult task. Additionally, it is influenced by

clay and silt content along with sand particles. Thus, artificial intelligence-based techniques

are considered viable solution to propose the prediction model which can incorporate multi-

ple influencing parameters. In this regard, the laboratory experimental data was utilized to

develop prediction model for PL200 using gene expression programming considering sand,

clay, silt and PL using sieve 40 material (PL40) as input parameters. The prediction model

was validated through multiple statistical checks such as correlation coefficient (R2), root

mean square error (RMSE), mean absolute error (MAE) and relatively squared error (RSE).

The sensitivity and parametric studies were also performed to further justify the accuracy

and reliability of the proposed model. The results show that the model meets all of the crite-

ria and can be used in the field.

Introduction

The plastic limit (PL) can be defined as the water content at which soil changes from plastic to

semi-solid state [1–4]. It is often used to measure the physical and mechanical responses of

soils and is regarded as a critical parameter in the development and design of geo-structures

[5–8]. The most basic application of the plastic limit is to categorize fine-grained soils and

their co-relation with nearly all mechanical properties of cohesive soils such as compressive

strength, shear strength, toughness index, consolidation behavior, shrinkage and swelling

characteristics, activity, stress history etc. [3,9]. Plasticity index (PI) is regarded as an index to
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distinguishes a problematic soil from a good quality soil, because soils with greater PI values

are considered troublesome and undesirable for the most of construction projects.

Plastic limit (PL) is commonly determined in laboratory in accordance with ASTM-D4318

[10] and BS-1377-2 [11]. PL is used to categorize fine-grained soils, which are soils with parti-

cle sizes smaller than 0.005 mm according to ASTM standards [12]. Instead, it is evaluated

based on material passing through sieve # 40 (0.425 mm particles) in accordance with

ASTM-D4318 [10]. The problem is whether determining PL using sieve # 40 passing material

is appropriate because it may contain coarse grains particles i.e., sand. The effect of coarse con-

tent in clayey soils has been discussed in literature. This results in significant changes in soil

classification and subsequent correlations of PL with mechanical properties of soils.

Several studies have been done in the literature to address the issue, which is that the PL

must be evaluated using material passing through sieve # 200 rather than material passing

through sieve # 40. Polidori [13] proposed a modified plasticity chart based on Atterberg’s lim-

its determined with particle sizes smaller than 0.075 mm. This study proposed significant

changes in Casagrande’s plasticity chart and indicated differences in silt and clay zones based

on soil classification utilizing sieve # 200 soil material. It was observed that the presence of

coarse grained soil influences the Atterberg limits and causes variations in the Casagrande

chart.

Polidori [14] also investigated subsequent variations in PL dependent on particle size by

illustrating the link between clay content and Atterberg limits. It was observed that clay con-

tent has an influence on Atterberg limits and exhibits a linear increasing trend as Atterberg

limits increase. Polidori [15] also introduced a novel soil classification technique for two differ-

ent soil types.; (1) inert; (2) active binder. It has been observed that clay content, particularly

clay minerals, has a considerable impact on plasticity, leading to changes in the USCS.

Moreno Moroto et al. [16] presented a critical review of various soil classification systems,

highlighting fundamental limitations of multiple classification systems, including the USCS

and the Polidori plasticity chart. According to this study, the Moreno-Moroto soil classifica-

tion system has better predictive ability than other systems because of its distinct selection cri-

teria, simplicity, accuracy, and adaptability to demands. Further, Lekan et al. [17] compared

the Atterberg limits of laterite soil using material passing from sieve # 40 and #200 and

reported significant changes in Atterberg limits values based on two different methods. This

validates the concept that determining plastic limit using sieve # 40 material may result in erro-

neous assessments because sieve # 40 material passing may include a considerable number of

coarse particles, which have an inverse relation with plastic limit.

