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Abstract: Background: Currently used synthetic bone graft substitutes (BGS) are either too weak
to bear the principal load or if metallic, they can support loading, but can lead to stress shielding
and are unable to integrate fully. In this study, we developed biocompatible, 3D printed scaffolds
derived from µCT images of the bone that can overcome these issues and support the growth of
osteoblasts. Methods: Cylindrical scaffolds were fabricated with acrylonitrile butadiene styrene
(ABS) and Stratasys® MED 610 (MED610) materials. The 3D-printed scaffolds were seeded with
Mus musculus calvaria cells (MC3T3). After the cells attained confluence, osteogenesis was induced
with and without the addition of calcitonin receptor fragment peptide (CRFP) and the bone matrix
production was analyzed. Mechanical compression testing was carried out to measure compressive
strength, stiffness, and elastic modulus. Results: For the ABS scaffolds, there was a 9.8% increase in
compressive strength (p < 0.05) in the scaffolds with no pre-coating and the treatment with CRFP,
compared to non-treated scaffolds. Similarly, MED610 scaffolds treated with CRFP showed an
11.9% (polylysine pre-coating) and a 20% (no pre-coating) increase (p < 0.01) in compressive strength
compared to non-treated scaffolds. Conclusions: MED610 scaffolds are excellent BGS as they support
osteoblast growth and show enhanced bone growth with enhanced compressive strength when
augmented with CRFP.
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1. Introduction

The development of bone graft substitutes (BGS) is an essential field of orthopedic
research [1]. BGS are usually used to fill the bone defects formed as a result of surgical
procedures, fractures, or oncology [2–4]. In the majority of cases, the BGS used are either
autografts or allografts. Historically, autografts have been considered the gold standard
in bone grafting, as they have a lower probability of disease transfer, are osteoconductive,
and allow for osteogenesis [5,6]. However, an autograft has many disadvantages, as the
graft is extracted from another site in the body, resulting in excess pain in the donor site,
surgical and wound complications, low graft availability, and increased hospital stay [7–10].
Allogenic bone grafts or allografts are the most commonly used BGS, as they are also
osteoconductive and avoid donor site complications. However, they have their range of
disadvantages, such as lack of uniformity, a higher chance of antigen response and disease
transfer, and limited supply [11,12]. Additionally, sterilized allografts are usually weaker
than healthy bone, increasing the graft site’s risk of failure and reinjury [7,13].

Synthetic BGS are being developed to deal with the complications of autografts
and allografts [14]. One example is demineralized bone matrix (DBM) which is derived
by removing the mineral components of the allogenous bone with acid, leaving behind
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collagen and endogenous bone growth factors [15–17]. This process makes DBM a good
osteoinductive material and also promotes osteoconductivity; however, it reduces the
strength of the original bone [18,19]. DBM also has a higher rate of disease transmission
from the host bone [6]. Ceramic grafts are another class of BGS that are derived based on
calcium salts and their variants [4,14]. Ceramic BGS do not have a limitation in quantity,
can be easily sterilizable, and do not risk morbidity or disease transmission. However, they
have disadvantages as they have a high resorption rate, which may not lead to complete
bone formation and may cause weakening of the bone [20,21]. It may also stimulate an
inflammatory response due to elevated levels of particulate disintegration products [22].
The applications of ceramic BGS are limited to non-load-bearing bone defects as they cannot
provide the structural support needed by the bone in the long term [23]. The other option
is using metallic implants, which are strong and can provide structural support in the bone.
However, they do not allow for osteoconductivity or osteointegration in the bone [24–26].
Metallic implants are extensively being used in long bone arthroplasty and limb salvage
applications. However, the higher strength of these implants than the surrounding bone
causes stress shielding, which weakens the surrounding bone [27,28]. These complications
may lead to major revision surgeries in the future and affect the quality of life by reducing
the ease of functionality of the patient.

