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Abstract: In aging cells, genomic instability is now recognized as a hallmark event. Throughout
life, cells encounter multiple endogenous and exogenous DNA damaging events that are mostly
repaired, but inevitably DNA mutations, chromosome rearrangements, and epigenetic deregulation
begins to mount. Now that people are living longer, more and more late life time is spent suffering
from age-related disease, in which genomic instability plays a critical role. However, several major
questions remain heavily debated, such as the following: When does aging start? How long can
we live? In order to minimize the impact of genomic instability on longevity, it is important to
understand when aging starts, and to ensure repair mechanisms remain optimal from the very start
to the very end. In this review, the interplay between the stress and nutrient response networks,
and the regulation of homeostasis and genomic stability, is discussed. Mechanisms that link these
two networks are predicted to be key lifespan determinants. The Anaphase Promoting Complex
(APC), a large evolutionarily conserved ubiquitin ligase, can potentially serve this need. Recent work
demonstrates that the APC maintains genomic stability, mounts a stress response, and increases
longevity in yeast. Furthermore, inhibition of APC activity by glucose and nutrient response factors
indicates a tight link between the APC and the stress/nutrient response networks.
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1. Introduction

When does the aging process begin? How long can we live? Why do we age? These questions
are highly debated with no distinct, definitive answers. Does aging begin when our skin starts to
wrinkle, or when our hair commences to turn grey? Or perhaps aging begins after the completion of
growth [1]. Aging has also been defined as a shift in an organism’s aging reality. The aging reality
has been described as a mutually enslaved system of DNA and its environment in which signaling
failures within this DNA environment occur over time [2]. Much of the debate reflects the fact that we
have not perceived children as aging; however, acquired somatic mutations are recognized in infants
and children, leading to the development of childhood cancers [3–5]. More compelling support for
childhood aging comes from premature aging syndromes, such as progeria, in which children age in a
very similar manner to normal aging individuals but at an 8-fold accelerated rate [6]. Even Hayflick
considered when aging begins, weighing the possibilities that aging starts before or at conception or,
alternatively, when maximum strength and stamina is achieved [7]. Hayflick eventually concluded
that aging is a stochastic program that begins after reproductive maturity in animals, resulting in the
loss of molecular fidelity. This loss of fidelity ultimately surpasses repair capacity, leaving individuals
prone to age-related diseases [8,9]. The idea that aging is a random stochastic program is supported by
many researchers in the field [10,11]. The stochastic idea of aging gained traction when the free radical
theory of aging was proposed. This theory states that aging occurs due to the natural wear and tear of
cellular machinery and biological substances due to exposure to free radicals generated within the
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cell [12]. Biological systems are constantly fighting a battle with its environment, both internally and
externally, to ward off damage. The simple generation of mitochondrial-dependent energy and DNA
replication expose cells to damage that must be repaired. Evidence for a stochastic program of aging
also comes from inorganic compounds that age over time; for example, rusting of metal and peeling of
paint (discussed in [13]), implying that something beyond genetics controls aging. From this work
comes the idea that entropy drives aging, while genes drive longevity.

This review will summarize the current ideas describing our thoughts on the aging process.
Molecular mechanisms will then be described that facilitate cellular aging. The notion that genomic
instability is the driving force leading to aging and age-related disease will be discussed. Finally, the
novel concept that activation of a cell cycle regulator, the Anaphase Promoting Complex, which is
required for maintenance of cell health, inhibition of cancer progression, and enhanced longevity, will
be explored.

2. Genetic Control of Longevity

Longevity depends on how long our cells remain functional, which is countered by the many
insults faced by cells. Pathways that maintain cellular homeostasis are genetically controlled; thus, it
clearly follows that a genetic program would be in place to control longevity. A recent review links
proteostasis (a housekeeping phenomenon that controls the integrity of protein structure and function)
with lifespan determination, and suggests the failure of the proteostatic network occurs early in life and
marks the beginning of aging [14]. A global network encompassing maintenance of genomic stability,
as well as enhancing proteostasis, would involve, for example, genes and proteins that repair DNA,
scavenge free radicals, and the proteins that run these programs. Thus, the genetic and stochastic
models appear to oppose one another. On the one hand, the stochastic model dictates that over time,
our cells randomly accumulate damage, such as the accumulation of DNA mutations and genomic
instability, and eventually succumb to the damage. On the other hand, the genetic program is in
place to provide cells with options to survive the intrinsic and extrinsic environmental assaults that
chronically bombard the cell and the biological system as a whole. Evolutionary biologists have argued
that selection of lifespan-extending genes is unlikely, since the effects of these genes would only be seen
long after reproduction has ceased, with the force of natural selection that declines with age leaving
no valid reason to remain alive [2,15]. However, when these genes are viewed as controlling cell
repair in the face of a damaging environment in order to survive, then it becomes clear that enhanced
longevity may only be an indirect benefit accompanying the ability to survive unfavorable life events.
Thus, evolution may not be selecting for longevity genes at all, but simply looking for genes that
increase survival under trying times, with increased longevity simply a lucky side effect. This idea
forms the foundation of the theory describing the response to nutrients versus stress as a driving force
defining one’s lifespan, as suggested earlier [16]. The concept of Hormesis, in which a potentially
life-threatening stress, when given in a low dose, increases health or extends lifespan, is an example of
a stress response providing a favorable and beneficial reaction [17,18].