According to ASTM-D4318 [10], when using plasticity tests to assess the properties of a

soil, the relative contribution of this portion of the soil to the properties of the sample as a

whole must be properly considered. This is because the plasticity tests are only conducted on

that portion of a soil that passes 425 μm (No. 40 sieve). Nagraj et al. [18] proposed the study in

which the plastic limit has been used as a correlation parameter to assess the compaction char-

acteristics of natural soil as a whole, and it has been changed to account for the percentage of

soil fraction less than 425 μm present in the soil. But even so, none of the previous studies con-

sidered this method of accounting for the amount of fines less than 425 μm present in the soil

when establishing the correlation equations [19]. Hence, this study utilizes the concept of

determination of PL considering particle having size less than 0.075 mm based on the previous

advancements in understanding the plasticity behavior.

However, it is certain that determination of PL, particularly PL200 is arduous, tedious and

challenging task that generally needs multiple attempts to obtain correct results. In this case,

artificial intelligence (AI) based prediction models are considered useful due to the
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effectiveness in terms of cost and time, and capability to incorporate multiple influencing

parameters [20,21].

Various research efforts have been made in recent years to determine Atterberg limits indi-

rectly using conventional data science methodologies. For instance, Seybold et al. [22] used

multiple linear regression (MLR) to develop a prediction model for estimating Atterberg limits

depending on clay content (C) and cation exchange capacity (CEC) as input parameters.

According to this study, the C and CEC are critical in determining Atterberg limits. Keller &

Dexter [23] proposed correlation of Atterberg limits and clay content. These studies were

dependent on plastic limit determination using sieve # 40 passing material and did not take

into account the plastic limit determination using sieve # 200 passing material. Moreover, it

has actually been recognized that PL of soil is dependent on clay, silt, and coarse content [24].

The earlier studies have used an experimental route to determine PL using sieve # 200, and no

attempt has been made in the recent times, to the best of the authors’ knowledge, to predict

PL200 using gene expression programming (GEP) that integrates clay, silt, and sand content.

The goal of this research is to propose, a novel prediction model of PL200 based on experi-

mental data collected from laboratory testing. Soil samples were collected from multiple loca-

tions in Islamabad, Pakistan, and experimentally tested to determine the plastic limit as well as

basic index properties of soils such as clay content (CL), silt content (ML) and sand content

(S). Moreover, a PL200 prediction model was developed utilizing the GEP machine learning

approach. Various statistical tests and error plots were used to validate the suggested predic-

tion model. Subsequently, parametric and sensitivity tests were also done to support the pre-

diction model.

Basics of Genetic Programming (GP) and Gene Expression Programming

(GEP)

Genetic algorithm (GA) is a stochastic method which uses principles of genetics for finding

the optimal solution of a problem. Genetic programming (GP) is an improved form of GA and

was introduced by Koza and Poli, [25]; Nazari and Torgal, [26]. In GP, a computer program is

evolved to solve the problems based on the evolutionary biological mechanisms such as muta-

tion, cross over and reproduction [27]. The mutation is a biological evolutionary process in

which a new offspring (solution) is produced by flipping a part of string or gene whereas in

crossover, solution is created by swapping string or genes from two parents [28]. The working

principles of GP along with mutation and crossover have been demonstrated through Figs 1

and 2.

Gene expression programming (GEP) is the modified form of GP and is widely appreciated

by the researchers in the field of civil engineering [29–34]. For instance, Jalal et al, [35] devel-

oped prediction models for the assessment of compaction characteristics of expansive soils

using GEP. Armaghani et al, [36] deployed GEP to propose the prediction model of uniaxial

compressive strength of soils. Mousavi et al, [20] proposed GP based correlation models to

predict shear strength of soil. The main advantage of using GEP is that it provides robust

mathematical relations which are more beneficial for engineers working in the field. Therefore,

various studies have incorporated the application of artificial intelligence (AI) based tech-

niques to devise more sustainable, cost effective and less time-consuming solutions in the field

of geotechnical engineering [26,37–44].