Three-dimensional (3D) printing or additive manufacturing (AM) is an exciting new
advance that has helped in improving ease and accuracy in the fabrication of complex and
customized shapes. Owing to the ability to control the porosity and permeability in the
design of the BGS, many studies have used 3D printing in developing implants [29–31].
Selective laser sintering (SLS) is a 3D printing technique used to 3D print patient-specific
customized metallic implants that are widely being used in limb arthroplasty procedures.
SLS is also being used in fabricating ceramic BGS by fusing layer-on-layer of ceramic
material [32,33]. Konopnicki et al. seeded bone marrow progenitor cells (pBMP) on
the surface of 3D printed ceramic polycaprolactone (PCL) BGS and showed improved
biocompatibility and bone penetration into the implant [34,35]. Fused deposition modeling
(FDM) is a 3D printing technique to fabricate layered structures using thermoplastic
materials extruded through a heated nozzle [36]. Many studies have been carried out
using FDM-fabricated BGS which include polyglycolic acid (PGA), polylactic acid (PLA),
and their co-polymers polylactic co-glycolic acid (PLGA) and their combinations with
ceramic materials [37–39]. These polymers are biodegradable and form lactic acid which
dissolves in the body [40]. However, these scaffolds have not yet achieved the results
required for application in the current clinical practice [41]. The main reason for this is
high resorption rate which reduces the mechanical strength of the scaffold with time and
makes them unsuitable for load-bearing sites [22]. In spite of these advances, it has still
been a challenge to develop ideal BGS for load-bearing sites, which are osteoconductive,
osteoinductive, allow for osteointegration, and at the same time provide the surrounding
bone with strength comparable to that of the healthy bone.

Helguero et.al. developed 2D acrylonitrile butadiene styrene (ABS) scaffolds fabri-
cated using FDM printing, pre-treated with calcitonin receptor fragment peptide (CRFP)
and showed enhanced biomechanical characteristics and bone matrix proliferation [42]. The
ABS material is a non-biodegradable polymer which has shown to be biocompatible and
allows for osteoconduction on its surface [42,43]. This gives ABS the advantage of maintain-
ing its structural properties and also allows for the bone to integrate into the scaffold. CRFP,
an active peptide domain on the C-terminus of the calcitonin receptor [44,45], was found
to be bioactive and osteoinductive in its nature to enhance bone matrix production and
induce differentiation of stem cells into osteoblasts [35]. In vivo studies show that CRFP
increases bone matrix production when used along with other osteogenic reagents [44,45].

Stratasys®’s MED610 material is also a non-biodegradable material which has shown
biocompatibility compliance with ISO 10993 [46]. MED610 is fabricated using the polyjet
printing process which generates layers of the 3D model by solidifying a photosensitive
polymer resin [47,48]. The polyjet printing process results in high-resolution products
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(<20 µm) in comparison to conventional FDM printing (200 µm). This material has great
potential to enhance the flexibility and accuracy in developing a BGS with trabecular
structural patterns as well as improve precision in the scaffold production.

In this study, we developed and evaluated the biocompatibility, osteoconductivity,
and biomechanics of ABS and MED610 bone scaffolds inspired by natural bone’s structural
physiology, seeded with MC3T3 stem cells, and treated with CRFP.

2. Materials and Methods
2.1. Design and Fabrication of Cylindrical Scaffolds

A femur of a skeletally mature rat was computerized tomography (CT)-scanned
(µCT40, Scanco medical) at an isotropic voxel resolution of 10 µm. The resulting CT imag-
ing files (DICOM files) were converted into a 3D stereolithography model (STL file) by
thresholding and combining the DICOM files using InVesalium software (Renato Archer In-
formation Technology Center, Brazil). This 3D representation was processed in Geomagic®

