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ABSTRACT: An anion-exchange electrolyte membrane, QPAF(C6)-4, polymerized
with hydrophobic 1,4′-bis(3-chlorophenyl)perfluorohexane and hydrophilic (6,6′-(2,7-
dichloro-9H-fluorene-9.9-diyl)bis(N,N-dimethylhexan-1-amine) is physically flexible
and chemically stable. The drawbacks are relatively large water swelling and lower
OH− conductivity at higher water uptakes, which are considered to be due to the
entanglement of the flexible hydrophobic structure of the membrane. In this study, a
QPAF(C4)-4 membrane was newly synthesized with shortened hydrophobic fluoroalkyl
chains. Unexpectedly, QPAF(C4)-4 showed a higher water uptake and a lower bulk/
surface conductivity than QPAF(C6)-4 possibly due to the decrease in hydrophobicity
with a smaller number of fluorine atoms. The thermal stability of QPAF(C4)-4 was higher than that of QAPF(C6)-4, possibly due to
the rigidity of the QAPF(C4)-4 structure. A higher mechanical strength of QAPF(C6)-4 than that of QPAF(C4)-4 could be
explained by the larger interactions between molecules, as shown in the ultraviolet−visible spectrum. The interactions of molecules
were understood in more detail with density functional theory calculations. Both the chemical structures of the polymers and the
arrangements of the polymers in the membranes were found to influence the membrane properties.

1. INTRODUCTION
Fuel cells, having high efficiency and low emissions, are
attracting much attention as clean energy conversion
devices.1,2 Proton-exchange membrane fuel cells (PEMFCs)
have already been commercialized to be used for automobile
and residential uses. Recently, anion-exchange membrane fuel
cells (AEMFCs) have been intensively investigated because of
the potential use of nonprecious metal catalysts, such as Pt, as
well as the enhanced oxygen reduction reaction kinetics on
catalysts under alkaline conditions.3−10 The challenge of
AEMFCs for practical applications is to achieve both high
performance and durability. In particular, ion conductivity and
chemical/mechanical durability of anion-exchange membranes
(AEMs), especially at high temperatures under harsh alkaline
conditions, need to be further improved. For enhancing the
performance of AEMs, many polymer backbone struc-
tures11−19 and cation-exchange head groups20−25 have been
studied and proposed. AEM side chains,26−29 OH− ion
transport,28,30−32 and alkali stability33−36 have also been
investigated. Our group has proposed a series of poly(arylene
perfluoroalkylene) copolymers with benzyl-type quaternary
ammonium groups (QPAFs, Figure 1).37−44 The partially
fluorinated chemical structures brought about distinct phase-
separated nanometer structures, resulting in high anion
conductivity, which were caused by the different hydrophilic
and hydrophobic moieties in the polymers. The mechanical
strength of the polymer membranes also increased by the
introduction of perfluoroalkylene groups. QPAF(C6)-4
(Figure 1a) with pendant ammonium head groups was more
recently designed for better alkaline stability.43,44 The

QPAF(C6)-4 membrane exhibited high OH− conductivity
(86 mS cm−1) in pure water at 80 °C and superior durability
for 1000 h in 1 M KOH solution at 80 °C. The membranes
with high ion-exchange capacity (IEC) over 1.5 meq. g−1

exhibited large water absorption causing lower OH−

conductivity and dimensional/mechanical instability.44 The
large water absorption was considered to be due to the
entanglement of the flexible hydrophobic structure of the
membrane.44

We have newly synthesized QPAF(C4)-4 (Figure 1b) with a
shortened length of the perfluoroalkylene group in the
hydrophobic structure of QPAF(C6)-4. In this study, we
investigated the effects of the smaller number of fluorine atoms
and the different interactions of the aromatic hydrophobic
groups in QPAF(C4)-4 on the morphology and properties of
the membrane.