In GEP, the parameters / chromosomes are linked in the form of expression trees (ETs)

which tend to adapt and learn by varying their sizes and shapes which are initially encoded as

fixed size linear strings (genome). A multi-genic chromosome is further divided into number

of genes and each Sub-ET consists of head and tail. These are the places where genetic
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Fig 1. Process of Genetic Programming (GP).

https://doi.org/10.1371/journal.pone.0275524.g001
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Fig 2. General procedure of mutation and crossover.

https://doi.org/10.1371/journal.pone.0275524.g002
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operators are deployed to produce new solutions. In GEP, genetic operator is used to develop

empirical correlations by combining different influencing input parameters and arithmetic

functions (+, -. �,�, sine, cosine, tan etc.,). The arithmetic functions and constants are referred

to as function set and terminal sets respectively. Karwa language is used to infer the data and

information stored in a chromosome to further process the formulation of mathematical

expression from ETs [45]. The principle of deducing equation using Karva language is to sim-

ply read the expression tree (ET) generated by GEP, from left to right and from top to bottom

(same as we read a text page).

The flowchart in Fig 3 shows the working principles of GEP. The process initiates with the

generation of initial random population in accordance with terminal setting and function, for

all the individuals. Then chromosomes are expressed in the shape of expression trees (ETs),

and afterwards a best fit solution upon evaluation of fitness is processed for the next genera-

tion. The fitness of chromosome can be evaluated using various statistical checks and the nota-

ble examples are means absolute error (MAE), root mean square error (RMSE), relative

standard error (RSE) and correlation co-efficient (R2). The iterative procedure is continued

until the desired solution is achieved. Conversely, Roulette wheel method is deployed to select

best fit solution of first iteration and then new population of chromosomes is created by the

process of mutation, cross over and reproduction. This process of iterations is stopped when

best threshold criteria of selection is obtained.

Materials and methods

Geological database

The soil samples were collected from different locations of Pakistan (Islamabad, Khyber Pakh-

tunkhwa and Punjab). The samples were retrieved from shallow depths ranges between 1 to 2

m. The geology of Islamabad area comprises silty clayey and clayey silt type of soils along with

siltstone, gravels, sandstone, shale etc. at varying depths. The laboratory testing program was

formulated to obtain primary index characteristics of soils such as sand content (S), clay con-

tent (C), silt content (M) and plastic limit using sieve # 40 (PL40) and 200 (PL200) passing

materials.

Experimental methods

The sieve analysis test was performed in accordance with ASTM D 422 to determine percent

sand and fine material [46]. In this test, oven-dried soils are passed through a series of sieves

ranging from # 4 (4.75 mm) to # 200 (0.075 mm) in descending order. The percentage of mate-

rial which passes from sieve # 200 is categorized as fine material whereas material retained on

sieve # 200 and passing from sieve # 4 (4.75 mm opening size) is referred as sand content (S).

The fine content is further sub divided into clay (C) and silt (M) content.

The C and M are types of soils which are comprised of particles smaller than 0.075 mm size

and are therefore cannot be determined using sieve analysis method. Therefore, hydrometer

analysis of particle sedimentation is commonly used for the determination of C and M [47].

This test is performed by mixing soil particles with size less than 0.075 mm with water and dis-

persing agent (sodium hexameta phosphate or sodium silicate) to neutralize the soil particles

to prevent reaction of clay particles and water. Afterwards the relative movement of soil parti-

cles in suspension with regards to hydrometer device is recorded and interpreted to determine

size of particles using Stake’s law. The particles with sizes less than 0.005 mm are classified as

clay (C) while particles having sizes between 0.005 mm and 0.075 mm are categorized as silt

(M).
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PL can be determined using palm rolling method in accordance with ASTM-D4318 [10] as

well as fall cone method [48]. In this study, fall cone standard was adopted due to its simplicity

and time-efficiency. The cone of apex angle 30˚ having weight 1.35 N is lowered into soil of

varying moisture content under different trials. The plastic limit is termed as the water content

at which the penetration of cone is 20 mm in five second of its free fall from a certain height.