DesignX software. Regions of interest were identified to extract the cortical bone structure
(R1) from the diaphysis and the trabecular structure (R2) at the metaphysis of the femur
assuming a segmental defect model, as illustrated in Figure 1b,d These structures (R1 and
R2) were converted into a computer-aided design model (CAD file) using a non-uniform
rational B-spline (NURBS)-based algorithm and uploaded into Solidworks® software. We
designed a cylindrical scaffold (5 mm height × 5 mm diameter) with internal structures
created from the trabecular patterns extracted from R2 and four pillar structures with equal
spacing on the outer rim of the cylinder, having dimensions (1 mm thickness × 1.5 mm
length × 5 mm height) derived from the cortical bone thickness in R1. We carried out many
reiterations by extracting different trabecular features and porosity and finalized our design
based on the structural consistency of the 3D-printed result. Our final design had a porosity
of 50% to facilitate penetration of the cells into the scaffold. Three-dimensional printing
gives us the flexibility to change the number of pillars or the density of the trabecular
structures based on the location and the strength requirements in the implantation site.
Using the finalized design, we 3D-printed ABS scaffolds using FDM fabrication (Cube Pro
Duo printer, 3D Systems-200 µm resolution, Rock Hill, SC, USA), and MED610 scaffolds
were fabricated using polyjet 3D printing (Objet 30 Prime-16 µm resolution, Stratasys®,
Eden Prairie, MN, USA) [46]. We also developed planar (2D) scaffolds (10 mm × 10 mm)
of MED610 material to test the osteoconductivity of the material surface.

2.2. Preparation of the Scaffolds

The ABS scaffolds were washed with deionized water for 24 h, followed by sterilization
in an increasing concentration of ethanol solution (50%, 70%, 80%, 90%, and 100%) for
15 min and air-drying in a cell culture hood. The MED610 scaffolds were also washed in
deionized water. However, sterilization was done by autoclaving at 132 ◦C for 4 min as per
the manufacturer’s recommendation.

We pre-coated the scaffolds by treating them with 0.01% polylysine solution for 2 h,
rinsing them with sterile Dulbecco’s phosphate buffer saline (DPBS), and air-drying for 1 h
in a sterile cell culture hood. Polylysine, a known contributor to osteoconduction, has been
shown to help the cells to attach to the scaffold surface [49,50].

2.3. Seeding MC3T3 Cells

After the sterilization and pre-coating (in some cases), the scaffolds were attached
to the bottom surface of the cell culture plate using sterilized vacuum grease to prevent
them from floating during the cell culture process. MC3T3 cells extracted from the C3
vertebra of a mouse with a density of 1 × 103 cells per chamber were seeded onto the
scaffolds and cultured in media (MEMα supplement with 5% fetal bovine serum and 1%
penicillin/streptomycin) [51]. The culture media was changed every three days.
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penny for scale. 
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2.4. Bone Matrix Deposition on the 3D-Printed Scaffold

After the cells reached 80% confluency, we added 4 mM β-glycerol phosphate (G6P)
and 0.05 µg/µL ascorbic acid (AA) to induce osteogenesis in the cells [52,53]. The cells on
the scaffolds were further cultured for 21 days for the bone matrix to proliferate on the
surface. The culture media, along with osteogenic agents, was changed every three days.
After 21 days, the hybrid scaffolds were incubated in 4% formaldehyde solution (Electron
Microscopy Sciences, Hatfield, PA, USA) for 30 min at room temperature to fix the bone
matrix on the scaffold. After that, the scaffolds were washed and stored in DPBS solution.

2.5. Osteoconductivity of MED610 Scaffolds

The MED610 material is a USP Class VI standard biocompatible material and is cer-
tified not to cause an inflammatory response with implantation [54]. To investigate its
feasibility as a suitable material for developing our BGS, we evaluated the osteoconduc-
tivity, i.e., cell growth and bone matrix deposition on the surface of MED610. We seeded
the planar scaffolds with MC3T3 stem cells and induced osteogenesis, as explained in
Sections 2.3 and 2.4. We evaluated the cell growth by carrying out scanning electronic
microscopy imaging (10.0 Kx magnification at electron high tension (EHT) voltage of
2.5 kV). The von Kossa staining method was applied to assess the bone matrix deposition
on the scaffold surface. Ten regions of interest (ROI) (1 mm × 1 mm) were identified on
the planar scaffolds. The images of these ROI for seeded and unseeded scaffolds were
taken after the von Kossa staining. These images were processed in Matlab® and the pixel
values were normalized with ‘0’ being the brightest measure (100% white) and ‘1’ being
the darkest measure (100% black). We calculated the average of these normalized pixel
intensities for each ROI as a measure to quantify dark spots on the scaffold (representing
calcium salts from the bone matrix deposition). A von Kossa image with bone matrix
deposition on the scaffold surface will have darker pixels in the ROI, and average dark
pixel intensities would be higher in comparison with the scaffold surface without bone
matrix deposition. Comparative t-tests at a significance level of 0.05, were carried out to
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determine the difference in average dark pixel intensity of ROIs of unseeded and seeded
scaffold surfaces.

