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Abstract 

An increasing number of studies have suggested the dysbiosis of salivary microbiome has been linked to 
the advancement of multiple diseases and proved to be helpful for the diagnosis of them. Although 
epidemiological studies of salivary microbiota in carcinogenesis are mounting, no systemic study exists 
regarding the oral microbiota of non-small cell lung cancer (NSCLC) patients. In this study, we presented 
the characteristics of the salivary microbiota in patients from NSCLC and healthy controls by sequencing 
of the 16S rRNA microbial genes. Our result revealed distinct salivary microbiota composition in patients 
from NSCLC compared to the healthy controls. As principal co-ordinates analysis (PCoA) showed, saliva 
samples clearly differed between the two groups, considering the weighted (p = 0.001, R2 = 0.17), and 
unweighted (p = 0.001, R2 = 0.25) UniFrac distance. Phylum Firmicutes (31.69% vs 24.25%, p < 0.05) and 
its two genera Veillonella (15.51%% vs 9.35%, p < 0.05) and Streptococcus (9.96% vs 6.83%, p < 0.05) were 
strongly increased in NSCLC group compared to the controls. Additionally, the relative abundances of 
Fusobacterium (3.06% vs 4.92%, p = 0.08), Prevotella (1.45% vs 3.52%, p < 0.001), Bacteroides (0.56% vs 
2.24%, p < 0.001), and Faecalibacterium (0.21% vs 1.00%, p < 0.001) in NSCLC group were generally 
decreased. Furthermore, we investigated the correlations between systemic inflammation markers and 
salivary microbiota. Neutrophil-lymphocyte ratio (NLR) positively correlated with the Veillonella (r 
=0.350, p = 0.007) and lymphocyte-monocyte ratio (LMR) negatively correlated with Streptococcus (r 
=-0.340, p = 0.008). Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways inferred 
by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed 
that pathways related to xenobiotics biodegradation and metabolism (p < 0.05) and amino acid 
metabolism (p < 0.05) were enriched in the NSCLC group. Folate biosynthesis (p < 0.05) significantly 
decreased in NSCLC group. The specific correlations of clinical systemic inflammation markers and 
predicted KEGG pathways also could pronounce a broad understanding of salivary microbiota in patients 
with NSCLC. Moreover, our study extended the new sight into salivary microbiota-targeted 
interventions to clinically improve the therapeutic strategies for salivary dysbiosis in NSCLC patients. 
Further investigations of the potential mechanism of salivary microbiota in the progression of NSCLC are 
still in demand. 
 

Introduction 
Lung cancer, one of the most prevalent cancers 

globally, is the leading cause of cancer-related deaths 
among males, [1] with an increased incidence in 
recent years in China [2]. Lung cancer is divided into 
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non-small cell lung cancer (NSCLC) and small cell 
lung cancer (SCLC), with NSCLC accounting for 
about 80% of lung cancers and SCLC accounting for 
20%. NSCLC is often asymptomatic or causes only 
nonspecific symptoms in its early stages. The 
five-year survival rate for NSCLC is only 15%, in part 
because the disease is usually diagnosed at a late stage 
and is frequently metastatic and incurable [3, 4]. Early 
detection is crucial for reducing the morbidity and 
mortality of NSCLC. However, it is difficult to 
promote current approaches to detect NSCLC, due to 
the high cost and low positive detection rate at the 
early stages of the disease. Currently, practical and 
effective approaches to the early diagnosis of NSCLC 
are desperately needed.  

Tissue and blood samples have been widely 
used in the diagnosis and research of NSCLC [5]. In 
addition, human saliva has become an attractive 
medical diagnostic fluid as its collection is convenient 
and non-invasive. Saliva-based epidermal growth 
factor receptor (EGFR) gene mutation detection in 
patients with NSCLC is a method that has been 
shown to fulfil the clinical requirements for detection 
of EGFR mutation in patients with NSCLC, and this 
method could be reinforced with tissue DNA testing 
or used as a complement to biopsy [6]. Certain 
proteins in saliva have also been shown to indicate 
oral or systematic diseases, suggesting this method 
could be used for clinical screening and detection of 
lung cancer [7]. Increasingly, studies [8-11] have also 
reported an increased risk of certain types of 
tumourss that are related to the dysbiosis of salivary 
microbiota. The oral cavity is a large microbiome 
habitat in the human body and composed of more 
than 700 species of bacteria, among which more than 
50% have not been cultivated [12]. Previous studies 
have identified the core microbiome related to health 
[13] and shown that shifts in the core microbiome are 
associated with the immuno-inflammatory response 
[14]. A number studies [15-18] have also shown that 
microbiota markers in saliva are well-known 
diagnostic and prognostic biomonitors for diverse 
diseases. In addition, salivary Capnocytophaga and 
Veillonella have been identified as potential 
biomarkers for lung cancer detection and 
classification [19]. Hence, characterizing the salivary 
microbiota in NSCLC patients could potentially help 
delineate the pathogenic role of salivary dysbiosis in 
the progression of NSCLC and direct the management 
of microbiota-targeted therapies. 

