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Abstract: Cancer is a disease driven by both somatic mutations that increase survival and proliferation
of cell lineages and the evolution of genes associated with cancer risk in populations. Several
genes associated with cancer in humans, hereafter cancer genes, show evidence of germline
positive selection among species. Taking advantage of a large collection of mammalian genomes,
we systematically looked for signatures of germline positive selection in 430 cancer genes available
in COSMIC. We identified 40 cancer genes with a robust signal of positive selection in mammals.
We found evidence for fewer selective constraints—higher number of non-synonymous substitutions
per non-synonymous site to the number of synonymous substitutions per synonymous site
(dN/dS)—and higher incidence of positive selection—more positively selected sites—in cancer
genes bearing germline and recessive mutations that predispose to cancer. This finding suggests
a potential association between relaxed selection, positive selection, and risk of hereditary cancer.
On the other hand, we did not find significant differences in terms of tissue or gene type. Human
cancer genes under germline positive selection in mammals are significantly enriched in the processes
of DNA repair, with high presence of Fanconi anaemia/Breast Cancer A (FA/BRCA) pathway
components and T cell proliferation genes. We also show that the inferred positively selected sites in
the two genes with the strongest signal of positive selection, i.e., BRCA2 and PTPRC, are in regions of
functional relevance, which could be relevant to cancer susceptibility.
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1. Introduction

Cancer is a genomic disease caused by mutations in genes that control normal cell functions,
in particular growth and division. A fundamental goal of cancer genomics is identifying mutations
that confer a selective advantage to the cell and increase survival and proliferation, the so-called driver
mutations, as well as the genes carrying the driver mutations in each tumor, known as driver genes or
cancer genes. Although traditionally the focus has been put on somatic driver mutations, those that
appear during an individual lifetime as cells divide and grow, there are also germline mutations
in the human population that predispose to cancer [1]. Today, more than 500 human cancer genes
have been identified, of which approximately 90% contain somatic mutations and 20% bear germline
mutations [2–4]

Several studies have identified a number of human cancer genes undergoing germline positive
selection among species. Clark et al. revealed a strong evidence of positive selection on oncogenes
and tumor suppressor genes in the chimpanzee lineage [5]. Nielsen et al. identified an elevated
number of tumor suppressor and apoptosis genes under strong positive selection in humans and
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chimpanzees [6]. Subsequent genome-wide screenings in mammals unveiled positive selection in
genes with roles in immunity and reproduction, but also related with apoptosis and cancer [7,8].
Given the recurrent observation of positive selection acting on human cancer genes across species,
several authors have proposed that evolutionary pressures affecting organismal fitness, such as sexual
selection, pathogen–host interactions, parent–offspring conflict, or maternal–fetal conflict, could lead to
increased cancer risk in humans as a pleiotropic effect [6–10]. Another intriguing matter is whether the
germline evolution of human cancer genes is influenced by their different characteristics, like genetic
type, main tissue, or inheritance mode. For example, in hominoids it was observed that tumor
suppressor genes (TSGs) tend to accumulate more non-synonymous substitutions than oncogenes,
suggesting that the former are subjected to more relaxed purifying selection due to their recessive
effects [11].

To address these questions in more detail, we carried out a comprehensive analysis of the evolution
of 430 human cancer genes in mammals, after applying stringent criteria for evolutionary analysis.
Using the ratio of number of non-synonymous substitutions per non-synonymous site to the number
of synonymous substitutions per synonymous site (dN/dS), we identified 40 human cancer genes
under putative positive selection in mammals. These genes are functionally enriched in DNA repair
and immunity and are associated with hereditary cancer and recessive effects.

2. Materials and Methods

2.1. Cancer Genes

We retrieved 574 single-copy genes associated with human cancer from the Cancer Gene Census
(CGC) project [4] of the COSMIC repository (https://cancer.sanger.ac.uk/cosmic, accession date:
5 March 2018). We only collected genes classified into Tier 1, which refers to genes with a documented
activity relevant to cancer. The catalogue of the retrieved cancer genes, along with information about
their function and associated mutations, is shown in Table S1.