2.6. Mechanical Properties of Scaffolds

As the cylindrical scaffolds we designed were inspired by the cortical bone and
trabecular bone (R1 and R2) in a segmental defect model (Figure 1), ideally, they should
follow similar mechanical properties as demonstrated by a healthy bone. Mechanical
compressive testing (MTEST Quattro, Admet, Norwood, MA, USA) was performed on ABS
and MED610 scaffolds to study the anisotropy of the scaffolds. Ten (n = 10) compressive
tests in each direction were carried out in the three orthogonal axes with the Z-axis as
the longitudinal axis, as illustrated in Figure 2. The scaffolds were placed in between
the two stainless steel plates, and unconstrained compression was carried out, as shown
in Figure 2b. The speed of measurement was maintained at 5 mm/min based on ISO
604 convention for measurement of plastics [55]. Mechanical characteristics including
stiffness (k), maximum compressive strength (σM), and compressive modulus (EC) were
calculated in each axis and compared to get a measure of anisotropy [56]. From previous
studies, the relationship between the maximum compressive stress about the three axes in
a femur bone is expressed as Equation (1) [57]. This relationship indicates that along the
Z-axis (longitudinal axis), the femur bone shows better strength in comparison to the other
orthogonal axes.

σLongitudinal axis > σSagittal axis ≥ σFrontal axis (1)
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2.7. In Vitro Study and Strength Analysis of Cylindrical Scaffolds Treated with CRFP

As explained earlier, ideal BGS need to have similar strength characteristics to that
of the natural bone, be osteoconductive (allow for bone growth), and be biocompatible
(accepted by the host). To achieve this, we seeded MC3TC cells onto the cylindrical scaffolds
and induced osteogenesis to generate bone matrix. This layer of bone matrix has been
shown to improve the osteoconductivity of the BGS after implantation and helps in bone
penetration into the implant [58]. It has also been shown that, in addition to helping the
scaffold better integrate with the host bone, the bone matrix also enhances the strength
of the scaffold [42]. We carried out studies with ABS and MED610 cylindrical scaffolds
(n = 10), with varying protocol combinations of scaffold preparation and osteoinduction
to generate more bone matrix deposition. Many studies suggested that pre-coating the
scaffolds with polylysine helps in promoting the growth of bone matrix as it helps the cells
to adhere to the surface [49].
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CRFP, which is known to enhance the bone matrix production and contribute to
osteoinduction, was actively used for inducing osteogenesis along with other osteogenic
agents (ascorbic acid and glycerol phosphate). For the ABS and MED610 scaffolds, the
different combinations for pre-coating and osteoinduction are listed in Tables 1 and 2,
respectively. After inducing osteogenesis for 21 days and fixing the scaffolds with 4%
formaldehyde, the scaffolds were evaluated for bone matrix deposition by compressive
testing to evaluate the maximum compression strength (σM), stiffness (K), and the com-
pressive modules (Ec). Thereafter, we carried out the Shapiro–Wilk test for the compressive
test results of each type of scaffold to assess the normality of the data before carrying out
the statistical analysis.

Table 1. Different combinations of osteogenic reagents used on ABS cylindrical scaffolds for bone
matrix deposition.