To validate the above assumptions and 
predictions, we directly compared the salivary 
microbiota composition in NSCLC patients which are 
newly diagnosed and untreated with the healthy 
controls, by sequencing the 16S Ribosomal RNA gene 

in saliva samples. Our study also investigated 
correlations between salivary microbiota, systemic 
inflammatory markers, and the metabolites of salivary 
microbiota. 

Materials and Methods 
Patient Recruitment 

This study complied with the ethical guidelines 
outlined in the 1975 Declaration of Helsinki and has 
been approved by the Research Ethics Board of the 
Second Hospital of Shandong University (Jinan, 
China) and Shandong Provincial Chest Hospital 
(Jinan, China). Prior to inclusion in this study, written 
informed consent was obtained from all of the 
participants. 

 Study subjects were newly diagnosed NSCLC 
patients seen at the Second Hospital of Shandong 
University and Shandong Provincial Chest Hospital 
in Jinan, from March 2016 to October 2016. NSCLC 
patients eligible for inclusion in this study were Han 
Chinese local inhabitants who had lived in Jinan for at 
least 5 years prior to the date of sample collection and 
had a definite postoperative pathological diagnosis of 
NSCLC stage IIB or IIIA. No patients received 
chemotherapy, radiation therapy, or surgery before 
sample collection. Subjects were excluded if they had 
been diagnosed as any diseases other than NSCLC, 
taken oral antibiotic or received probiotic therapy less 
than 6 months from the date of consent [20]. External 
factors also included smoking and drinking, which 
are significantly associated with salivary community 
types [21-23], or were unwilling to sign the informed 
consent. Control subjects were recruited from the 
Physical Examination Centre of the Second Hospital 
of Shandong University. The healthy status of the 
control subjects was self-reported and the control 
group was frequently matched to the study subjects 
by gender, age, and body mass index (BMI). 
Additionally, the clinical characteristics of all of the 
subjects are listed in Table 1. 

Enzyme-linked Immunosorbent Assay 
All of the blood samples were collected 

immediately after hospitalization and centrifuged at 
1,000 g at 4°C for 15 minutes before being stored at 
-80°C for further analysis. Aliquots of serum were 
used to determine interleukin-6 (IL-6), IL-1β, IgA, and 
IgG concentration. Measurement of each factor was 
performed using specific ELISA kits obtained from 
ProteinTech Group (Wuhan, Hubei, China) according 
to the manufactures’ instructions. All of the samples 
were assayed in duplicate and the average was used 
in the statistical analyses. 
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Table 1. Subject and sample data. 

Parameter NSCLC (N=39) Healthy Controls (n=20) p-value 
Age (years; mean ± SD) 59.49 (8.43)  59.45(7.33)  0.987 
Females/Males, No. (%) 10/29 (25.64%/74.36%) 7/13 (35.00%/65.00%) 0.452 
BMI (mean ± SD) (range) 23.49 (2.12) 23.01 (1.47) 0.369 
NLR, mean (SD) 2.64 (1.24) 1.86 (0.47) 0.001** 
PLR, mean (SD) 137.47 (55.52) 119.30 (27.71) 0.099 
LMR, mean (SD) 6.36 (11.40) 7.75 (2.67) 0.595 
AMC, mean (SD)  0.44 (0.17) 0.30 (0.10) <0.001*** 
IL-6, mean (SD) 4.53 (5.05) 2.79 (1.56) 0.141 
IL-1β, mean (SD) 3.96 (3.04) 9.64 (20.36) 0.229 
Final diagnosis  NA  
  Adenocarcinoma 21 (53.85%)   
 Squamous cell cancer 18 (46.15%)   
  Stage I/II/III/IV 10/12/17/0 (26.83%/29.27%/43.90%/0)   
p Values were based on t-test or χ2 test (two-sided). BMI, body mass index; NLR, neutrophil-lymphocyte ratio; PLR, platelet-lymphocyte ratio; LMR, lymphocyte-monocyte 
ratio; AMC, absolute monocyte count; IL-6, Interleukin 6. 

 
Saliva Sample Collection and Bacterial DNA 
extraction 

Saliva samples for genomic DNA extraction 
were collected from each participant in the morning 
before brushing and breakfast, and placed into a 
50-mL conical tube. Approximately 3mL of saliva was 
obtained from each individual, and samples were 
then transferred to the laboratory immediately in an 
icebox and stored at -80°C until further processing. 
Genomic DNA was extracted with the QIAamp DNA 
Mini Kit (Qiagen, Hilden, Germany) according to the 
manufacturers’ protocols. The concentration and 
purity of extracted DNA were determined on 1% 
agarose gels. Then each sample was quantified with a 
Nano Drop ND-1000 spectrophotometer (Thermo 
Electron Corporation). All of the DNA was stored at 
-20°C until further analysis. 