2.2. Sequence Data Collection

We downloaded a representative human DNA sequence for each cancer gene from the Ensembl
Genes database (Release 91, human genome version GRCh38.p12) using BioMart (accession date:
8 March 2018). For each human gene, we chose a single isoform on the basis of the following criteria,
in the indicated order: GENCODE validation, APRIS annotation as principal 1, best transcript support
level (TSL), and longer transcript. We discarded 22 genes whose best TSL was less than 1 (Table S2).
Using the selected human isoform as a reference, we downloaded the corresponding orthologues
from 32 mammalian genomes (Table S3, Figure S1) using the Bioconductor package BiomaRt [12].
When more than one ortholog was obtained for a given species, we chose the isoform with the best
orthology confidence score. We discarded 17 genes for which less than 15 mammal orthologues were
found (Table S2), so the final number of retrieved ortholog groups was 535 (Table S4).

2.3. Multiple Sequence Alignment

We aligned the coding sequences for each ortholog group using MACSE [13], a program that
accounts for frameshifts and stop codons. The resulting multiple sequence alignments were further
refined with TrimAl [14], removing taxa and sites with more than 60% gaps across rows and columns,
respectively. After trimming, we discarded 71 genes that contained less than 10 orthologues (Table S2),
in order to maximize the statistical power for the selection analyses, ending up with a list of 464 genes.

2.4. Estimation of Phylogenetic Trees

We inferred maximum likelihood (ML) gene trees for the 464 genes using Randomized Acelerated
Maximum Likelihood-Next generation (RAxML-NG). All reconstructions were performed using
the general time reversible substitution model [15] with gamma-distributed rate variation among
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sites [16]. For each gene, we obtained 10 starting trees using randomized stepwise addition parsimony.
We assessed nodal support using 100 bootstrap replicates [17]. To minimize the impact of estimation
errors and incomplete lineage sorting in subsequent analyses, we discarded 27 genes whose estimated
tree topologies were quite distinct (normalized Robinson–Foulds (RF) distance ≥ 0.6) from a species
tree assembled for 19 mammals with a well-known phylogenetic position (Figure S1). We calculated
the RF distances with ETE3-compare [18].

2.5. Codon-Based Selection Models

We estimated nonsynonymous (dN) and synonymous (dS) substitution rates using the program
codeml of the PAML package v4.9c [19] for 437 mammal gene trees. Because dS saturation decreases
the power of detecting positive selection in codon-based models [20], we further discarded seven genes
with an estimated dS > 15 (Table S2). To estimate the global dN/dS ratios for each of the remaining
430 genes, we used the one-ratio (M0) model, which assumes the same dN/dS for all branches
in the gene tree and across sites. To identify genes under putative positive selection, we carried
out three different tests. First, we compared different site-models using two likelihood ratio tests
(LRTs): M1a (neutral) versus M2a (selection), and M8 (beta selection) versus M8a (beta neutral) [21,22].
The resulting p-values were adjusted for multiple testing using the Benjamini–Hochberg procedure [23]
with a family-wise significance level of 0.05. In addition, we also tested for evidence of episodic positive
selection using BUSTED [24], as implemented in Hyphy [25]. In order to be very stringent, only genes
inferred to be under positive selection by the three tests were finally considered to be positively selected
genes (PSGs). For those genes in which the LRT was significant, we considered as positively selected
sites (PSS) those with a Bayes Empirical Bayes (BEB) posterior probability > 0.95 of having a dN/dS > 1
under both M2a and M8 [26].

2.6. Gene Ontology Enrichment Analysis

To identify enriched Gene Ontology (GO) terms in the PSGs, we used GOrilla [27]. We compared
the list of 40 PSGs with a background list of the 574 cancer genes from CGC. We searched for significant
GO terms (p-value < 0.01) in the three available ontologies: biological process, cellular component,
and molecular function.

2.7. Pathogenic Germline Mutations

We retrieved the list of pathogenic germline variants for Breast cancer type 2 susceptibility
(BRCA2) protein from the study published by the TCGA PanCanAtlas Germline Working Group [28].

2.8. Comparison of dN/dS Ratios across COSMIC Categories

We compared the M0 dN/dS ratios obtained across four different CGC–COSMIC classifications:
mutation type, inheritance, tissue type, and cancer role. To test for significant dN/dS and proportion of
PSGs differences between and among categories, we performed ANOVAs (for multiple comparisons)
and t-tests (for pairwise comparisons) using the ggpubr package for R [29]. We adjusted the p-value for
multiple pairwise comparisons using the Benjamin–Hochberg procedure. To compare the proportion
of genes under putative positive selection across groups, we applied the chi-squared test (p < 0.05)
function (chisq.test) implemented in R.