Type Coating Osteogenic Reagent

A1 Only scaffold No reagent

A2 Polylysine coating G6P + AA

A3 Polylysine coating G6P + AA + CRFP

A4 No coating G6P + AA + CRFP

Table 2. Different combinations of osteogenic reagents used on MED610 cylindrical scaffolds.

Type Coating Osteogenic Reagent

M1 Only scaffold No reagent

M2 Polylysine coating G6P + AA

M3 Polylysine coating G6P + AA + CRFP

M4 No coating G6P + AA

M5 No coating G6P + AA + CRFP

For the ABS material, we carried out a one-way analysis of variance (ANOVA) at
a significance level of 0.05 to compare the changes in mechanical properties of scaffolds
pre-treated with polylysine to the original scaffolds (Types A1, A2, and A3). In addition,
we carried out a Student’s t-test to compare the original scaffold to the scaffolds with no
pre-coating (Types A1 and A4).

For MED610 material, we carried out two one-way ANOVA tests at a significance level
of 0.05. The first one-way ANOVA test involved scaffolds pre-treated with polylysine being
compared to the original strength of the scaffold (Types M1, M2, and M3). In the second
test, we compared the scaffolds with no pre-coating (Types M1, M4, and M5). We followed
up the one-way ANOVA tests with a pairwise comparison of the groups by carrying out
Student’s t-tests at a significance level of 0.017 (Bonferroni correction).

Even though the 3D structure and porosity of the ABS and MED 610 scaffolds are
similar, the intrinsic mechanical properties of these materials differ, which leads to varying
results in compression testing of both materials. To compare the performance of ABS with
MED 610 scaffolds, we evaluated the structural contribution of bone matrix in enhancing
the strength of the scaffolds in both materials by subtracting the strength of seeded and dif-
ferentiated scaffolds with the mean strength of original unseeded scaffolds. We compared
similar types in ABS and MED 610 by carrying out a Student’s t-test.

Post-compression, ABS scaffolds were stained with 2% Alizarin red (Lifeline Cell
Technologies) for validating calcium deposits (a mark of bone deposition) and imaged
(Zeiss LSM-510). Imaging studies were carried out as explained in Section 2.5, and the
residual red spots formation (post-staining) representing calcium deposits were evaluated
by calculating the average red color intensity values. Student’s t-tests at significance level of
0.05 were carried out to compare the calcium deposition in different types of ABS scaffolds.



Bioengineering 2021, 8, 199 7 of 14

Similarly, in MED610 scaffolds, the von Kossa staining method was applied to validate
the bone matrix deposition on the scaffold surface and an imaging study was carried out
as explained in Section 2.5.

3. Results
3.1. Bone Matrix Deposition on MED610 Planar Scaffolds

From the scanning electron microscopy studies on planar scaffolds, we see that there
is indeed bone growth on the surface of MED610, as the cells attached to the surface are
shown in Figure 3a. The von Kossa staining study to evaluate the deposition of bone matrix
shows a significant increase in the average dark pixel intensity (p = 0.001), demonstrating
significant mineralization on the surface of MED610 scaffolds seeded with bone cells in
comparison to unseeded scaffolds, showing that it is an osteoconductive material and
allows for bone matrix deposition (Figure 3).
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3.2. Mechanical Properties of the Cylindrical Scaffolds

The compression studies of ABS and MED610 scaffolds are expressed in the stress
vs. strain plots in Figure 4a,b, respectively. These results follow a similar trend that we
observe in the literature for healthy bone, where the scaffolds exhibit higher strength in
the direction of the longitudinal axis, and the other two orthogonal axes performing at
considerably lower strength.