16S rRNA PCR Amplification and Sequencing 
16S rRNA genes of distinct regions (V1-V2) were 

amplified with specific primers targeting 27F and 
355R of the bacterial 16S gene bacterial barcode (27F: 
5′-AGAGTTTGATCMTGGCTCAG-3′ and 355R: 
5′-GCTGCCTCCCGTAGGAGT-3′). All of the PCR 
reactions were carried out with Phusion® High- 
Fidelity PCR Master Mix (New England Biolabs). 
Then, the PCR products were separated by 2% 
agarose gel electrophoresis and purified with the 
Qiagen Gel Extraction Kit (Qiagen, Germany) for 
further experiments. Sequencing libraries were 
generated using TruSeq® DNA PCR-Free Sample 
Preparation Kit (Illumina, USA) and sequenced on an 
IlluminaHiSeq2500 platform. 

Bioinformatics Analysis 
The paired-end reads were merged using 

FLASH software (V1.2.7, http://ccb.jhu.edu/ 
software/FLASH/) [24], and filtered using the QIIME 
software package (Quantitative Insights into Micro-

bial Ecology, QIIME, V1.7.0, http://qiime.org/index. 
html) [25, 26] to obtain high-quality clean tags. 
Operational taxonomic units (OTUs) with a 97% 
similarity cut off were clustered using Uparse soft-
ware (Uparse v7.0.1001, http://drive5.com/uparse/) 
and chimeric sequences were detected and removed 
using UCHIME algorithm (UCHIME algorithm, 
http://www.drive5.com/usearch/manual/uchime_
algo.html). For each representative sequence of OTUs, 
the GreenGene Database (http://greengenes.lbl.gov/ 
cgi-bin/nph-index.cgi) [27] was used based on the 
RDP classifier (Ribosomal Database Project, RDP, 
Version 2.2, http://sourceforge.net/projects/rdp- 
classifier/) [28] algorithm to annotate the taxonomic 
information. 

OTU abundance information was normalized 
using a standard of sequence number corresponding 
to the sample with the least sequences. Subsequent 
analysis of alpha diversity and beta diversity was 
performed based on the output of normalized data.  

Alpha diversity indices and richness estimators 
were calculated according to OTU information using 
QIIME software and displayed with R software 
(Version 2.15.3, http://www.R-project.org). To deter-
mine global differences in microbial composition, 
weighted and unweighted UniFrac distance for PCoA 
and non-metric multidimensional scaling (NMDS) 
were also used to visualize the differences in 
microbiota between the NSCLC and the healthy 
controls. The linear discriminant analysis (LDA) effect 
size (LEfSe) method (http://huttenhower.sph. 
harvard.edu/lefse/), which emphasizes the statistical 
significance [29], was used to detect microbial 
biomarkers and differentiate the NSCLC samples 
from the healthy controls, with a significance alpha of 
0.05 and an LDA score > 4.0. The Analysis of 
Similarity (ANOSIM) test was carried out to analyse 
significant differences in microbial communities 
between NSCLC and healthy controls using the vegan 
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package in R software. We also used canonical 
correspondence analysis (CCA) to further explore the 
possible clinical inflammatory markers that 
correspond to salivary microbiota community 
structure in R software. CCA is a multivariate method 
used to illustrate the relationships between biological 
structures of species and environmental variables, 
which is widely used in community ecology. The 
Monte Carlo test method was used to test the variance 
corresponding to sequencing data with the number of 
randomized permutations at N =  999 at the 
significance level of α < 0.05. Metastat analysis was 
also used to test differences in salivary microbiota 
between NSCLC and healthy controls.  

Additionally, the co-occurrence network of the 
top 35 abundant genera and the clinical inflammatory 
markers was generated to visualize the correlations 
between host-microbiota and clinical inflammatory 
markers according to the Spearman’s rank correlation 
analysis. A strict p-value threshold (p ≤ 0.001, and 
correlation r > 0.6) was applied to filter the strong 
correlations among host microbiota and a less strict 
threshold (p ≤ 0.05, and correlation r > 0.3) was 
adopted to filter out the significant correlations 
between the clinical inflammatory markers and 
genera. The co-occurrence networks were then 
visualized using Cytoscape (Version 3.6.1) with a 
force-directed algorithm. Each green round node 
represents a genus, and each red triangle represents 
an inflammatory marker. The solid and dashed edges 
represent a positive and negative correlation, 
respectively.  

Finally, the salivary microbial functional gene 
contents were predicted using PICRUSt v1.0.0 [30]. In 
brief, the cleaned amplicon sequences were 
re-agglomerated into OTUs using QIIME software 
against the Greengenes database [31] with a similarity 
cut off value of 97%. After OTU picking, the 
OTU-table was normalized and then the metagenome 
functional predictions were predicted via PICRUSt 
[30] and mapped on KEGG orthologues [32] level-2 
and level-3 pathways using HUMAnN [32, 33]. LEfSe 
was also utilized to evaluate differentially abundant 
predicted microbiome functions between NSCLC and 
healthy controls. Then, a Spearman correlation of the 
KEGG level-3 functional orthologues and the clinical 
inflammatory markers was calculated in R and 
significant correlations (p< 0.05, and correlation r > 
0.3) were exported for visualization. 