PL is normally determined using fraction of soil passing from sieve # 40. However, considering

Fig 3. Steps involved in developing algorithm of GEP.

https://doi.org/10.1371/journal.pone.0275524.g003
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the problem at hand, PL was determined using both fraction of soils passing from sieve # 40

(0.425 mm) and sieve # 200 which are referred as PL40 and PL200 respectively.

Model development

The processing or compilation of dataset is the first step in developing a prediction model

using AI based techniques. The data which is supported by either experimental procedures or

in-situ techniques is pre-processed by the selection of suitable and influential input parameters

(predictors) in relation to output parameter. Henceforth, splitting of dataset after removing

randomness is carried out by dividing it into training and validation categories. The selection

of appropriate and robust AI technique is a critical process and requires rigorous knowledge

of computer vision. In this study, GEP was selected for the development of prediction model.

Afterwards, the model is trained following the principles of programming, and performance is

evaluated using different means such as statistical checks and error plots. The working mecha-

nism involved in developing a prediction model is illustrated in Fig 4.

Dataset compilation

The first step in developing a model involves the selection of appropriate input variable, com-

piling and processing of data by removing randomness. It is well established that PL is influ-

enced by C, M and S [49]. Therefore, S, M, C and PL40 have been considered as the function of

PL200 as given by Eq 1.

PL200 ¼ fðS;C;M; PL40Þ ð1Þ

Fig 4. Steps involved in developing prediction model using artificial intelligence techniques.

https://doi.org/10.1371/journal.pone.0275524.g004
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As discussed in section 3, the dataset for the modelling purpose was obtained from labora-

tory testing results. Fig 5 shows the summarized results in the form of histograms of frequency

distribution of the data obtained from laboratory experiments. Fig 5(A) shows the results of

sieve analysis to obtain sand in the form of the frequency distribution. It was observed that S

varies between 2% and 36% and majority of soils have sand content between 3 to 10% indicat-

ing the fine grained soils. Fig 5(B) shows results of hydrometer tests in the form of the fre-

quency distribution of silt varying between 34% to 93% with majority of soil samples possess

silt between 70% to 90%. Fig 5(C) indicates clay which vary from 5% to 60%. Similarly, Fig 5

(D) and 5(E) shows the frequency distribution of PL40 and PL200, which vary between 14% to

44% and 14% to 54% respectively. This implies that soil samples contain versatility of soil con-

tents and wide range of PL values with low plastic to medium plastic types of soils. Table 1

Fig 5. Frequency distribution histograms of experimental data: (a) sand content S [%]; (b) silt content M [%]; (c) clay

content C [%]; (d) plastic limit from sieve # 40 passing material PL40 [%]; (e) plastic limit from sieve # 200 passing

material PL200 [%].

https://doi.org/10.1371/journal.pone.0275524.g005
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shows statistical summary of dataset utilized for the development of model in which low stan-

dard deviation (SD) values represent less scatter of data around mean average value whereas,

higher SD value indicate higher scatter in data.

General settings

The accuracy of prediction model using GEP is governed by the selection of appropriate set-

ting of parameters which include as number of genes (N), number of chromosomes and head

size [50–52]. Therefore, multiple trials were carried out to choose the best optimal setting of

parameters. In this regard, initial selection for the trials was done based on the previous prac-

tices adopted by researchers in order to develop prediction models for the evaluation of geo-

technical systems. The experimental dataset comprised 100 samples’ properties, was randomly

distributed into 70% and 30% for training and validation purpose respectively. The head size,

number of chromosomes and genes were selected as 8, 30 and 3 respectively. Table 2 presents

the summary of setting of parameters used for developing the GEP based prediction model.

Prediction model evaluation criteria

The evaluation of prediction models is usually performed using a single parameter known as

correlation coefficient (R). However, R cannot be solely considered as the reference to evaluate

the model’s prediction performance because of its insensitivity to simple mathematical func-

tions such as division and multiplication of output to a fixed value. Therefore, multiple statisti-

cal parameters such as root mean square error (RMSE), mean absolute error (MAE) and

relatively squared error (RSE) were also considered. The mathematical representation of these

statistical parameters is given by Eqs 2 to 5 [53].