2. RESULTS AND DISCUSSION

2.1. Synthesis of 1,4-Bis(3-chlorophenyl)-
perfluorobutane (PAF(C4)). PAF(C4) was synthesized, as
shown in Scheme 1. To confirm the chemical structures of
PAF(C4), nuclear magnetic resonance (NMR) measurements
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of 19F and 1H were carried out. The spectrum of PAF(C4) is
shown as a typical example in Figure 2. All the peaks were well-
assigned to the proposed chemical structure.
2.2. Synthesis of QPAF(C4)-4 Copolymers and

Membranes. The copolymers of QPAF(C4)-4 were synthe-
sized, as shown in Scheme 2. The series of copolymers,
PAF(C4)-4 with monomer ratios (m and n), was obtained
with high molecular weights [number average molecular
weight (Mn) = 9 kDa and weight average molecular weight
(Mw) = 26 kDa]. The polydispersity indexes (PDI) (Mw/Mn =
2.8) were lower than those of our PAF(C6)-4 (Mw/Mn =
10.2−17.4), sharing the same hydrophilic component.43,44 The
obtained PAF(C4)-4 were soluble in chloroform, DMAc, and
dimethyl sulfoxide (DMSO), but not in methanol. To confirm
the chemical structures of the PAF(C4)-4 copolymers, NMR
measurements of 19F and 1H were carried out. Figure 3 shows
the spectrum of PAF(C4)-4. All the peaks were well-assigned
to the proposed chemical structure.
The quaternization reaction of PAF(C4)-4 was performed

using dimethyl sulfate in DMAc solution. The direct casting
from the reaction mixture gave QPAF(C4)-4 membranes in

the MeOSO3
− form, which were yellow, transparent, and

mechanically strong. The obtained QPAF(C4)-4 membranes
were bendable but less flexible than the QPAF(C6)-4
membranes.43,44 The chemical structure of QPAF(C4)-4 in
the MeOSO3

− form was confirmed by nuclear magnetic
resonance (NMR) spectra of 19F and 1H (Figure 4); the
quaternization reaction was ensured by the shift of the methyl
and methylene protons attached to the nitrogen atoms to the
lower magnetic field compared with those of the precursor
PAF(C4)-4. The ratios of integral peaks between 1−7 and 13
and 14 suggested that the quaternization reaction quantita-
tively proceeded. The values of IEC obtained from titration
(2.0 meq. g−1) and from the copolymer compositions of
QPAF(C4)-4, or the targeted value (2.1 meq. g−1), were
similar. Hereafter, we refer to the titrated IEC values.

2.3. Ultraviolet−Visible Light Absorption Spectros-
copy. Figure 5 shows the ultraviolet-visible (UV−vis) light
spectra of the QPAF(C4)-4 (blue line) and QPAF(C6)-4 (red
line) membranes. The peaks existed at 368 and 366 nm for
QPAF(C4)-4 and QPAF(C6)-4, respectively. The spectrum
pattern of QPAF(C6)-4 was generally at a higher wavelength
than that of QPAF(C6)-4, and the wavelength of QPAF(C6)-4
was broader. Therefore, the interactions between QPAF(C4)-4
polymers are expected to be smaller than those between
QPAF(C6)-4 polymers. The interactions between the different
polymers were further examined by the following density
functional theory (DFT) calculations.

2.4. DFT Calculations. Attention was paid to the
hydrophobic units with DFT calculations to see if there were

Figure 1. Chemical structures of QPAF(C6)-4 (a) and QPAF(C4)-4 (b).

Scheme 1. Synthesis of (1,4-Bis(3-
chlorophenyl)perfluorobutane: PAF(C4))

Figure 2. 19F NMR (a) and 1H NMR (b) spectra of 1,4-bis(3-chlorophenyl)perfluorobutane (PAF(C4)) in CDCl3 at room temperature.
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discernable differences in their interactions with each other.
Two double units were placed side by side in various
orientations (Figure 6a, upper-right structures, and Figure S1
in the Supporting Information) and subjected to molecular
dynamics (MD) calculations for 2 ps. The energies are plotted
versus time (step number) in Figure 6b. The simulated UV−
vis absorption spectra for the final structures are shown in

Figure 6c. As shown in Figure 6b, there is a wider range of
energies exhibited for the QPAF(C6)-4 hydrophobic units.
The spectra (Figure 6c) show that the wavelengths of the
peaks λmax were quite variable and generally slightly higher for
the QPAF(C6)-4 units. It was generally found that the λmax

values were higher when the hydrophobic units were closer
together and, more specifically, when the aromatic rings were

Scheme 2. Synthesis of PAF(C4)-4 and QPAF(C4)-4 Copolymers

Figure 3. 19F NMR (a) and 1H NMR (b) spectra of PAF(C4)-4 in CDCl3 at room temperature.