Statistical Methods 
The results are presented as counts (percentage) 

for the categorical variables, and mean ± standard 
deviation for the continuous variables. Chi-squared 
test was used to compare the differences in the 

proportions for the categorical variables. Unpaired- 
sample Student’s t-test or Mann Whitney U test were 
used to compare the differences in the independent 
samples for the continuous variables with False 
Discovery Rate (FDR) correction. All of the tests for 
significance were two-sided, and p < 0.05 was consid-
ered statistically significant. Analyses were performed 
using the SPSS statistical package, version 24.0 (SPSS). 

Results 
Physiological Characteristics of Study Subjects 

A total of 39 NSCLC patients and 20 healthy 
subjects were enrolled in this study protocol. Groups 
of enrolled subjects were similar with respect to 
demographic characteristics (p = 0.987 for age and p = 
0.452 for sex), and BMI (p = 0.369). It is important to 
note that the neutrophil-lymphocyte ratio (NLR) and 
absolute monocyte count (AMC) were significantly 
elevated in the NSCLC group (p = 0.001 and p < 0.001 
respectively). However, there was no significant 
difference in other inflammatory indicators between 
the two groups. The detailed characteristics of the 
cohort are summarized in Table 1. 

Diversity of Salivary Microbiota in NSCLC 
Patients and Healthy Subjects 

A total of 3,207,485 taxon reads were analysed 
after sequence de-noising, trimming and chimera 
picking. The reads were clustered into 37,394 OTUs at 
the 97% similarity threshold level, with 25,270 OTUs 
in the NSCLC group and 12,124 OTUs in controls. We 
first checked the sequencing depth by plotting the 
rarefaction curve for each sample (Figure S1). Most of 
the samples reached plateau, indicating the adequacy 
of the sequencing. Moreover, the value of Good’s 
coverage in our study was more than 0.99 in both 
groups, which suggested that the reads obtained from 
the two groups were representative of most of the 
bacteria presented in the study. Next, we compared 
the microbial diversity and richness of NSCLC 
patients with the healthy subjects using the ACE, 
Chao1, Shannon, and Simpson indices. The NSCLC 
patients tended to have a higher richness and a lower 
diversity than healthy subjects in our study. As shown 
in Figure S2A-B, the Chao1’ and ACE’ richness indices 
in healthy subjects were slightly lower than those in 
the NSCLC group, however, this was not statistically 
significant. Conversely, the Simpson’ diversity index 
was significantly decreased in the NSCLC group 
(Figure S2D). The summary information is shown in 
Table 2. 

 To test whether the complexity of salivary 
microbiota distinguished the NSCLC group from 
healthy controls, PCoA was applied to compare the 
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overall structure of microbial communities between 
the two groups. Although the salivary microbiota 
showed an interindividual difference, the saliva 
samples clearly differed between the two study 
groups when considering the weighted (p = 0.001, R2 
= 0.17), and unweighted (p = 0.001, R2 = 0.25) UniFrac 
distance in the PCoA (Figure 1). However, samples in 
our study did not cluster by patient’s clinical stage, 
T-stage, node positivity, or pathology. NMDS of the 
bacterial community also showed clear separation 
(Figure S3). Additionally, we performed an ANOSIM, 
and the results suggested that the structure of the 
salivary microbiota of NSCLC patients was 
significantly different from that of the healthy controls 
(ANOSIM, p = 0.012, R = 0.127). 

Compositional Analysis of Salivary Microbiota 
We next compared the relative abundance of 

microbiota composition of NSCLC patients with 
healthy controls. More than 200 genera were classified 
from the salivary microbiota. The predominant 
bacterial composition (>1% of the total sequences in 
either group) at the phyla level included Proteo-
bacteria, Firmicutes, Bacteroidetes, Actinobacteria, 
and Fusobacteria, comprising 97.01% and 98.17% of 
the salivary microbiota in the NSCLC patients and 
healthy subjects, respectively (Figure S4). The 
dominant genera between NSCLC and healthy 
subjects were different. Neisseria was the most 
abundant genus in the NSCLC group, and the second 
dominant genus was Veillonella. Conversely, the 
predominant genus in healthy controls was 
Prevotella_7, followed by Neisseria (Figure S4). Among 
all the predominant taxa at genus level, we found 13 
statistically significant differences between the two 
groups. The relative abundance of Veillonella, 
Streptococcus, Lautropia, Leptotrichia, Rothia, and 
Aggregatibacter was significantly higher in the NSCLC 
group compared with the healthy control group. We 
also found significantly lower levels of Prevotella_7, 
Fusobacterium, Porphyromonas, Alloprevotella, Prevotella, 
Bacteroides, and Faecalibacterium in NSCLC patients 
than in the healthy control group (Figure 2).  