One genetic theory of aging that is appealing to evolutionary biologists is the idea of pleiotropic
antagonism. Antagonistic pleiotropy suggests that genes that are beneficial in the early years become
harmful in later life [19–21]. A similar idea is described in the Disposable Soma theory [15]. It was
proposed that because of high environmental mortality, resources are primarily spent on growth
and reproduction, rather than on the soma, which would leave the soma exposed to environmental
and intrinsic stresses. Nonetheless, the idea has been used to describe a Darwinian-evolutionary
concept of aging in which the deleterious effects of previously beneficial genes in later life leads to
the development of age-related disease [22]. Examples of antagonistic pleiotropy and how it could
contribute to a Darwinian-evolutionary concept include the calcification of bones, which enables
strength in early life, but eventually leads to deleterious calcification of arteries in late life. The
erosion of telomeres, often considered a clear mechanism of aging, is also considered as support of a
Darwinian-evolutionary model. While expression of telomerase extends telomere length in stem cell
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populations, it also contributes to tumor formation [23]. Thus, in early life, longer telomeres maintain
the health and vitality of the cell. However, in later life, the inactivation of telomerase is proposed
to ward off cancer, but at the cost of continued telomere erosion, and likely cellular senescence [24].
Darwinian selection of stress sensing and Darwinian selection of antagonistic pleiotropy genes are
both used as examples of alternative mechanisms of lifespan determination, as both provide benefits
in early life. However, the selection of stress sensing genes, but not antagonistic pleiotropy genes,
provides an indirect longevity benefit in later life.

3. Genetic Control of Aging

The genetic model of lifespan determination is not at odds with the stochastic model, and involves
a genetic program that determines the length of time that our cells and bodies can function. In the
end, the more capable the cell is at damage repair, occurring through stochastic intrinsic and extrinsic
events, the better the odds of surviving harsh environments and living to pass on genes to descendants.
Longevity of the organism starts with the health of the cells. If cell health cannot be maintained,
then health of the tissues and the animal itself will suffer. Cell type, in particular, is determined by
programmed genetic and epigenetic networks. In the human body, for example, each cell harbors the
same sequence of DNA, yet different cells carry out very different functions. Alterations to any of these
networks can signal the end to that cell. Maintenance of the cellular equilibrium supporting tissue
renewal is critical to the longevity of the organism. Over time, equilibrium and cell renewal begins
to fail, leading to reduced replacement of cells lost due to attrition or senescence. Thus, the failing
of the genetic system, contributing to the loss of cell equilibrium and renewal through accumulating
mutations, is considered a hallmark of aging. Hallmarks of aging consist of the following attributes:
genomic instability, telomere attrition, epigenetic alterations, and loss of proteostasis, leading to
deregulated nutrient sensing, altered mitochondrial function, and cellular senescence [25,26].

Specific genes, many of which were first described and characterized in the simple lower
eukaryotic yeast system (i.e., SIR2 (yeast SIRT gene), SNF1 (yeast AMPK), FKH1/2 (yeast FOXO),
SCH9 (yeast AKT/S6K), TOR1, and RAS2, have been shown to be evolutionarily conserved genes that
respond to stress or nutrients, influencing longevity [27–32]. Thus, genes (such as SIR2) clearly play a
significant role in promoting lifespan from single cells to humans, but do genes also drive the loss of
homeostasis and the aging process? While the stress response genes drive cell health and longevity in
the presence of low-level stress, an example of Hormesis [17,18], the nutrient response genes do the
opposite, and act as pro-aging genes. Thus, genes provide the impetus for both longevity and aging.
Unlike the stochastic model, which relies on random factors to drive the aging process, the genetic
program promoting aging relies on the activation of a web of nutrient response genes that inhibit the
stress response network in the presence of usable resources [33]. Lifespan extension through caloric
restriction is a classic example of Hormesis, and can be mimicked in yeast by mutating genes, such as
SCH9, TOR1, or RAS2, which encode nutrient response proteins [29]. Ultimately, the longevity of an
organism depends on the effectiveness of the counterbalanced stress and nutrient sensing pathways.

4. A Ceiling on a Maximum Lifespan?

Support for a predetermined program delineating our lifespan has been around for decades and
is derived from the knowledge that human mean lifespan has increased dramatically over the past
century, but the maximum lifespan has not [34]. The longest verified living human, Jeanne Calment,
died at age 122 in 1997 [35], which is consistent with the idea that the maximum attainable human
lifespan is not increasing and is likely capped at 125 years [36,37]. Indeed, few humans have ever lived
past 115 years [38]. A maximum of 125 years is nonetheless controversial, as some feel there is no limit
to our lifespan [8,39–43]. Further evidence supporting the idea that a predetermined genetic program
dictates our maximum lifespan is provided by observations that maximum achievable lifespans are
observed across evolutionary boundaries, as each specific organism seems to have a built in maximum
possible lifespan [44]. The ever-increasing mean lifespan observed over the past century has also
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been used as evidence that human maximum lifespan will also continue unimpeded. Of course, this
rise in expected lifespan is largely attributable to new developments in medical care, improved diet,
less exposure to toxins, and regular exercise, which may only increase healthspan, and not lifespan.
Regardless of how people feel about the dramatic rise in global expected lifespans, time is needed
to fully realize the effect of improved human well-being, and thought should be put into policy
development to deal with the likelihood that people will be living longer, healthier lives. Thus, if
maximum lifespans have reached a ceiling, with mean life expectancy continuing to rise, lifespan
curves may soon be considered lifespan cliffs, with increased human productivity a likely benefit.