In the in vitro study of the ABS scaffolds, we find that the data collected on the
mechanical properties follows normal distribution after undergoing the Shapiro–Wilk
test. A one-way ANOVA test showed no significant difference in maximum compressive
strength (σM), stiffness, and elasticity modulus when the scaffold groups with polylysine
pre-coating were compared to the original scaffold (Types A1, A2, and A3). The Student’s
t-test (between A1 and A4) showed us that the σM significantly increases by 9.8% (p = 0.009)
when CRFP is used to induce osteogenesis (σA4 = 7.71 MPa) along with G6P and AA,
when compared to non-treated scaffolds (σA1 = 7.02 MPa) (Figure 5a). There was also no
significant difference in the stiffness and elasticity modulus of the A1 and A4 scaffolds.
Additionally, we were able to visualize and validate the calcium deposits on the surface
of the implant using Alizarin red staining. We found that there is a significant increase in
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the calcium deposits distributed on the surface of the cylindrical implant in the case where
CRFP was used with and without polylysine pre-coat (p = 0.012 and p = 0.004, respectively),
(illustrated in Figure 5b).
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In the case of MED 610 scaffolds, we found that the data collected on the compres-
sion testing follows normal distribution from the Shapiro–Wilk test. The first one-way
ANOVA study showed significant differences (p = 0.0015) in the σM for the three types of
scaffolds (M1, M2, and M3). In the pairwise comparison by the Student’s t-test, we found
that the strength increased significantly (p = 0.002) by 11.9% for scaffolds treated with
CRFP (σM3 = 6.85 MPa) and coated with polylysine when compared to the plain scaffold
(σM1 = 6.07 MPa). There was no significant improvement in the compressive strength when
CRFP was not used. The second ANOVA study also showed a significant difference in
σM for M1, M4 and M5 scaffolds. In the pairwise comparison, we found that there was a
significant 19.6% increase (p < 0.001) in scaffolds with CRFP treatment (σM5 = 7.26 MPa)
when compared to plain scaffolds (σM1). There was no significant improvement in the
compressive strength when CRFP was not used (p = 0.05). There was no significant increase
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in the stiffness and elasticity modulus even though increasing trends were observed. This
is illustrated in Figure 6a. Post-compression von Kossa staining on the cylindrical scaffolds
to detect calcium salts showed a significant increase in bone matrix deposition when CRFP
is used with and without polylysine, (p = 0.0011 and p < 0.001, respectively). The results of
microscopy are illustrated in Figure 6b. The results of stiffness and elasticity modulus for
both materials are plotted in Figure 7.
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On comparing the performance of ABS and MED 610 materials, we find that ABS scaf-
folds pre-coated with polylisine and not treated with CRFP show a significantly (p = 0.0085)
higher contribution of strength from the bone matrix deposition (σA2−A1 = 0.58 MPa) in
comparison to MED 610 scaffolds (σM2−M1 = 0.21 MPa). There is no significant change in
the strength contributed by the bone matrix when ABS and MED610 were compared for
the scaffolds treated with CRFP in both cases of polylysine pre-coat and no pre-coat. The
results are illustrated in Figure 8.
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4. Discussion

In this study, we worked on developing a synthetic BGS which is designed based
on the cortical structure and internal trabecular structure of the bone. We used two non-
biodegradable materials, vis. ABS and MED610 to fabricate 3D cylindrical implants to
study their biocompatibility and osteoconductivity. These materials are fabricated with
high resolution 3D printing processes to design complex structures to match the structure
and mechanical properties of the bone surrounding the implantation site [42,47]. This
reduces stress shielding in the implantation site [59]. Previous studies suggest that highly
porous structures (>90% porosity) with a large surface area are conductive to cell pro-
liferation on the scaffold surface [60]. However, higher porosity leads to reduction of
mechanical strength of the scaffold and reduces the accuracy of consistent structural fabri-
cation. Gregor et al. showed that similar results for cell proliferation can be obtained with
BGS of lower porosities (<50% porous) [41]. Our 3D-printed scaffolds have 50% porosity
to account for higher structural integrity. Moreover, the non-biodegradability of these
materials helps in resolving the problem of reduced mechanical strength experienced over
time by other synthetic (PLA/PCL) and ceramic materials such as tri-calcium phosphate
(TCP) due to resorption [22,36].