3. Results

After multiple processing steps and stringent criteria (see Materials and Methods), we finally
assessed the selective pressures along the mammal phylogeny on 430 human cancer genes. Multiple
sequence alignments included 11–32 taxa and were 108–4984 nt long (Table S5).
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3.1. Long-Term Selective Pressures on Human Cancer Genes

The mean dN/dS for the 430 cancer genes examined was 0.122. The LRTs among site-specific
dN/dS models were significant for 56 (M2a) and 61 (M8) genes, while BUSTED was significant for
357 genes, in all three tests after correcting for multiple testing (p-adj < 0.05) (Table S5). Within these,
40 genes were identified with M2, M8, and BUSTED, and therefore considered to be PSGs (Table 1;
Figure 1). All these genes showed at least one PSS under M2a or M8 (BEB > 0.95) (Table S5).

Table 1. List of cancer genes showing evidence of positive selection.

Gene Function dN/dS

IL2 T cell proliferation and regulation of the immune response. 0.748
FAS Apoptosis 0.601

FCRL4 B cell receptor signaling 0.601
NUTM2A Unknown 0.574

PALB2 Tumor necrosis factor, apoptosis 0.507
PDCD1LG2 T cell proliferation; immune response 0.506

FANCG Fanconi Anemia (FA) group; DNA repair 0.500
BRCA2 Double-strand break repair and/or homologous recombination 0.468
CD274 T cell effector regulation; attenuation of anti-tumor immunity 0.465
FANCC F.A. group; DNA repair 0.445
CASP8 Protease inhibitor; apoptosis 0.363
PTPRC Protein phosphatase; receptor; immune response 0.361

FANCD2 F.A. group; DNA repair 0.348
BARD1 Control of the cell cycle in response to DNA damage 0.333
ERCC5 DNA repair 0.321
NCOA4 Androgen receptor signaling 0.312

NIN Centrosome localization 0.307
BRIP1 Double-strand break repair and/or homologous recombination 0.286

COL1A1 Collagen component 0.276
CD79B B cell differentiation and activation 0.275
BLM Basic helix-loop transcription factor 0.264

CD79A B cell differentiation and activation 0.253
PMS2 DNA binding protein 0.225
KTN1 Kinesin-driven vesicle motility; cadherin binding 0.211
PRF1 Apoptosis; immune response 0.197
SET Chaperone; phosphatase inhibitor 0.180

ARHGEF12 Regulation of RhoA GTPase 0.178
CHEK2 Checkpoint-mediated cell cycle arrest, activation of DNA repair and apoptosis 0.175
PTPRB Protein phosphatase; receptor; angiogenesis 0.156
SS18 Chromatin-binding protein; transcription regulation 0.153
FLT3 Regulation of apoptotic process 0.144

COL2A1 Collagen component 0.132
MLLT6 Nucleic acid binding; zinc finger transcription factor 0.130

KDM6A Transcription factor; chromatin remodeling 0.120
POU2AF1 Transcriptional coactivator; immune response 0.106

MED12 Nucleic acid binding; transcription cofactor 0.097
RBM15 RNA binding protein 0.088
RABEP1 Membrane fusion; apoptosis 0.086

BRAF Transduction of mitogenic signals; apoptosis 0.079
PICALM Vesicle coat protein 0.068