Lastly, LEfSe [29] was used to identify the 
greatest differences in taxa by comparing the NSCLC 
patients with healthy subjects (Figure 3). We found 

that the NSCLC group was associated with a 
significantly higher amount of Proteobacteria and 
Firmicutes. Lautropia was the prominent biomarker 
for the NSCLC group in the genus level, and thus, the 
NSCLC group might be designated by the Lautropia 
dominant cluster. Other biomarkers for the NSCLC 
group included Streptococcus, Burkholderiaceae, 
Burkholderiales, Lactobacillales, Betaproteobacteria, 
and Bacilli. For healthy controls, Bacteroidetes was 
the most abundant phylum, and Prevotella and 
Prevotella_7 were the most prominent genus level 
biomarkers. Thus, the healthy control group might be 
designated as the Prevotella and Prevotella_7 dominant 
cluster. The other biomarkers of healthy controls 
included Porphyromonadaceae, Prevotellaceae, 
Bacteroidia, and Bacteroidales. 

Systemic Inflammatory Markers Correlated 
with Salivary Microbiota 

We next investigated whether the salivary 
microbiota interact with clinical systemic 
inflammation-related markers including NLR, PLR, 
LMR, AMC, IL-6, and IL-1β. Here, we used CCA to 
visualize the relationship between systematic 
inflammatory markers and salivary microbiota 
(Figure 4). The inflammatory factors were plotted 
with purple arrows, and each factor’s weight was 
proportional to its arrow length. The first CCA axis 
explained 30.79% of the total variance and was 
negatively correlated with NLR, AMC, PLR, and IL-6, 
and positively correlated with LMR and IL-1β. The 
effects of IL-6, IL-1β, and LMR were weaker than 
those of AMC, NLR, and PLR, as indicated by the 
lengths of the vectors (Figure 4). The CCA figure 
shows that the strongest determinant for microbial 
communities was NLR. Veillonella and Fusobacterium, 
the two most dominant genera, were significantly 
correlated with NLR (Spearman r = 0.35, p = 0.007; 
Spearman r = -0.41, p = 0.001, respectively). CCA axis 
2, which explained 23.99% of the total variance, was 
positively correlated with NLR, PLR, IL-6, and IL-1β 
and negatively correlated with AMC and LMR. These 
results suggested that the salivary microbiota 
correlated with its host systemic inflammatory 
statues.  

 

Table 2. Comparison of phylotype coverage and diversity estimation of the 16S rRNA gene libraries at 97% similarity from the 
sequencing analysis 

Group Observed 
species 

Good’s 
coverage (%) 

PD-whole 
tree 

Richness estimator Diversity index 
ACE 95% CI Chao 1 95% CI Shannon Simpson 

NSCLC 531 99.50% 54.56 659.08 621.15-697.00 652.43 614.26-690.61 5.50 0.92 
Healthy Controls 510 99.50% 53.08 633.62 614.87-652.36 642.99 620.09-665.88 5.65 0.94 
1 The operational taxonomic units (OTUs) were defined with 97% similarity level. 2 The coverage percentage (Good’s) and richness estimators (ACE and Chao1), and 
diversity indices (Shannon and Simpson) were calculated using the R software. CI, confidence interval. 
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Figure 1. Principal coordinates analysis of the salivary microbiota. Overall salivary microbiota of patients with non-small cell lung cancer is statistically significantly 
different from that of healthy individuals as represented by the first two principal coordinates analysis of (a) weighted and (b) unweighted UniFrac distances. Each point 
represents a single sample, with plus sign and ellipses representing the fitted mean and 68% confidence interval of each group respectively. NSCLC represent 
non-small cell lung cancer group, and HC, healthy controls.  

 

 
Figure 2. Relative abundance of significantly different genera at phylum (a), and genus (b) levels between non-small cell lung cancer patients and healthy controls. 
*p<0.05, ** p<0.01, ***p<0.001. NSCLC represent non-small cell lung cancer group, and HC, healthy controls. 

 
 Additionally, we also calculated the correlation 

among abundance of the top 35 genera and screened 
strong correlations with p < 0.001 and r > 0.6. The 
correlation between the systemic inflammatory 
markers and genus was filtered by a loose threshold 
of p < 0.05 because of the graded input of these 
factors. The overall result is displayed in Figure 5, and 
the detailed list is presented in Table S1. Clear visual-
ization showed that the salivary microbiota formed 

two major mutualistic sub-networks (Sub-network I 
and Sub-network II in Figure 5). The correlations were 
all positive within each sub-network, and the 
correlations among different sub-networks were all 
negative. The Stenotrophomonas, Brevundimonas, 
Chryseobacterium, and Pseudomonas were the central 
genera within sub-network I, and the Fusobacterium 
was the central genus within sub-network II. 
Significant co-variance existed between the salivary 
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microbiota and the systemic inflammatory markers. 
IL-1β was positively correlated with Bacteroides and 
IL-6 was positively correlated with Acidovorax. The 
NLR, LMR, and AMC were strongly correlated with 
multiple genera (Figure 5, Table S2). 