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðei � kiÞ

2

n

s

ð2Þ

MAE ¼
Pn

i¼1
ðei � kiÞ
n

ð3Þ

Table 2. General setting for prediction models.

General

Model Setting

PL200 [%]

Genes 3

Chromosomes 30

Head size 8

Set of functions +, −, �, �

Linking function +

https://doi.org/10.1371/journal.pone.0275524.t002

Table 1. Statistics of input and output data for PL200 prediction model.

Predictors Minimum Maximum Mean Std. Deviation

Sand [%] 2 36.2 5.95 4.39

Clay [%] 5 60 27.52 18.6

Silt [%] 34 93 66.45 17.68

Plastic limit, PL40 [%] 11 44 27.87 7.29

Output Data

Plastic limit, PL200 [%] 23 70 30.97 7.34

https://doi.org/10.1371/journal.pone.0275524.t001
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RSE ¼
Pn

i¼1
ðki � eiÞ

2

Pn
i¼1
ð�e � eiÞ

2
ð4Þ

R ¼
Pn

i¼1
ðei � �eiÞðki � �kiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1
ðei � �eiÞ

2Pn
i¼1
ðki � �kiÞ

2

q ð5Þ

Where, n is the number of samples, ei is ith experimental output, ki is the ith prediction

model response, whereas,�ei and �ki are the average values of laboratory and the model

responses respectively.

There are several other performance indices that can be deployed to assess the generaliza-

tion and prediction capabilities of prediction models such as error plots and external valida-

tion criteria. The prediction data along with experimental data when lie within ±5 confidence

interval is regarded as accurate and reliable [54]. Thus, different kinds of error plots were also

utilized to assess the error involved in prediction model.

Results and discussion

Fig 6 represents the parametric combination of R and MAE for PL200. The study was con-

ducted to determine the optimal setting of three GEP parameters (number of genes, chromo-

somes and head size) for the prediction of PL200. The parametric study was performed by

changing one parameter and keeping all other parameters as default. It is evident from the

results that R2 increases with increase in number of genes, chromosomes and head size up to

certain extent and decreases afterwards. This is in agreement with the findings of Oltean and

Grosan [55], according to which performance of GEP model increase with the increase in

genes up to a threshold point and decreases afterwards due to inability to force complex chro-

mosomes to encode relatively less complex chromosome. Ferrera [29] provided the parameter

hs as a measure to determine the complexity and maximum size of parameters involved in

developing model. GEP algorithm performs multiple trials of terminals and functions for

modelling the parameters inside heads of genes. Therefore, this leads to development of infi-

nite models with varying sizes and shapes. Thus, hs governs the maximum depth (dmax) and

width (bmax) of Sub-ET in each gene and can be determined using the expressions given by

Eqs 6 and 7.

bmax ¼ ½ðamax � 1�
�hsÞ þ 1� þ 1 ð6Þ

dmax ¼
hs þ 1

amin

� �� amin

2

� �
ð7Þ

Where, amax is the maximum arity which is highest number of arguments adopted by the

functions whereas amin is the minimum arity (minimum number of arguments adopted by the

function) which were taken as 2 and 0 respectively in this study.

Similarly, MAE decreases with increase in number of genes, chromosomes and head size

with genes up to 5 and head size 12 while it increases afterwards as shown in Fig 6(A) and 6

(C). Thus, default values of setting parameters (genes = 3, chromosomes = 30, head size = 8)

were selected as they generate reasonably good accuracy and involve less complexity and time

consumption.

Fig 7 represents the tree-based structures (ETs) developed using GEP which are further

divided into three sub-ETs (Sub-ET 1, sub-ET 2 and sub-ET 3). The principles of Karwa
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language were followed to derive and decode the simple algebraic expressions from ETs in

order to predict PL200 as given by Eqs 8 to 11.