3.2. Comparison of Selection Estimates across Functional Categories

We compared global dN/dS values across COSMIC categories. Genes bearing only germline
mutations (i.e., associated with hereditary cancer) showed significantly higher dN/dS estimates than
genes with only somatic mutations (i.e., associated with sporadic cancer) or with both somatic and
germline mutations (Figure 2A), mainly due to a significantly increase in dN (Figure S2). We also
observed higher dN/dS values for cancer genes associated with recessive mutations than for cancer
genes with dominant mutations (Figure 2B), again due to a significantly increase in dN (Figure S2).
We noticed that these two mutational categories are not independent, as 33 out of 34 (97%) genes with
germline mutations are associated with recessive inheritance. On the other hand, the global dN/dS
estimates were not significantly different among tissue types (epithelial, lymphoid, mesenchymal,
and others) (Figure 2C) or cancer role (fusion genes, oncogenes, and TSGs) (Figure 2D).
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We also compared the proportion of PSGs across COSMIC categories, observing a significant
increase in the germline (Figure 3A) and recessive categories (Figure 3B). We did not detect significant
differences in the proportion of PSGs among tissue types (Figure 3C) or cancer role (Figure 3D).Genes 2018, 9, x FOR PEER REVIEW  7 of 14 
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Because a longer gene is more likely to have more spurious PSS than a shorter gene, we assessed
whether the significant patterns just described were influenced by differences in protein length among
categories. For this, we performed three statistical analyses. First, we compared protein length with
global dN/dS, without detecting a significant correlation (Figure S3A). Second, we compared the
protein length of PSGs and non-PSGs, again without observing significant differences (Figure S3B).
Third, we compared the protein length among mutational categories (Figure S3C). Here, genes carrying
germline mutations were not different from genes carrying only somatic mutations, but genes bearing
both mutations were significantly larger; anyway, this did not interfere with our selection analyses.
In addition, we contrasted the number of PSSs, normalized by sequence length, across COSMIC
categories for both M2a and M8 models. We did not find significant differences in the proportion of
PSSs for any functional category, regardless of the model (Figure S4).
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3.3. Functional Enrichment of Positively Selected Cancer Genes

The 40 PSGs were enriched in biological processes associated with DNA repair (p-value = 2.63 × 10−4)
and the regulation of T cell proliferation (p-value = 4.1 × 10−4). We did not identify significant
enrichment of GO terms for molecular function or cellular component. Among DNA repair genes,
we detected a high presence of members of the Fanconi Anemia Complementation Group (FANCC,
FANCD2, FANCG, FANCA, and FANCE), which participate in homologous recombination DNA
repair [30], and genes involved in double-strand break repair (BRCA2, BRIP1, BARD, BLM, CHEK2,
and PALB2). In addition to the enrichment of genes involved in regulation of T cell proliferation,
we observed a high proportion of PSGs related to immunity (Table 1).

3.4. Functional Relevance of Positively Selected Sites in Cancer Genes

To understand the functional relevance of PSSs, we mapped their location in the two genes with
the highest number of PSS, namely, BRCA2 and PTPRC. BRCA2 is a gene involved in double-strand
break repair whose deficiency leads to hereditary breast and ovarian cancer [30]. We identified 16
and 25 PSSs under M2a and M8, respectively (Table S5). These two sets were nested, so we mapped
the 25 M8 residues on human BRCA2 protein scheme (Figure 4A). We found that three selected
residues (positions 711, 748, and 800) are located in the binding region of nucleophosmin (NPM) [31].
Six PSSs (1158, 1646, 1708, 1913, 2035, and 2037) are distributed along the BRC repeats that bind to
RAD51 [32]. Among these, residues 1646 and 1708 sit in the interaction region with the polymerase
Eta (POLH) [33]. We noticed that, in position 1913, 11 out of 27 species, including humans, have a Cys
residue, whereas eight species have a His. Because Cys and His residues are often involved in specific
functions within protein structures [34], replacements in this position could be functionally relevant.
Four PSSs (2530, 2572, 2574, and 2884) locate within the interaction region with SEM1, a gene involved
in DNA damage repair and cell cycle progression [35]. Among these, residues 2530, 2572, and 2574
cluster in the helical subdomain that interacts with FANCD2 [36], a partner of the FA/BRCA complex
(also a PSG). Residue 2884 sits in the first Oligosaccharide binding (OB domain. Several PSSs were
found accumulated in a disordered segment of the C-terminal region (3363–408) with no documented
activity. We observed some PSSs mapped in close proximity to natural variants predisposing to human
cancer [28] (Figure 4A). The stop-gained variant Y792*, associated with pancreatic adenocarcinoma
(PAAD), is close to three PSSs. The PSS 1158 is in close proximity to the stop-gained variant Q1037*,
also associated with PAAD. The selected residue 1646 is flanked by the stop-gained variants S1630* and
Y1655*, associated with ovarian cancer and head-neck squamous carcinoma, respectively. The PSS in
1708 maps close to the pathogenic mutation Y1762* associated with ovarian cancer. In the intervening
regions between the BRC6-BRC7-BRC8 repeats, we detected a clustering of three PSSs (1913, 2035,
and 2037) with two pathogenic variants predisposing to breast cancer (E1953* and S1955*) and the
mutation K2013* related to ovarian cancer. Three PSSs (2530, 2572 and 2574) and three pathogenic
variants (R2494* associated with bladder urothelial carcinoma, R2520* with ovarian cancer, and W2626
with rectum adenocarcinoma) were found co-localized in the helical domain.