Altered metabolic pathways and correlations 
among KEGG pathways and clinical indices 

The 16S rDNA sequencing data was further 
analyzed using the online tool PICRUSt. The genes in 
each sample of metagenomics data were first 
classified according to the KEGG gene class, 
classification level-2 and level-3. After classification, 
each class of genes with mean relative abundance 
values > 0.1% was selected for downstream analyses 
between the two groups, using Wilcoxon rank-sum 
test with FDR correction, p < 0.05. Overall, 146 level-3 
KEGG categories were selected and 92 pathways were 
significantly regulated (Table S3). Interestingly, 
pathways related to metabolism, especially xenobiotic 
biodegradation and metabolism, amino acid metabol-
ism were enriched in the NSCLC group compared 
with the healthy controls. Further, metabolites of 
cofactors and vitamins, such as folate biosynthesis 
and one carbon pool by folate were significantly 
decreased in the NSCLC group. Inferences of the 
KEGG pathways for each group were additionally 
compared using LEfSe with the significance threshold 
set at α of 0.05 and a LDA score of 3.0. Transporters, 
ABC transporters, bacterial motility proteins, two 
component system, and secretion system were 
significantly overrepresented in the NSCLC group, 
while pyrimidine metabolites and ribosome were 
significantly overrepresented in the healthy controls 
(Figure 6). 

Among these, correlations were performed to 
link the clinical indices and KEGG pathways in saliva. 
Strong correlations with p < 0.001 and r > 0.3 were 
detected. As Table 3 shows, transporters, the enriched 
biomarker in the NSCLC group, which participated in 
the environmental information processing, was 
negatively correlated with PLR. While, secretion 
system was positively correlated with AMC, and 
negatively correlated with LMR. Additionally, the 
ribosome and pyrimidine metabolism, which took 
part in the translation and nucleotide metabolism, 
were positively correlated with LMR, where they 
were negatively correlated with AMC. 

Discussion  
Altered salivary microbiota compositions have 

been identified in patients with oral cancer and 
non-oral disease [8, 11, 14, 34, 35]. To date, only one 
study conducted by Yan et al. has investigated the 
correlation between oral bacterial pathogens and 
NSCLC. The main finding in their work was that the 
significantly elevated levels of Capnocytophaga and 
Veillonella in the saliva samples from the NSCLC 
group, may serve as potential biomarkers for NSCLC 
detection and classification [19]. In this study, the 
simple comparison of NSCLC patients and matched 
healthy subjects revealed a significant difference in 
the microbial community. Additionally, the 
interactions among oral bacterial pathogens, clinical 
inflammatory markers, and the predicted 
metagenome suggested that the shift in the salivary 
microbiota plays a potential pathogenic role in the 
process of NSCLC. These results pointed to a potential 
target for further interventions to improve the 
prognosis of NSCLC. 

 

 
Figure 3. Different structures of salivary microbiota between non-small cell lung cancer and healthy control groups. (a) Cladograms of bacterial lineages with 
significantly different representation in non-small cell lung cancer and the healthy control groups. Taxonomic cladogram obtained from LEfSe analysis of 16S sequences 
(The diameter of each circle is proportional to taxon abundance). (b) Histogram of the linear discriminant analysis (LDA) scores for differentially abundant bacterial 
taxa between non-small cell lung cancer patients and healthy controls. Only taxa meeting an LDA significant threshold > 4.0 are shown. Red (HC) indicates the healthy 
controls, and green (NSCLC), non-small cell lung cancer group  
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Table 3. Summary of the significant correlations between systemic inflammatory markers and the predicted KEGG pathways. Spearman 
correlation coefficients (r) with p <0.05 

From To r p-value From To r p-value 
AMC Secretion system 0.33 0.011 LMR Chaperones and folding catalysts 0.389 0.002 
AMC DNA replication proteins -0.345 0.007 LMR DNA replication proteins 0.388 0.002 
AMC Homologous recombination -0.302 0.02 LMR Homologous recombination 0.362 0.005 
AMC Ribosome -0.304 0.019 LMR Transcription factors -0.306 0.018 
AMC Arginine and proline metabolism 0.336 0.009 LMR Ribosome 0.315 0.015 
AMC Peptidases -0.357 0.006 LMR Methane metabolism 0.314 0.016 
AMC Pyrimidine metabolism -0.341 0.008 LMR Peptidases 0.383 0.003 
IL-1β DNA replication proteins 0.317 0.014 LMR Pyrimidine metabolism 0.304 0.019 
IL-1β Homologous recombination 0.302 0.002 NLR Chaperones and folding catalysts -0.423 0.001 
IL-6 Chaperones and folding catalysts -0.319 0.014 PLR Transporters 0.317 0.015 
LMR Secretion system -0.342 0.008 PLR Oxidative phosphorylation -0.301 0.02 
LMR Two component system -0.328 0.011     