In our in vitro studies, we established that MED610 material is osteoconductive and
promotes mineralization through the evaluation of scanning electron microscopy imaging
and von Kossa staining imaging studies. Other groups have shown that ABS material is
biocompatible and allows for bone growth on the material surface [43]. Osteoconductivity
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of BGS is essential to facilitate complete integration with the surrounding bone. Moreover,
these synthetic BGS do not cause immunological reactions as compared to natural BGS
which are derived from other hosts [34,61]. Using MED610 will be essential in our future
studies owing to its high-resolution (<16 µm) fabrication process which grants flexibility in
designing more complex trabecular features, mimicking shapes of the healthy bone [62].
The compression tests show that our 3D cylindrical scaffolds developed using ABS and
MED610 materials exhibit similar trends of anisotropy as that of a femur. We found that
the scaffolds show the highest strength along the longitudinal axis of the cylinder (Z-axis)
which mimics the longitudinal axis of the bone; whereas, the strength in the sagittal and
frontal axes (X and Y directions) were considerably lower, as shown in Figure 4a,b. This
behavior is similar to that of anatomical stresses of a femur bone [56,57].

σLongitudinal axis > σSagittal axis ≥ σFrontal axis

In our initial studies on cylindrical ABS scaffolds, we observed bone growth, osteo-
genesis, and osteointegration by evaluating the effect of the increase in the bone matrix
on the mechanical strength of the implants. In some cases, we coated the scaffolds with
polylysine before cell seeding, as polylysine is known to promote cell adherence to plastic
surfaces [49]. In some cases, we added CRFP along with the osteogenic reagents as it is
known to contribute to bone formation [42,44]. The analysis showed that the CRFP-treated
scaffold with no pre-coating (Type A4) showed significant compressive strength increases
(p < 0.05). We attribute this increase in strength to the formation of bone matrix deposition
(shown using Alizarin red staining). The increases in the strength of other combinations of
ABS scaffolds (Type A2 and Type A3) was not found to be significant.

In the studies with MED 610, we observed that the scaffolds showed a significant
increase in compressive strength compared to the (Type M1) dry scaffolds (9.6% for Type
M3 and 19.8% for Type M5) when they were treated with CRFP along with the osteogenic
reagents. This shows that the treatment with CRFP itself plays a significant role in gen-
erating the bone matrix and improving the mineralization and biomechanical properties
of the scaffolds. The stiffness and elasticity modulus for both ABS and MED610 scaffolds
revealed that there was no significant increase in these properties in all of the scaffold
combinations. This shows that the scaffolds treated with CRFP, which are not pre-coated,
give quantitively better results.

When we compared the performance of ABS with MED610, we observed that in the
case where the scaffold was pre-coated with polylysine, contribution of strength from the
bone matrix decreased. However, we see that in the case where CRFP was used along with
the osteoinduction reagents (G6P and AA) in both pre-coated and non-coated scaffolds,
there was no significant difference between the performances of the two materials; This
shows us that the bone matrix deposition on both ABS and MED610 scaffolds is nearly
similar when CRFP is used during osteoinduction.

One of the limitations in the design of our scaffolds is that the cylindrical scaffold
was designed by mimicking the cross-section of a femur and a cylindrical design pattern
was selected for ease in our in vitro studies. Eventually, when biomimetic scaffolds are
to be used for in vivo studies to replace bone stock, the scaffolds will be designed using
the shape and contour of the bone surface. In this study, the pillars in the scaffolds were
designed to be as thin as possible to increase the porosity of the scaffold. This pattern was
selected to have a better field of view in the imaging studies and also to observe how far
cells can penetrate within the grooves of the scaffolds. In the future, the thickness of the
pillars can be changed to adjust for the axial stiffness of the scaffold so that it uniformly
distributes stress when integrated with the healthy bone.

5. Conclusions

We successfully demonstrated that artificial 3D-printed scaffolds developed by seeding
cells perform better biomechanically and produce more bone matrix when CRFP is used in
combination with osteogenic reagents. We also found that scaffolds without pre-coating
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perform better in comparison to the scaffolds coated with polylysine before cell seeding.
These results are essential for developing scaffolds for our future in vivo animal studies.
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