PTPRC encodes a tyrosine phosphatase also known as CD45 that regulates T- and B-cell antigen
receptor signaling and is associated with oncogenic transformation through changes in expression [37].
We detected 36 and 52 PSSs under M2a and M8, respectively (Table 1). Remarkably, the 52 M8
PSSs concentrate on the extracellular region involved in T cell receptor activation [38], whereas the
cytoplasmic segment, which contains the phosphatase domains, seems to be under strong purifying
selection (no PSSs; Figure 4B). Within the extracellular region (positions 26–577 of human PTPRC),
the PSSs cluster in the cysteine-rich (CR) domain and across the three Fibronectin type 3 (FN3) domains
(Figure 4C). We did not find information about germline variants in PTPRC associated with cancer.
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4. Discussion

4.1. Cancer Genes Show Relatively Low dN/dS Values

Because human cancer genes are generally involved in essential cellular functions such as
DNA repair, regulation of cell cycle, and apoptosis, strong purifying selection removing deleterious
germline mutations is expected, resulting in a dN/dS << 1. On average, the estimated dN/dS ratio
across cancer genes (0.12) was somehow lower than previous estimates obtained from mammalian
genomes, which yielded values between 0.15 and 0.22 [6,39–41]. On the other hand, Thomas et al.
obtained a lower dN/dS for cancer-related genes (dN/dS = 0.079) than for other disease-related
genes (dN/dS = 0.101) or for non-disease-related genes (dN/dS = 0.100), when comparing humans
and rodents [42]. Our results also concord with Blekhman et al., who found significantly lower
dN/dS values (dN/dS = 0.061) in human genes associated with cancer compared to genes involved in
Mendelian (dN/dS = 0.133) and complex diseases (dN/dS = 0.203) [43].

4.2. Positive Selection on Human Cancer Genes is Associated with Hereditary Cancer and Recessive Mutations

Human cancer genes bearing only germline mutations in COSMIC yielded higher dN/dS ratios
and higher proportion of PSGs than human cancer genes with only somatic mutations. This result
suggests that genes associated with hereditary cancer have less selective constraints than those genes
related to sporadic cancer. Indeed, it is expected that slightly deleterious (and advantageous) mutations
under weak purifying selection reach higher frequencies in the populations than under strong purifying
selection [44]. Therefore, it is expected that variants under relaxed purifying selection are more likely
associated with hereditary cancer than with sporadic cancer, as mutations in the latter are expected to
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be highly deleterious and are therefore removed by purifying selection. In addition, since cancer is a
complex and often a late-onset disease, where each allele contributes to a small fraction of cancer risk,
it is plausible that variants directly associated with cancer susceptibility are under relaxed selective
constraints [43,45,46]. COSMIC does not provide information about the exact number of germline and
somatic mutations in each gene category, so we could not evaluate the impact of mutation burden on
selective constraints.

We detected that genes associated with recessive mutations show significantly higher dN/dS
values and were more often positively selected than genes associated with dominant mutations. It is
expected that genes with dominant effects are subjected to stronger purifying selection than those
with recessive effects, as deleterious mutations in the former will have immediate disadvantages in
heterozygosity. It has been reported that genes with recessive disease mutations have higher dN/dS
than genes with dominant disease mutations [43,47]. This result is not independent from the one just
discussed, as almost all cancer genes with germline mutations in our dataset were associated with
recessive inheritance. Because genes associated with germline mutations and dominant inheritance
are unrepresented in our dataset, we were unable to test the potential interaction between mutation
type and inheritance mode.