5. So When Does Aging Begin?

It now seems quite clear that cellular aging is largely dependent on the degree to which genomic
instability has affected DNA-dependent processes. Many studies, from yeast to humans, have
repeatedly shown that during aging, senescent cells that exit the cell cycle or cease to function
harbor large accumulations of DNA mutation, rearrangements, and epigenetic alterations. There
are numerous sources of DNA damage, both endogenous and exogenous, that the cell must deal
with. It is thought that a somatic cell may receive as many as 100,000 lesions daily [45,46]. It is not a
coincidence that most age-dependent diseases, such as cancer, type II diabetes, and cardiopulmonary
and neurodegenerative diseases are associated with increasingly elevated levels of genomic instability
that occur over time [47–51]. When a cell is born, it is presumably at its functional apex, performing at
its highest level. In yeast, the mother cell sequesters damage so that the daughter does not receive it,
having a much better chance to begin life in a pristine state [52,53]. However, eventually the damage
is too much for the yeast mother cell to fully sequester, with the daughter born with accumulating
damage. If similar mechanisms that occur in yeast are occurring in higher eukaryotic systems, then
it is easier to understand how a newly born cell would be at its best to repair damage and maintain
proteostasis. With this in mind, the answer for when aging begins might be when the cells that form
the zygote are first born; thus, aging of an individual may begin much earlier than conception, such as
at the very moment when the mother develops oocytes in utero [54].

6. Connecting Stress Sensing with Nutrient Sensing

Genomic instability appears to be the gateway to aging and age-related disease. Genomic stability
is threatened as soon as a cell is born due to the intrinsic damage caused by energy generation and the
errors inflicted by DNA replication. The damage repair processes are presumably functioning at their
best in these new cells, so genomic instability likely does not become an obstacle until much later in
life. As discussed above, multiple antagonistic molecular networks are vying for available resources
to respond to either stress and/or nutrients. It should be clear that the opposition of these pathways
should not be all or none, as aspects of nutrient availability may be present even in an unfavorable
environment. Thus, the question becomes how are nutrient and stress sensing networks regulated?
What mediates the end of stress signaling when the stress is gone, or the stalling of the nutrient sensing
pathways when the food source is used up?