 
 

 
Figure 4. Canonical Correspondence Analysis (CCA) illustrating relations 
between bacteria taxa and systemic inflammatory markers in our study groups. 
Arrows indicate the direction and magnitude of the systemic inflammatory 
markers associated with bacterial community structures. The explained 
variance of the principal axes [Axis 1 (horizontally) and Axis 2 (vertically)] are 
30.79% and 23.99%, respectively. NSCLC represent non-small cell lung cancer 
group, and HC, healthy controls. 

 
This study also revealed no major shift in 

microbial richness, but it did show a significantly 
lower diversity in the NSCLC group, which is 
consistent with findings by Yu et al. comparing 
microbiota from malignant versus benign human 
lung tissues [36]. In contrast, another previous study 
revealed conflicting results when comparing the 
buccal samples from NSCLC patients versus healthy 
subjects [37]. Notably, systemic inflammation and the 
immune response might be major factors that 
influence salivary microbial alpha diversity [38]. Diet, 
lifestyle, and environmental factors also should not be 
excluded. Given the strict restriction on living area 
and race in the enrolment criteria of this study, our 
results merely represent the patients commonly seen 
in clinical practice in the Jinan district. Therefore, 
well-conducted large studies are needed for further 
investigation. 

Observation of the overall composition of 
salivary microbiota showed that the salivary micro-

biome from the cancer and non-cancer groups were 
significantly different, based on the measurement of 
UniFrac distance in the PCoA plots, while the samples 
from the cancer group did not cluster by patients’ 
clinical stage, T-stage, node positivity, or pathology. 
This indicates that the alterations seen on the beta 
diversity analysis are due to the cancer versus 
non-cancer groups, not to demographic differences. 
Additionally, several cases in the healthy group 
resembled the cancer samples more than the samples 
from healthy subjects, which may imply a 
predisposition to lung carcinogenesis. These data 
provided initial insight into the alterations in salivary 
microbiota associated with NSCLC. Due to the large 
variation in the salivary microbiota among the 
population, further longitudinal studies, particularly 
including the representative patients, are required to 
further investigate these issues. 

Previous studies in saliva microbiome using 
next-generation sequencing (NGS) have revealed the 
most abundant phyla were Bacteroidetes, Firmicutes, 
Proteobacteria, Fusobacteria, and Actinobacteria [19]. 
This is similar to our present findings at the phyla 
level. However, in our study, significant expansion of 
Firmicutes and Proteobacteria with decreased 
Bacteroidetes was found in the NSCLC cases. Note 
that in patients with oral squamous cell carcinoma, 
Firmicutes was upregulated compared to that in the 
matched non-malignant samples [34]. Genus 
Veillonella and Streptococcus, of the Veillonellaceae and 
Streptococcaceae families respectively, contributed 
most to the increase in Firmicutes. Elevated Veillonella 
in saliva samples was reported as a potential 
biomarker for disease detection in NSCLC and neck 
squamous cell carcinoma [19, 39]. Members of the 
significantly higher genus Streptococcus, act as 
opportunistic pathogens, and in the tumour samples 
this was also reported to discriminate tumour samples 
from the controls in oral cancer [39]. Not limited in 
habitat, Streptococci in the oral cavity have a close 
relationship with the entire body [40]. Additionally, as 
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Veillonella and Streptococcus can potentially interact 
metabolically and frequently co-occur in immuno-
modulation by pair-wise combinations of strains in 
the human intestine [41], the combinations of 
Veillonella and Streptococcus in the oral cavity might 
elicit an immune response profile that is relevant to 
the progression of NSCLC. Elevated prevalence of 
opportunistic pathogen was associated with 
underlying disease [42]. Decreased abundances of 
Lautropia and Rothia had been reported to be 
associated with an increased risk of esophageal 
squamous carcinoma and oral cancer, respectively 
[10, 35]. However, genus Lautropia and Rothia, which 
were contrary to our expectation, showed an 
increased prevalence in the NSCLC group in this 
study. Based on the above, our observation showed 
significance in guiding clinical treatment of NSCLC 
patients. Maladjusted oral microbiota in NSCLC 
indicated that opportunistic pathogens from saliva 
samples in NSCLC patients might be involved in 

cancer progression, which again requires subsequent 
in-depth studies.  