PL200½%� ¼ Aþ Bþ C ð8Þ

A ¼ 6:17 � Mð Þ � PL40 �
C � PL40

M

� �� �

ð9Þ

B ¼ PL40 þ ðPL40 � 2:84Þ ð10Þ

C ¼ M �
C � 8:2

ðC � 9:8Þ � 9:8

� �� �

ð11Þ

Where, PL200 (%) is the plastic limit based on sieve # 200 passing material, A, B and C are

the expressions derived from the three ETs and PL200 is the summation of A, B and C.

Fig 6. Effect of parametric variation of GEP algorithm on accuracy of predicted plastic liquid: (a) number of genes; (b) number of chromosomes (c) head size.

https://doi.org/10.1371/journal.pone.0275524.g006
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Fig 7. Expression trees [ETs] developed using gene expression programming [GEP].

https://doi.org/10.1371/journal.pone.0275524.g007
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Performance assessment of model

Fig 8 shows the results of performance evaluation of model done by various means Fig 8(A)

represents the comparison of different statistical parameters as described in section 4.3, for

training and validation datasets. It was found out that the values of R2, RMSE, MAE and RSE

are 0.976, 1.118, 0.866, 0.023 respectively for training dataset and are 0.971, 1.368, 1.064, 0.035

for validation dataset involved in validating the trained model. According to the literature a

prediction model is considered accurate and reliable if it yields values of R2 close to 1 and

lower values of RMSE, MAE and RSE [50]. This implies that the proposed model has higher

prediction accuracy and strong correlation among training and validation data. It is worth-

while to mention that the validation data is used to test the trained model and is not involved

in training the model. Thus, it can be regarded as the unseen data and the compliance of

Fig 8. Performance assessment of prediction model based on different criteria; (a) comparison of statistical parameters for training and validation data; (b) ±
5% error bound for prediction model; (c) comparison of experimental data, GEP model data and absolute error; (d) comparison of experimental data and GEP

prediction model data against training and validation data.

https://doi.org/10.1371/journal.pone.0275524.g008
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trained model to unseen data suggest that the model has been trained effectively and can be

employed in field with more confidence.

Fig 8(B) shows the plot of error bounds with ±5 confidence interval. The graph was plotted

by plotting experimental data (PL200) along x-axis whereas prediction responses generated by

GEP (PL200) along y-axis. A model is deemed accurate if data lies within the pre-defined confi-

dence interval. The results indicate that all the responses lie within ±5 error bounds leading to

small error yielded by GEP in relation to input parameters

Fig 8(C) and 8(D) further highlights the error interpretations of the proposed model. Fig 8

(C) was plotted between experimental dataset used in training the model and corresponding

responses of GEP model along with absolute error. The absolute error is the absolute differ-

ence of experimental and prediction data and minimum value of error suggests that model

predicts the responses with great accuracy. It is evident from the Fig 8(C) that values of abso-

lute error very less than the mean absolute error in predicting PL200.

Similarly, Fig 8(D) draws the comparison of experimental and GEP prediction data against

training and validation phases. The findings show that the experimental data and correspond-

ing GEP response data for both cases (training and validation) correlate well and complement

one another. The lines of experimental and GEP prediction data overlap each other, and it

implies that the error is very less in case of unseen validation data as well. Thus, model’s capa-

bility to meet multiple checks and criteria suggest that the model can be used in field with

more confidence.

Sensitivity and parametric study

Sensitivity analysis (SA) is carried out to find out the contribution of individual parameter

involved in developing the prediction model. The sensitivity analysis indicates that how sensi-

tive a parameter is in estimating the output. The most sensitive parameter must be dealt with

carefully while determining in the laboratory or at the site. The SA can be determined using

Eq 12 [39,56]. The value of SA varies between 0 and 100%. The value of zero indicates that the

parameter has no significant impact on the model output whereas value close to 100% shows

the higher significance and level of sensitivity of parameter.