7. The Anaphase Promoting Complex, Using Chromatin Assembly during Mitosis to Maintain
Genome Stability

To answer these questions, it is important to identify components that connect stress and
nutrient-sensing pathways. The Anaphase Promoting Complex (APC) has come to light as a potential
link between the stress and nutrient sensing networks. The APC is an evolutionarily conserved large
ubiquitin-protein ligase (E3) that targets proteins that inhibit mitotic entrance and exit, as well as
proteins that inhibit G1 maintenance, for ubiquitin and proteasome-dependent degradation [55]. The
APC is controlled by 2 co-activators, CDC20 and CDH1, which control mitotic progression, and G1
maintenance (Figures 1 and 2). CDC20 binds with the APC to initiate mitosis, and is then targeted
for degradation by the APCCDH1 complex at the M/G1 transition [56,57]. CDH1 is then targeted for
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degradation at the G1/S transition by a second large E3 complex called the SCF (Skp-Cullin-F-box
complex) [58]. The APC is largely known for its role in cell cycle progression, but we and others
have identified it as a central player in stress sensing and lifespan determination using the simple
brewing yeast eukaryotic model system (Figure 3) [31,59–65]. Mitosis is a time during the cell cycle
when DNA damage can become permanent and lead to further chromosome erosion and genomic
instability [66]. The APC is also required for replication-independent chromatin assembly and histone
modifications [60,67–70]. Considering that replication-independent chromatin assembly is required for
DNA repair [71,72], we speculate that the APC may be involved in repair of DNA damage incurred
during chromosome segregation (Figure 3). The chromatin assembly factors Asf1, and the CAF-1
complex, have been shown in yeast and human cells to be involved in assembly of histones onto
repaired DNA duplexes [73–76]. The link between repair of DNA during mitosis and the APC may be
the CAF-1 and Asf1 chaperones, as the APC genetically interacts with both Asf1 and CAF-1 mutants
in yeast (mutant combinations have worse phenotypes), and increased expression of any one of the
CAF-1 subunits, or Asf1, rescues APC defects [67]. Consistent with a role in maintaining genomic
stability, APC defects result in elevated sensitivity to UV radiation, increased loss of centromere based
plasmids, and increased rDNA instability [60,64].
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Figure 1. Regulation of the APC at the G2/M transition. The schematic considers results from
mammalian and yeast studies. Yeast proteins are written as Cdc20, whereas mammalian proteins
are written as CDC20. Genomic stability and segregation of replicated and repaired chromosomes is
established via the Spindle Assembly Checkpoint (SAC) that sequesters Cdc20/CDC20 away from
the APC, thus inhibiting APC function as cells enter mitosis [77,78]. When the SAC is satisfied, the
cyclin Clb2 (Cyclin B), synthesized during G2 by Fkh1 [79], interacts with cyclin-dependent kinase
Cdc28 (CDK2) to phosphorylate a series of proteins needed for mitotic progression: Cdc5 (PLK), Cdc16,
Cdc23, and Cdc27 [80,81]. Once PLK is active, it further activates the APC by phosphorylating Apc9 (or
APC1 in mammalian cells), Cdc16 and Cdc27 [80,81]. Cdc28-Clb2 also phosphorylates the co-activators
Cdc20 for activation [80], and Cdh1 for inhibition [82]. A further activating stimulus is provided
by SIRT2, which deacetylates CDC20 [83]. APCCdc20 then targets proteins for degradation, such as
Pds1 (PTTG1/Securin), to allow chromosome segregation, and Clb2 and Fkh1 to complete a negative
feedback loop that prepares the cell for mitotic exit and G1 maintenance [65,84,85]. Degradation of Clb2
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stops inhibition of Cdh1, allowing replacement of the APCCdc20 complex with APCCdh1. APC chemical
inhibitors, APCIN and pro-TAME, disrupt the CDC20-APC interaction [86,87], whereas the small
molecule APC activators (M2I-1, TTKi) disrupt the CDC20-SAC interaction [88–90]. Protein degradation
is shown by Ub, shaded with a red oval, attached to the target protein to build poly-Ub chains, followed
by break down of the protein, shown in smaller circles. Inhibitory phosphorylation is shown with a red
shaded “P”, and activating phosphorylation is shown with a green shaded “P”.
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Figure 2. Regulation of the APC at the M/G1 transition. As mitosis comes to an end, the phosphatase
Cdc14 is activated and released from sequestration within the nucleolus by Fob1, through a biphasic
interaction involving the FEAR and MEN pathways [91,92]. Cdc14 dephosphorylates Cdh1, thus
facilitating the interaction between Cdh1 and the APC [93]. Further activation is accomplished by
deacetylation of CDH1 by SIRT2 [83]. APCCdh1 function then leads to wholesale changes required for
mitotic exit and transition into G1. Residual Pds1 and Clb2 are targeted for degradation by APCCdh1,
as are Cdc20, Cdc5, and other targets, which puts an end to the pattern of proteins required for
mitotic progression [56,57,94–100]. Degradation of Fob1, a negative regulator of FEAR, is required
for G1 progression, as Fob1 [64] is required for rDNA condensation during mitosis. Gcn5 (and likely
Elp3) is also required for G1 progression [69], as it presumably acetylates histones during mitosis to
establish an epigenetic pattern required for G1 progression. Once this pattern is established during
mitosis, Gcn5 (and likely Elp3) must be degraded. Ubiquitinated and degraded proteins are depicted
as described above.
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Figure 3. APC activity is decreased under nutrient conditions, and increased when nutrients are
limiting. Inhibition of APC activity by glucose is mediated by the Ras/PKA pathway [81,101–103].
Recent work suggests that this is accomplished by driving the activity of the SCF ubiquitin ligase
by the phosphorylation and activation of the SCF E2 component Cdc34 by the nutrient response
kinases PKA and Sch9 (AKT/S6K) [104]. This could mediate APC inhibition, as it has been shown
that the SCF targets the degradation of CDH1 during mitosis [58,105]. Our unpublished data also
reveals that Sch9 likely inhibits Fkh1 function, and the subsequent induction of the stress pathways.
Upon encountering stress, SIRT2 deacetylates and activates FOXO proteins [106], and in yeast, Sir2
physically associates with Fkh1 to facilitate inhibition of CLB2 transcription in late M/G1 [107]. Fkh1
transcribes stress response genes (depicted by a a blue shaded “Tr”), including SNF1, which encodes
the catalytic component of the SNF1 kinase, the yeast AMPK [79,108]. FOXO and AMPK interact across
evolutionary boundaries to deal with stress [108–110]. The SNF1 kinase then enters the nucleus and
inhibits the glucose responsive repressor Mig1, which represses the expression of the APC subunits
APC4 and APC9 under nutrient conditions [61]. DNA repair is likely mediated, at least in part, by the
APC, which controls the deposition and modification of histones during mitosis, which plays a pivotal
role in DNA repair [67,69,71–74]. Inhibition of SCF-Cdc34 following APC activation is accomplished
in two ways: first, the APC targets the SCF F-box protein Skp2 for degradation in G1 [111,112], and
second, our unpublished data shows that the APC targets Sch9 for degradation once nutrients are
depleted. Preliminary unpublished data is shown using dashed lines.