To further verify the potential role of salivary 
microbiota in the progression of NSCLC, we 
investigated the correlation between certain specific 
bacteria and prognostic factors of NSCLC. Poor 
prognosis of NSCLC is associated with biomarkers of 
inflammation, such as elevated NLR, PLR, IL-6, IL-1β 
concentrations and decreased levels of LMR [43-48]. 
In this study, we found that Fusobacterium, which was 
documented to be involved in the pathogenesis of 
colorectal adenoma [49], was strongly associated with 
NLR and LMR. Veillonella, a potential biomarker for 
NSCLC detection and classification [19], was also 
significantly associated with NLR. The role of salivary 
microbiota revealed in our network analysis may 
partially explain the correlation among salivary 
microbiota, systemic inflammation, and the prognosis 
of NSCLC patients.  

 

 
Figure 5. The co-occurrence network of the salivary microbiota and the systemic inflammatory markers. Each green round node represents an OTU, and each red 
triangle represents an inflammatory marker. The solid and dashed edge represents a positive and negative correlation, respectively. The whole network could be 
divided into two subnetworks, where the positive correlation exists within each subnetwork, and the trans-subnetwork correlation was negative.  

 

 
Figure 6. Different structures of predicted KEGG pathways between non-small cell lung cancer and healthy control groups. Histogram of the linear discriminant 
analysis (LDA) scores for differentially abundant bacterial taxa between non-small cell lung cancer patients and healthy controls. Only taxa meeting an LDA significant 
threshold >3.0 are shown. NSCLC represent non-small cell lung cancer group, and HC, healthy controls. 
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Additionally, most metabolites in the human 
body are believed not to be of human origin, and thus 
a change in microbial metabolic activity might 
directly affect human health [50]. It is not surprising 
to find an increased metabolic activity involved in 
xenobiotic biodegradation in the NSCLC group, 
which is usually caused by the release of industrial 
compounds, as several reports have revealed a direct 
association between exposure to poor air quality and 
increasing rates of morbidity of respiratory cancer 
[51]. Pathways involved in amino acid metabolism 
were also significantly overrepresented in the NSCLC 
group. Previous evidences have documented the 
important role of commensal microbiota in the 
extraction and synthesis of the available amino acids 
[52] and the association between intestinal dysbiosis 
and protein energy malnutrition [53]. The alterations 
in amino acid metabolism in our results might be, in 
part, affected by metabolic dysfunction of bacteria. 
Additionally, pathways related to folate metabolism 
were significantly underrepresented in the NSCLC 
group. It has been reported that increased risk of 
breast cancer was associated with lower folate levels 
among women [54]. In this study, the 
underrepresented folate might, in part, play a role in 
the occurrence and development of NSCLC. Despite 
our small sample size, LEfSe analysis did reveal 
differences between the two groups, as shown in 
Figure 6. In patients with NSCLC, the pathways 
involved in transporters and secretion system were 
overrepresented. This may reflect the activation of 
salivary microbiota homeostasis mechanisms 
responding to the effect of NSCLC, which may lead to 
salivary microbial dysbiosis. Pathways related to 
pyrimidine metabolism and ribosome were also 
reported to be correlated with the progression of 
colorectal cancer [55] and breast cancer [56], 
respectively. Our result provides a new avenue for 
potential dietary intervention in NSCLC.  

Not only that, correlations between systemic 
inflammatory biomarkers and the predicted metabolic 
pathways were also revealed. As the documented 
inflammatory factors are associated with the 
prognosis of NSCLC [43-48], these correlations might 
suggest specific and pronounced interactions between 
NSCLC and the accumulation of oral metabolites. 
Additional work identifying the specific mechanisms 
of the interaction between the progression of NSCLC 
and the salivary microbiome metabolites is required. 

However, it is worth noting that the study 
described above is a preliminary pilot project with a 
limited sample size, and more extensive studies are 
needed to confirm these observations. We also 
acknowledge that our investigation only detected the 
bacterial community structure at a single time-point 

as opposed to dynamic monitoring, which might 
contribute to a better understanding of the altered 
salivary microbiota associated with NSCLC. Despite 
the strict enrolment criteria, the overall oral health 
parameters of the participants were unidentified. 
Additionally, specific confounding factors, such as 
diet lifestyle, air pollution, and family history were 
not covered in this study. Nevertheless, further 
studies, preferably longitudinal, in cooperation with 
mechanistic analyses and animal model systems, are 
required to thoroughly investigate the causal relation-
ships between NSCLC and salivary microbiota.  

To our knowledge, this is the first study to assess 
the compositional changes and the predicted KEGG 
pathways in the salivary microbiota between NSCLC 
patients and healthy subjects, and for the first time, 
we revealed the cross-link among salivary microbiota 
dysbiosis, systemic inflammatory markers, and the 
predicted KEGG pathways that are reportedly 
associated with NSCLC. Taken together, our study 
identified distinct salivary microbiome composition 
in patients with NSCLC. Based on our preliminary 
findings, further investigation of the potential role of 
salivary microbiota in the progression of NSCLC is in 
demand. Our work not only extends this observation 
to patients with NSCLC, but also might facilitate 
clinical therapeutic strategies for monitoring and 
altering salivary dysbiosis in NSCLC patients. 
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