4.3. Lack of Variation in Selection across Tissues or Cancer Gene Role

Our analysis did not reveal significant differences in the dN/dS ratios or the proportion of PSGs
among tissue types (epithelial, lymphoid, mesenchymal, and others) or cancer role (fusion genes,
oncogenes, and TSGs). This might suggest that selective pressures on human cancer genes along
the mammal lineage are not directly related to cancer. Since blood and bone marrow cancers are
promoted by alterations in the immune system, and genes involved in immunity often undergo fast
adaptation [6–8], we would have expected a stronger signal of positive selection on genes associated
with lymphoid cancers. A previous study on the evolution of cancer genes in hominoids identified a
higher dN/dS in TSGs with respect to oncogenes [11]. Although the difference was not statistically
significant, we observed a higher average dN/dS for TSGs than for oncogenes. These patterns might
be attributed to TSGs being more enriched in genes with recessive mutations (109 out of 206, 52.9%,
TSGs carry recessive mutations) than oncogenes (15 out of 208, 7.2%). Nonetheless, the proportion of
PSGs was very similar between fusion genes and TSGs (Figure 3C), while the former included very few
genes with recessive mutations (8 out of 225, 3.5%). Therefore, although the inheritance factor might
influence the strength of purifying selection, positive selection is likely driven by other properties.

4.4. Signalling Pathways and Biological Functions of Cancer Genes under Positive Selection

Within the putative list of PSGs, we found an enrichment of genes involved in DNA repair,
with a high presence of genes involved in the Fanconi Anemia (FA)/BRCA pathway. Evidence
of adaptive evolution in some components of the FA/BRCA pathway (BRCA2, CHEK2, FANCC,
FANCB, FANCD2, and FANCE) has been previously identified in mammals [48]. In addition to these
genes, we also identified signatures of positive selection in FANCA and FANCG. The systematic
positive selection observed on the FA/BRCA complex might suggest a mechanism of coevolution to
maintain the interactions among partners of this network [48,49]. Positive selection on the FA/BRCA
complex could be driven by different selective pressures. On one hand, positive selection on this
DNA repair pathway could favor a molecular mechanism of tumor resistance to counteract the
increased cancer risk associated with longevity [50]. This hypothesis is supported by the signature of
positive selection of some FA/BRCA components (BRCA2, FANCA, FANCE, and FANCL) identified in
long-lived and cancer-resistant species [51,52]. On the other hand, germline variants in the FA/BRCA
repair pathway have been associated with hereditary breast–ovarian cancer and Fanconi Anemia in
humans [30,32]. Therefore, it is possible that, at least a portion of selected alleles in the FA/BRCA
pathway could be pleiotropic and have deleterious late-onset effects like higher cancer risk. Future
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biochemical characterization of mutants and genetic association studies will help to better understand
the consequences of positive selection on the components of the FA/BRCA pathway.

As mentioned in the introduction, antagonistic pleiotropy between positive selection associated
with organismal fitness and increased cancer risk could be a general mechanism behind the
long-term molecular adaptation of human cancer genes [6–8,10]. Immune response, placentation,
and spermatogenesis, expected to be shaped by pathogen–host coevolution, maternal–fetal interactions,
and sexual selection, respectively, are biological processes also often associated with positive selection
on cancer genes [9,10]. Interestingly, we observed a high proportion of immunity-related genes under
positive selection, with enrichment in the process of T cell proliferation, which would support the
hypothesis of pathogen–host interactions driving adaptive changes of cancer-related genes. At the
same time, the identification of several positively selected genes expressed in testis (such as BRIP1,
BUB1B, KTN1, and RANBP2) is also concordant with the hypothesis that the genetic pathways of
spermatogenesis, which evolve in response to sexual selection and intrasexual conflict, often coincide
with those used by cancer cells to increase their survival and replication [6,9,10].

4.5. Functional Relevance of Residues under Positive Selection in Cancer Genes

We identified 25 PSSs in BRCA2, where some positions mapped close to natural variants
associated with cancer. A similar signature of positive selection in BRCA2 was previously identified
by O’Connell [48]. Although no PSS matched with pathogenic variants, which is not surprising since
cancer is not a driver of species adaptation, they might be involved in cancer susceptibility or tumor
resistance, especially when located in regions of functional importance. Future biochemical studies will
help to assess the evolutionary significance of variants in PSSs. It is worth to mention that, although we
focused on the potential effect of mutations in PSSs, it is expected that most of the mutations associated
with cancer risk fall on sites under strong purifying selection during species evolution. Therefore,
in the future, it would be interesting to consider the most conserved domains of human cancer genes
as potential candidate disease regions.
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