8. Maintaining Genomic Stability via APC-Mediated Histone Modifications

Histone post-translational modifications are involved in cell cycle progression, particularly
mitosis [113], and in DNA repair. In yeast, DNA repair requires Asf1, CAF-1, and acetylation of
H3 Lys56 (H3K56Ac), mediated by the Asf1/Rtt109 complex [71,74]. Cells with impaired APC function
have reduced H3K9Ac, H3K79Me, and H3K56Ac [69]. H3K79Me accumulates during mitosis [114], while
H3K56Ac and H3K9Ac are reduced during mitosis but increase as cells enter G1 [115,116]. H3K9Ac

is important for transcriptional activation [117,118], H3K56Ac is involved in histone deposition and
DNA repair [74,119], while H3K79Me is required for a variety of activities including transcriptional
elongation, DNA repair, and cell cycle checkpoints [120,121]. Thus, the loss of these modifications due
to impaired APC has a dramatic impact on chromatin and chromosome structure, transcription, and
DNA repair. Furthermore, the histone acetyltransferase (HAT) that mediates H3K9Ac, Gcn5, interacts
genetically and functionally with the APC [69,70]. Increased expression of GCN5 rescued APC defects
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and deletion of GCN5 in APC mutants exacerbated growth defects. Furthermore, Gcn5 is targeted
by the APC for degradation at the M/G1 transition [69]. Acetylation of histones during mitosis may
be important to reset the epigenome as cells re-enter G1, leading to the appropriate activation of
specific genes. The correlation of Gcn5 degradation at G1, just after the accumulation of H3K9Ac as
cells exit mitosis, with APC mitotic function, is at the crux of establishing an active transcriptome
for continued cell cycle progression. Furthermore, if targeted degradation of Gcn5 by the APC is
conserved from yeast to humans, then this may be critical for tumor suppression and maintenance
of genomic stability, as increased H3K9Ac is associated with DNA damage, genomic instability, and
progression of multiple myeloma [122]. Consistent with this, APC defects lead to elevated genomic
instability in yeast [60,64,65] and in human cells [123,124]. Thus, although the APC is required for
mitotic progression, it is also required to guard against damage that can occur during chromosome
segregation, and to ensure that histones are acetylated to enable proper transcription as cells enter G1.
These activities are all critical to ensure that cells remain healthy, leading to enhanced lifespan. On the
other hand, the inability to maintain cellular homeostasis is linked with genomic instability associated
with cancer development and progression

9. Targeting APC Inhibition for Anticancer Therapy

Because of the role the APC plays in cell cycle progression, initial work focused on the inhibition of
the APC as a means to block tumor growth [125–127]. The evolutionarily conserved Spindle Assembly
Checkpoint (SAC) complex, consisting of the proteins MAD1, MAD2, BUB1, BUBR1, BUB3 and MPS1,
binds and sequesters the APC co-activator CDC20 prior to mitosis [77,78], inhibiting APC activation
until all chromosomes are ready for segregation (Figure 1). It was suggested that activation of the
SAC, and inhibition of the APC, would protect the cell from inappropriate chromosome segregation
and mitotic catastrophe in the presence of damaged chromosomes, which is often observed in cancer
cells. Furthermore, CDC20 mRNA expression is observed to be elevated in cancer cells, which is
associated with a poor prognosis; CDC20 knockdown is required for mitotic arrest and inhibition of
cell growth [94,128,129]. Specific (APCIN and pro-TAME [86,87]) and non-specific (Velcade [126]) APC
inhibitors have been developed recently and inhibit tumor growth in vitro [86,130]. Both APCIN and
pro-TAME act by inhibiting the interaction of CDC20 with the APC (Figure 1). Thus, inhibition of the
APC was believed to be a viable anti-tumor strategy.

10. Targeting APC Activation for Anticancer Therapy

Recent work in mammalian cancer cells provides evidence that APC activation, rather than
inhibition, may be a potent anticancer therapy that antagonizes genomic instability. As discussed above,
CDC20 is an APC coactivator, and high APCCDC20 may be inappropriately driving cells through mitosis
to promote genomic instability and cancer progression, inferring that APC inhibition will be beneficial.
Regulation of CDC20 is highly coordinated (Figure 1). As discussed above, CDC20 is sequestered
and inhibited by the SAC until all chromosomes are aligned along the metaphase plate and ready
for segregation [77,78]. Cdc20 in yeast is activated by Cdc28-Clb2-dependent phosphorylation [80].
Cdc28-Clb2 also phosphorylates the APC subunits Cdc16, Cdc23, and Cdc27 [81], the yeast Polo-like
kinase, Cdc5 [131], and Cdh1 to maintain its inactivity [82]. Once Cdc5 is activated, it then potentially
targets Cdc16, Cdc27, and Apc9 for phosphorylation to further activate the APC [80,81]. Cdc5 is later
targeted by APCCdh1 to exit mitosis [132]. CDC20 is also deacetylated by SIRT2, adding another level
of activation [83]. Additional activation signals in yeast come from the Forkhead transcription factors
Fkh1 and Fkh2. The FKH1 and FKH2 genes are transcribed during G2 by Hcm1 [133], and are required
for the transcription of the “CLB2 cluster” of genes, which contains genes required for APC activity,
such as CLB2, CDC5, CDC20, and APC1 [79].