Figure 4. 19F NMR (a) and 1H NMR (b) spectra of QPAF(C4)-4 in DMSO-d6 at room temperature.
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closer together. It was found that the interactions between the
rings on the adjacent units did not have to be either coplanar
or stacked as in graphite but could be at any angle to each
other. As shown in Figure S2, the λmax values are plotted versus
the distances between the closest two hydrogen atoms on
neighboring units. Clearly, the correlation is somewhat chaotic,
as expected, because the λmax values would depend on a
number of factors, but an overall trend can be seen that longer
λmax values are associated with smaller H−H distances. The
reason that slightly longer λmax values were found for the
QPAF(C6)-4 units is most likely to be that the longer
perfluoroalkylene chain length allows the neighboring units to
have a wider range of motion so that the aromatic rings have a
greater probability of approaching each other. By the same
token, the wider range of motion also gives the chains the
opportunity of being further apart, so that the energies can be
larger and even increased (Figure 6b, right panel, blue curve).
Interestingly, however, there was no clear correlation

between the energies observed in either the MD runs, the
λmax values, or the H−H distances. In the ongoing work, we
investigate other types of interactions, other than π−π
interactions between neighboring aromatic rings, to explain
the stabilization energies. One possibility is that there are
interactions between the perfluoroalkylene chains, as suggested
by one of the MD runs for two QPAF(C6)-4 units, seen as the
pink curve in Figure 6b (right panel), in which the energy
decreased, not because of a short H−H distance but due to the
approach of perfluoroalkylene chains (Figure S1, QPAF(C6)-
4, 180°). If such an interaction can be confirmed, it could also
help to explain some of the physical properties of the
QPAF(C6)-4 ionomer.
2.5. Water Uptake and Ion Conductivity. Figure 7a,b

shows the water uptake at room temperature and the OH−

conductivity in water at 30 °C, respectively, of the QPAF(C4)-
4 and QPAF(C6)-4 membranes. The water uptake of
QPAF(C6)-4 increased as the IEC increased. The OH−

conductivity of QPAF(C6)-4 increased as the IEC increased
up to IEC = 1.6 meq. g−1 and decreased at 2.2 meq. g−1. At
IEC = 1.5 and 2.0 meq. g−1, the QPAF(C4)-4 membrane
exhibited a higher water uptake but a lower OH− conductivity
than those of the QPAF(C6)-4 membrane. The lower
conductivity of QPAF(C4)-4 was explained by the membrane
expansion because of excessive water swelling, as evidenced by
the comparatively high water uptake values observed (Figure
7a).44

Figure 8 shows the temperature dependency of the OH−

conductivity of the QPAF(C4)-4 and QPAF(C6)-4 mem-
branes. The Arrhenius-type dependency was observed on both
membranes between 30 and 80 °C. The activation energy (Ea)
of OH− conduction was calculated as 9.7 kJ mol−1, whereas

that of QPAF(C6)-4 was 9.8 kJ mol−1.44 Therefore, the anion
conduction mechanism with QPAF(C4)-4 and QPAF(C6)-4
membranes might be similar.

2.6. Mechanical Properties. Figure 9 shows the storage
moduli (E′) (a) and loss moduli (b) at 60% RH as a function
of temperature. The value of E′ of the QPAF(C4)-4 membrane
showed a decrease around 80 °C, whereas E″ of QPAF(C4)-4
showed a peak around 85 °C. These values were higher than
those of the QPAF(C6)-4 membrane. The change in E′ was
related to its transition temperature, while the change in E″
was related to its mechanical strength. Therefore, shortening
the hydrophobic perfluoroalkylene chains contributed to the
increase in glass transition temperature and mechanical
strength. The improved thermomechanical stability is
explained by the increased rigidity associated with the
inhibition of the internal rotation of the molecule around the
interatomic bond.45 A higher rigidity of QPAF(C4)-4 was
possibly due to a higher ratio of aromatic groups and a lower
freedom with shorter perfluoroalkylene chains.
Figure 10 shows stress (or tensile strength) versus strain (or

elongation) curves obtained for the QPAF(C4)-4 and
QPAF(C6)-4 membranes in the Cl− form at 80 °C and 60%
RH, respectively. On both curves, the initial steep rising
portion, indicative of elastic behavior, is followed by a wide
region of inelastic elongation, that is, stress relaxation, because
both membranes were similarly able to accommodate the
expansion. This is a typical behavior for ionomeric
membranes.12,15,21,39,40 However, the QPAF(C6)-4 membrane
exhibited larger slopes in both the elastic region (Young’s
modulus) and the inelastic region, indicating a higher
resistance to expansion, which suggests a higher degree of
interaction between the polymer chains.
QPAF(C4)-4 showed a maximum stress of 11 MPa and an