SA ¼
Pn

i¼1
ðhikiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
h2
i x
Pn

1
k2
i

p ð12Þ

Where, hi is input parameter and ki is the response of predicted model. Fig 9 represents the

outcomes of the sensitivity analysis for the proposed prediction model. It was observed that

PL40 has the most significant impact followed by C, M and S amongst all C is the most critical

soil property and S being the least sensitive which is in agreement with the literature. The sig-

nificance order for all parameters is as PL40 > C> M> S. C particles have high surface area

than S and therefore can hold more water content and are also regarded as the primary reason

of plasticity behavior in cohesive soils.

In order to justify the fact that correlation model is not mere the correlation but also justi-

fies the physical process, parametric study was also conducted as shown in Fig 10. It is men-

tioned that the parametric study was only performed on critical parameters determined using

SA for the sake of brevity. A parametric analysis is performed by changing one variable around

its mean value within the upper and lower bounds of data while keeping all values unchanged

at their mean values and then output is regarded. It can be seen that increase in CL causes lin-

ear increase in PL200, which is because of increase in surface area of soils which leads to

enhance the water holding capacity of soils. PL40 has the similar trend with PL200 and is in line

to the findings of Polidori and Lekan.
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Conclusion

Based on soil particles passing through sieve # 200, this study presents a novel prediction

model for estimating PL using GEP. The experimental data was utilized to develop the predic-

tion model. The following are the main findings of this research;

• The proposed prediction model incorporates the effect of clay content in order to accurately

determine the plasticity behavior of cohesive soils.

• The prediction model was developed using AI based approach i.e., GEP. The model was vali-

dated through multiple criteria such as R2, RMSE, MAE and RSE. The values of R2, RMSE,

MAE and RSE against the training data were 0.976, 1.118, 0.866, 0.023 respectively and were

0.971, 1.368, 1.064, 0.035 for testing/validation data.

Fig 9. Sensitivity analysis of prediction model based on sensitivity of individual input parameter.

https://doi.org/10.1371/journal.pone.0275524.g009

Fig 10. Parametric analysis of input parameters; (a) variation of plastic limit PL200 with varying clay content C [%]; (b)

variation of plastic limit PL200 with varying silt plastic liquid based on sieve # 40 material [%].

https://doi.org/10.1371/journal.pone.0275524.g010
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• The error plot results indicate that the proposed model predicts the responses with the mini-

mal error and responses do not deviate ±5% confidence interval.

• The sensitivity analysis and parametric studies suggest that C is the most critical influencing

parameter that can affect PL.

• The proposed model justifies all the criteria of acceptance and can be deployed in field with

more confidence.

• The proposed prediction model is applicable to low plastic silty clayey type. Therefore, it is

recommended to employ the proposed model to soils having properties ranges within the

limits of dataset used in this study. However, future studies may incorporate diverse proper-

ties of different types of soils with larger dataset.
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16. Moreno-Maroto JM, Alonso-Azcárate J, O’Kelly BC. Review and critical examination of fine-grained soil

classification systems based on plasticity. Appl Clay Sci. 2021; 200: 105955.

17. Afolagboye LO, Abdu-Raheem YA, Ajayi DE, Talabi AO. A comparison between the consistency limits

of lateritic soil fractions passing through sieve numbers 40 and 200. Innov Infrastruct Solut. 2021; 6: 1–

8. https://doi.org/10.1007/s41062-020-00427-3

18. Nagaraj HB, Reesha B, Sravan M V., Suresh MR. Correlation of compaction characteristics of natural

soils with modified plastic limit. Transp Geotech. 2015; 2: 65–77. https://doi.org/10.1016/J.TRGEO.

2014.09.002

19. Gurtug Y, Sridharan A. Prediction of compaction characteristics of fine-grained soils. 2015; 52: 761–

763. https://doi.org/10.1680/GEOT.2002.52.10.761

20. Mousavi SM, Alavi AH, Gandomi AH, Mollahasani A. Nonlinear genetic-based simulation of soil shear

strength parameters. J earth Syst Sci. 2011; 120: 1001–1022.