The APC is essential, and this is conserved from yeast to humans, as yeast deletion mutants
are lethal and mouse models lacking APC subunits, or CDC20, die in embryogenesis [84,134–136].
The APC is also essential for the prevention of aneuploidy, which contributes to tumorigenesis [84].
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Thus, the systemic in vivo use of APC inhibitors may be highly toxic, limiting this approach to cancer
therapy. However, an alternative interpretation is possible to explain why CDC20 accumulates in
cancer cells. CDC20 itself is targeted by APCCDH1 for degradation once mitosis is complete [56,57].
Therefore, elevated CDC20 expression could reflect APCCDH1 impairment in cancer cells, inferring that
APC activation will be beneficial to cell health. Our in vitro and in vivo work (Davies, Arnason and
Harkness, unpublished), and findings from others, have noted that many APCCDH1 mitotic substrate
genes and proteins are elevated in cancer cells, including CDC20 [94], PLK1 [95], AURA/B [96,97],
HURP (DLGAP gene [98]), Securin (PTTG1 gene [99]), and Geminin [100], hinting that impaired APC
activity as a whole is involved, rather than isolated CDC20 elevation. Moreover, using the Cancer
Genome Atlas database [137], we observed that the expression of the APC substrate genes PTTG1 and
DLGAP5 in cancer patients is differentially regulated between normal tissues and tumor tissues, across
24 different types of cancer (Figure 4).
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Figure 4. The APC substrate mRNAs PTTG1 and DLGAP5 are overexpressed in multiple cancer types.
Expression scores for (A) PTTG1 and (B) DLGAP5 within 24 different types of cancer and normal tissue
from TCGA [134]. The numbers in x-axis labels denote the number of patient samples in each cancer
type. Statistical significance of the difference in expression between the normal and tumor samples is
depicted for each cancer type. N.S. not significant. The abbreviation of each cancer in the axis label is
represented as described in the TCGA portal [137].

While CDC20 has been linked to cancer progression, the second APC co-activator, CDH1,
has been linked to tumor suppression, with earlier work demonstrating that cells lacking CDH1
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have a shortened G1 phase, accumulate DNA damage, and undergo apoptosis [85]. CDH1 is also
regulated through a complex web of interactions (Figure 2). As discussed above, the yeast Cdh1
is maintained in an inactive form by Cdc28-Clb2 phosphorylation until the end of mitosis, when
Clb2 is targeted for degradation and the phosphatase Cdc14 is released from the nucleolus to undo
the work of Cdc28-Clb2 [82,91,93]. The mammalian CDH1 is further activated by deacetylation by
SIRT2 [83]. Recent work has demonstrated that cells with low levels of CDH1 accumulated in G1 with
elevated mitotic APC substrates, causing genome instability [123,124]. Furthermore, entire loss of
CDH1 increased DNA damage accumulation, driving progression of murine and human B-cell acute
leukemia [138]. It was also revealed that many cancer cell lines lack the ability to activate APCCdh1

when under replication stress [139,140], and that CDH1-depleted cells undergo senescence in G2,
suggesting that APCCdh1 may normally act as a barrier to genome instability [123]. Support for this
idea comes from studies using SIRT2, an antitumor and lifespan-extending protein, which activates
the APC by deacetylating CDC20 and CDH1; SIRT2-deficient mice exhibited higher levels of cancer
and elevated levels of APC substrates [83]. Thus, impaired APC function appears linked with genomic
instability and cancer development, providing strong therapeutic potential through targeted activation
in cancer cells.

APC dysfunction and cancer development could occur in several ways. Loss of either CDC20 or
CDH1 is deleterious; CDC20 deletion is lethal, while loss of CDH1 leads to genomic instability [123,124].
In addition, mutations have been observed in several APC subunit genes (APC3, APC6/CDC16, and
APC8/CDC23) in cancer cells [141]. Inappropriate expression of the CDC23∆TPR mutant disrupted
cell cycle progression and led to elevated levels of APC substrates. Loss of the APC7 subunit has
also been implicated in various tumors [142,143]. Furthermore, silencing of a variety of APC subunits
causes cells to survive treatment with compounds that inhibit the SAC, providing a mechanism for
the development of drug resistance [88,89]. Thus, evidence is accumulating to support the idea that
APC activity is required for cell health, while loss of normal APC function leads to genomic instability
and cancer.

11. APC Activation Reduces Substrate Levels and Inhibits Cancer Cell Growth

Recently, focus has shifted towards the creation of compounds that activate the APC. To do so,
SAC inhibition has been targeted. Prolonged SAC, or impaired APC activity, can lead to inappropriate
mitotic progression in a process called mitotic slippage [144,145]. This potentially provides time for
cells to respond to increased toxic levels of genomic instability common in cancer cells. Furthermore,
because of the aneuploid nature of cancer cells, cancer cells are heavily reliant on the SAC for proper
segregation of chromosomes; inhibition of the SAC in cancer cells produces intolerable levels of
genomic instability, killing these cells [146,147]. One compound, called Mad2-inhibitor-1, or M2I-1,
blocks the MAD2/CDC20 interaction (Figure 1) and weakens the SAC, leading to early activation of
the APC [90]. We have subsequently used M2I-1 in vitro and in vivo, and have found that, in vitro,
M2I-1 synergizes with Doxorubicin to reduce the growth of drug resistant MCF7 breast cancer cells,
while growth of patient-derived triple negative breast cancer cells in mice was stalled by M2I-1 (Davies,
Arnason, and Harkness, unpublished). Both in vitro and in vivo, APC substrate mRNA and protein
levels were reduced, showing that M2I-1 does indeed activate the APC. Additional SAC inhibitors have
been developed that inhibit the kinase MPS1/TTK (TTKi’s), a SAC component [88,89]. Kaplan-Meier
plots revealed that overexpression of MPS1/TTK is correlated with poor overall and relapse-free
survival in breast cancer patients [148]. Interestingly, as mentioned above, silencing of APC subunits
generates resistance to the MPS1/TTK inhibitors (TTKi’s) reversine and CFI-402257 [88,89]. This
suggests that the lethal mitotic segregation errors induced by TTK inhibition can be overcome by
prolonging the onset of anaphase.
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12. APC Activity, via the Fkh/SNF Kinase/Sir2 Pathway, is Required for Prolonged Longevity