elongation rate of 150%. QPAF(C6)-4 showed a smaller
maximum stress of 8 MPa but a higher elongation rate of
190%. The improved elongation rate was reported to be due to
the increased resistance to deformation associated with
increased entwinement of polymer chains.46 A larger entwine-
ment was explained by larger interactions between QPAF(C6)-
4 molecules, as confirmed in the UV−vis absorption spectra
(Figure 5) and by the DFT and MD calculations (Figure 6).
The electronic structures and conformations of molecules are
thus linked.

2.7. Morphology of Membranes. To obtain transmission
electron microscopy (TEM) images, QPAF(C4)-4 membranes
were ion-exchanged from MeOSO3

− to PtCl4
2−. The QPAF-

(C4)-4 membranes became reddish brown and less flexible in
PtCl4

2− forms. Figure 11 shows cross-sectional TEM images of
QPAF(C4)-4 and QPAF(C6)-4 membranes. The dark areas
are related to hydrophilic domains containing ion-exchanged
ammonium groups and the bright areas to hydrophobic
domains composed of the polymer backbones. Both QPAF-
(C6)-4 and QPAF(C4)-4 had a spherical hydrophilic domain
(approximately 1.5 nm in diameter). The size of the bright
hydrophobic domains was also 1.5 nm. The morphology of the
QPAF(C4)-4 membrane at the nanometer scale was similar to
that of the QPAF(C6)-4 membrane. The influence of
shortening the hydrophobic alkyl chain on the phase-separated
morphology under vacuum was negligibly small.
The bulk morphology under the humidified conditions was

studied using small-angle X-ray scattering (SAXS).47 The
SAXS measurements of the QPAF(C4)-4 (IEC = 2.0 meq.
g−1) and QPAF(C6)-4 (IEC = 2.0 meq. g−1) membranes in

Figure 5. UV-vis spectra of QPAF(C4)-4 (2.0 meq. g−1, blue line)
and QPAF(C6)-4 (2.0 meq. g−1, red line).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06958
ACS Omega 2022, 7, 13577−13587

13580

https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06958/suppl_file/ao1c06958_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsomega.1c06958/suppl_file/ao1c06958_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06958?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06958?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06958?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06958?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06958?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the Cl− form were carried out at 40 °C, changing the RH from
30 to 90%. The scattered intensity was plotted with respect to
the scattering vector (q), as shown in Figure 12. For
QPAF(C4)-4, a peak existed at around q = 0.8 nm−1 or 8

nm of the d spacing, and its position and intensity changed
with increasing RH, indicating that the absorbed water was
responsible for the development of the periodic structure. The
results of QPAF(C6)-4 were nearly the same as those of

Figure 6. (a) Representative subunits of the QPAF(C4)-4 and QPAF(C6)-4 ionomers used in the present DFT calculations: single hydrophobic
units (top row, left), double hydrophobic units (top row, right), hydrophilic unit (second row, left), two hydrophobic units joined by a hydrophilic
unit (cis-configurations, second row, right and trans configurations, bottom row). (b) MD runs for two double hydrophobic units of QPAF(C4)-4
(left panel) and QPAF(C6)-4 (right panel). Each run consisted of 1 fs per step and a total of 2 ps. The corresponding final structures are depicted
in Figure S1. (c) Calculated λmax values for the final MD structures of QPAF(C4)-4 (left panel) and QPAF(C6)-4 (right panel).
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QPAF(C4)-4, which showed a peak at d = 7 nm at 30% RH
(Figure 12b), slightly smaller than the d value of QPAF(C4)-4.
The peak developed with an increase in humidity, showing an
increase in periodicity.44