21. Mousavi SM, Alavi AH, Mollahasani A, Gandomi AH. A hybrid computational approach to formulate soil

deformation moduli obtained from PLT. Eng Geol. 2011; 123: 324–332.

22. Seybold CA, Elrashidi MA, Engel RJ. Linear regression models to estimate soil liquid limit and plasticity

index from basic soil properties. Soil Sci. 2008; 173: 25–34.

23. Keller T, Dexter AR. Plastic limits of agricultural soils as functions of soil texture and organic matter con-

tent. Soil Res. 2012; 50: 7–17.

24. Karakan E, Shimobe S, Sezer A. Effect of clay fraction and mineralogy on fall cone results of clay–sand

mixtures. Eng Geol. 2020; 279: 105887.

25. Koza JR, Poli R. Genetic programming. Search methodologies. Springer; 2005. pp. 127–164.

26. Nazari A, Torgal FP. Modeling the compressive strength of geopolymeric binders by gene expression

programming-GEP. Expert Syst Appl. 2013; 40: 5427–5438.

27. Mozumder RA, Laskar AI. Prediction of unconfined compressive strength of geopolymer stabilized

clayey soil using artificial neural network. Comput Geotech. 2015; 69: 291–300.

28. Noh H, Kwon S, Seo IW, Baek D, Jung SH. Multi-gene genetic programming regression model for pre-

diction of transient storage model parameters in natural rivers. Water. 2020; 13: 76.

29. Ferreira C. Gene expression programming: mathematical modeling by an artificial intelligence.

Springer; 2006.

30. Al Bodour W, Hanandeh S, Hajij M, Murad Y. Development of Evaluation Framework for the Unconfined

Compressive Strength of Soils Based on the Fundamental Soil Parameters Using Gene Expression

Programming and Deep Learning Methods. J Mater Civ Eng. 2022; 34: 4021452.

31. Mollahasani A, Alavi AH, Gandomi AH. Empirical modeling of plate load test moduli of soil via gene

expression programming. Comput Geotech. 2011; 38: 281–286.

32. Azim I, Yang J, Javed MF, Iqbal MF, Mahmood Z, Wang F, et al. Prediction model for compressive arch

action capacity of RC frame structures under column removal scenario using gene expression program-

ming. Structures. Elsevier; 2020. pp. 212–228.

33. Tarawneh B. Gene expression programming model to predict driven pipe piles set-up. Int J Geotech

Eng. 2018.

34. Pham V-N, Oh E, Ong DEL. Effects of binder types and other significant variables on the unconfined

compressive strength of chemical-stabilized clayey soil using gene-expression programming. Neural

Comput Appl. 2022; 1–19.

35. Jalal FE, Xu Y, Iqbal M, Jamhiri B, Javed MF. Predicting the compaction characteristics of expansive

soils using two genetic programming-based algorithms. Transp Geotech. 2021; 30: 100608.

PLOS ONE Evaluation of Plastic Limit Based on Sieve # 200 Passing Material using Gene Expression Programming

PLOS ONE | https://doi.org/10.1371/journal.pone.0275524 October 3, 2022 18 / 19

https://doi.org/10.1520/D4318-17E01
https://doi.org/10.3208/sandf.47.887
https://doi.org/10.1007/s41062-020-00427-3
https://doi.org/10.1016/J.TRGEO.2014.09.002
https://doi.org/10.1016/J.TRGEO.2014.09.002
https://doi.org/10.1680/GEOT.2002.52.10.761
https://doi.org/10.1371/journal.pone.0275524


36. Armaghani DJ, Safari V, Fahimifar A, Monjezi M, Mohammadi MA. Uniaxial compressive strength pre-

diction through a new technique based on gene expression programming. Neural Comput Appl. 2018;

30: 3523–3532.

37. Kayadelen C. Soil liquefaction modeling by genetic expression programming and neuro-fuzzy. Expert

Syst Appl. 2011; 38: 4080–4087.
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