We have reported that the yeast APC prolongs longevity (increased expression of only
APC10 increased replicative lifespan [61]), responds to stress, and interacts with multiple
conserved stress response pathways highlighted by the Forkhead (FOXO) and Snf1 (AMPK)
pathways [31,32,61,63–65,108] (Figure 3). It is already clear that the FOXO and AMPK pathways
intersect under stress in mammalian cells and drive the activity of several other stress response
networks [109,110]. In yeast, snf1∆ mutants were also shown to interact genetically with the apc5CA

mutant; deletion of SNF1 worsened the apc5CA defect, whereas overexpression rescued it [61].
Furthermore, Mig1, a glucose responsive transcriptional repressor inhibited by Snf1 phosphorylation,
repressed the expression of the APC subunits APC4 and APC9 [61]. Subsequent work showed that
Fkh1 transcribed SNF1, and that increased longevity observed in the Snf1UBA mutant depended
on Fkh1 or Fkh2 [32]. This stress response network is further bolstered by the anti-aging protein
deacetylase SIRT2, which deacetylates FOXO3a to increase its DNA binding ability in mammalian
cells [106]. SIRT2 also binds to the APCCDC20 and APCCDH1 complexes and deacetylates both CDC20
and CDH1 to turn on the APC [83]. The SIRT2-FOXO interaction is also conserved in yeast, as the yeast
Forkhead proteins, Fkh1 and Fkh2, physically associate with Sir2 during late M and G1 to repress the
expression of the Fkh target gene Clb2 [107]. In addition, under stress conditions, Sir2 assists in APC
function by inhibiting CLB2 transcription; overexpression of CLB2 under stress conditions is toxic [107].
However, it was not shown whether Sir2 deacetylates the Fkh proteins in this study. In yeast, the Fkh1
and Fkh2 transcription factors, like in mammalian cells, are involved in cell cycle progression, stress
response, and longevity [63]. FKH1 and FKH2 are expressed during G2 to drive the expression of
mitotic specific genes [79,149]. The FKH genes are activated by a third Forkhead protein called Hcm1,
which is expressed at the G1/S boundary [133]. Interestingly, Hcm1 nuclear translocation is facilitated
by the SNF1 kinase [150], defining a positive feedforward loop involving Snf1, Hcm1, and the Fkh
proteins. Furthermore, the ubiquitin conjugating enzyme, Ubc1, interacts with the APC [151] and is
required for SNF1 kinase function [108]. It was revealed that in yeast ubc1∆ mutants, Hcm1 remains
cytosolic, FKH1 and FKH2 transcription is reduced, and SNF1 kinase activity is decreased [108]. Fkh1
action is then reduced at the onset of mitosis, as the bulk of Fkh1 is targeted for degradation by the
APCCdc20 complex [65] (Figure 1). Interestingly, Fkh1 and the APC subunit Apc5 physically interacted
throughout the cell cycle [65]. Deletion of both FKH1 and FKH2 in APC defective cells worsened the
already short replicative and chronological lifespans [31], and mutation of a single, conserved lysine in
Fkh1 (K373) mimicked the null FKH1 allele, reduced chronological lifespan, and increased genomic
instability [65]. Thus, it appears that ubiquitination of Fkh1 at K373, mediated by APCCdc20 at the onset
of mitosis, is required to maintain normal lifespan and genomic stability.

In addition to Fkh1, the APC also targets a second lifespan determinant, Fob1, for degradation [64].
Fob1 in yeast is an rDNA replication fork blocking protein [152,153]. Fob1 condenses rDNA and stalls
replication fork progression during mitosis, creating free DNA ends that produce extra chromosomal
circles [92,154]. Fob1 also sequesters the Cdc14 phosphatase within the nucleolus at the rDNA locus
during early mitosis [91,92]. Cdc14 is released from Fob1 by the combined activity of the FEAR (Cdc14
early anaphase release) and MEN (mitotic exit network) complexes during late mitosis, enabling
activation of Cdh1 via Cdc14 dephosphorylation of Cdc28-Clb2 [93]. Deletion of FOB1 enhances yeast
replicative lifespan [64,154], while increased FOB1 expression reduces replicative lifespan [64]. We
identified Fob1 as a binding partner for Apc5 in a yeast 2-hybrid screen. Mutation of an amino acid
required for Fob1-Apc5 interactions (E420V) stabilized Fob1, increased rDNA instability, and abolished
the accumulation of modified Fob1 species. We observed that Fob1 was specifically unstable during
G1 and targeted for degradation by APCCdh1 [64]. Deletion of FOB1, like that of FKH1, rescued the
lifespan defect observed in APC mutants [64,65]. Taken together, the APC target substrates we have
identified (Fkh1, Fob1, and Gcn5) function during mitosis and G1 to elicit wide-ranging effects on
genomic stability and longevity (Figure 2).
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13. The APC Triggers the End of Nutrient Signaling in the Presence of Stress

In order to fully maximize longevity, from the beginning to the end, coupling the stress and
nutrient sensing pathways may be critical. The APC may be in a position to recognize both stress
and nutrients. The APC is activated by phosphorylation to promote cell cycle progression. Using
mouse fibroblast NIH/3T3 cells, it was shown that the Polo-like kinase, Plk, activates the APC by
phosphorylating CDC16, CDC27, and APC1 [81] (Figure 1). Plk in yeast (Cdc5) also phosphorylates
the APC, as does the cyclin-dependent kinase Cdc28 on Cdc16, Cdc23, and Cdc27 to activate APCCdc20

function [80]. Conversely, mammalian protein kinase A (PKA) phosphorylates CDC27 and APC1 to
inhibit APC function [81] (Figure 3). It is known in yeast that nutrients, such as glucose, and nutrient
signaling networks involving Ras/PKA inhibit the APC [101–103,155]. The cell cycle proceeds in
the presence of nutrients, so it remains unresolved how the positive and negative phosphorylation
events on APC subunits using the nutrient response and cell cycle promoting kinases are coordinated.
It remains possible that the APC’s role in cell cycle progression and stress response are controlled via
different mechanisms. If this were the case, PKA inhibition of the APC may be specific to its stress
response activity, whereas activation by the cyclin-dependent and Polo-like kinases may be more
geared towards the APC’s cell cycle role. These observations suggest that the nutrient-sensing pathway
plays a pivotal role in shutting down the APC and its stress-sensing functions.

The yeast nutrient-sensing kinases Sch9 (similar to the AKT/S6K homologues in humans [156])
and PKA also control APC activity in the presence of nutrients by phosphorylating the ubiquitin
conjugating enzyme, Cdc34, the E2 component of the ubiquitin-ligase (E3) SCF [104]. Work in
mammalian cells shows that the two E3 enzymes, the APC and the SCF, work to counterbalance
one another during G1, with the SCF targeting the CDH1 for degradation [58,105], and the APC
targeting the SCF F-box subunit SKP2 for degradation [111,112]. Thus, the nutrient response kinases
inhibit APC activity in the presence of nutrients. Furthermore, our preliminary results indicate that the
long life observed in sch9∆ and tor1∆ mutants requires functional Fkh1 or Fkh2, suggesting that Sch9
and/or Tor1 inhibit Fkh function (Postnikoff and Harkness, unpublished; Figure 3), leading to further
inactivation of the APC.

However, how does the nutrient sensing pathway shut down when nutrients are limited? A
recent report described the turnover of the nutrient sensing kinase Sch9 in yeast [157]. Deletion of
SCH9 in yeast increases yeast replicative and chronological lifespan [28,158], and, as mentioned above,
deletion of both FKH1 and FKH2 in either the sch9∆ or tor1∆ background eliminates the observed
long life (Postnikoff and Harkness, unpublished). As cells entered stationary phase, it was observed
that total ubiquitinated protein decreased, as did total Sch9 protein levels [157]. In the presence of
the proteasome poison MG132, it was observed that Sch9 protein levels increased [157], supporting
the idea that Sch9 is ubiquitinated and degraded as nutrient levels decrease. We therefore asked
whether Sch9 is targeted for ubiquitination by the APC, as a means to inactivate this arm of the nutrient
response network when nutrient levels decline. Our preliminary experiments show that deletion of
SCH9 in APC mutants suppressed the chronological lifespan and oxidative stress sensitive defects
in APC mutants (Postnikoff and Harkness, unpublished). We also confirmed that Sch9 turnover
occurs as cells enter stationary phase, and that this is blocked in APC mutants (Malo and Harkness,
unpublished). Taken as a whole, the published and unpublished literature supports the idea that the
APC sits at the apex of the stress and nutrient-sensing pathways, controlling cell cycle progression,
DNA repair, and chromosome maintenance (Figure 3).

14. Conclusions

The positioning of the APC at the intersection point of the stress and nutrient sensing pathways
confers importance upon this complex, as it may have the potential to protect the cells that come
together to form the zygote from the aging process. The potential for aging likely begins for an
individual as soon as the germ cells responsible for them are born. For the oocyte, that means during
the mother’s in utero development. It will be many years before that oocyte is fertilized; therefore,
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plenty of time exists for damaging side effects of cell metabolism to rear their ugly heads. It is critical
that the repair mechanisms within these cells are functioning optimally. As long as the APC is at its
peak function, protection against cellular damage should be high. With continued proper function of
the APC through the life of the germ cells and the subsequent offspring, increased healthspan may
be possible.
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