On the basis of the DFT calculations, atomic-scale
differences were proposed between the QPAF(C4)-4 and
QPAF(C6)-4. Based on the TEM and SAXS results, no
significant differences were reflected in the nanoscale
morphology of the bulk materials.
Figure 13 shows the topographic images of QPAF(C4)-4 (a)

and QPAF(C6)-4 (b) and the current images of QPAF(C4)-4
(c) and QPAF(C6)-4 (d) obtained by current-sensing atomic
force microscopy (CS-AFM).48−53 The topographic and
current images were simultaneously measured. The surface
roughness of the QPAF(C4)-4 and QPAF(C6)-4 membranes
was approximately 15 nm. On both QPAF(C4)-4 and
QPAF(C6)-4, current densities were commonly higher in the
current images at the convex positions in the topographic
images. On the surfaces of both membranes, the conduction

area occupied 99% of the whole surface areas (threshold value:
0.5 pA). The average current and the standard deviation of the
QPAF(C4)-4 membrane were 3.6 and 1.3 pA, respectively,
whereas those values of QPAF(C6)-4 were 5.2 and 1.4 pA,
respectively. Therefore, the surface conduction of QPAF(C4)-
4 was lower than that of QPAF(C6)-4. As explained for the

Figure 7.Water uptake at room temperature (a) and OH− conductivity at 30 °C (b) of QPAF(C4)-4 (red circles) and QPAF(C6)-4 (blue circles)
membranes in water as a function of IEC.

Figure 8. Temperature dependency of the OH− conductivity of
QPAF(C4)-4 (2.0 meq. g−1, blue circles) and QPAF(C6)-4 (2.1 meq.
g−1, red circles) membranes.

Figure 9. Temperature-dependency curves of storage moduli (E′) (a) and loss moduli (E″) (b) of membranes of QPAF(C4)-4 (2.0 meq. g−1, blue
lines) and QPAF(C6)-4 (2.0 meq. g−1, red lines) in the Cl− form at 60% RH.

Figure 10. Stress vs strain curves of QPAF(C4)-4 (2.0 meq. g−1, blue
line) and QPAF(C6)-4 (2.0 meq. g−1, red line) membranes in the Cl−

form at 80 °C and 60% RH.

Figure 11. Cross-sectional TEM images of the QPAF(C4)-4 (2.0
meq. g−1) (a) and QPAF(C6)-4 (2.0 meq. g−1) (b) membranes in the
PtCl4

2− form.
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bulk conductivity (Figure 7), this should be also due to a
higher water uptake at the surface of QPAF(C4)-4.
In the case of the surface, in contrast to the bulk, differences

in the morphology and conduction were clearly observed at the
micrometer scale. This is reasonable because of the larger
freedom of motion at the surface.

3. CONCLUSIONS

We have developed a novel QPAF(C4)-4 membrane by
shortening the hydrophobic perfluoroalkylene chains of
QPAF(C6)-4. The UV−vis absorption spectra of the
membranes suggested that there was a higher degree of π−π
interactions between polymer chains in the QPAF(C6)-4
membrane than those in the QPAF(C4)-4 membrane, which
was consistent with the findings in molecular dynamics
calculations, but the latter also pointed to enhanced
interactions between the perfluoroalkylene chains of QPAF-
(C6)-4 as a stabilizing factor. The QPAF(C4)-4 membrane

showed a higher water content than that of QPAF(C6)-4 in
accordance with the decrease in the number of hydrophobic
fluorines. The conductivity was lower than that of QPAF(C6)-
4 in the high IEC region because of excessive water swelling.
The QPAF(C4)-4 membrane showed a higher thermal
stability but a lower flexibility than those of QPAF(C6)-4. In
both membranes, micro-phase-separated structures were
clearly developed. The TEM images showed no clear
difference between the size of the hydrophilic and hydrophobic
domains under dry conditions. According to the SAXS results
under humidified conditions, the domain sizes of QPAF(C4)-4
were larger than those of QPAF(C6)-4 because of the increase
in water uptake as the number of hydrophobic fluorines
decreased. From the CS-AFM measurements, the morpho-
logical difference on the surfaces of the QPAF(C4)-4 and
QPAF(C6)-4 membranes was small, but the surface con-
duction of QPAF(C6)-4 was higher than that of QPAF(C4)-4.

Figure 12. SAXS profiles of the QPAF(C4)-4 (IEC = 2.0 meq. g−1) (a) and QPAF(C6)-4 (IEC = 2.0 meq. g−1) (b) membranes in the Cl− form as
a function of the scattering vector (q) at 40 °C and 30, 50, 70, and 90% RH.

Figure 13. Topographic and current images of QPAF(C4)-4 (IEC = 2.0 meq. g−1) ((a), (c)) and QPAF(C6)-4 (IEC = 2.0 meq. g−1) (b,d) at 40
°C and 70% RH under purified air. Tip bias voltage = −2.0 V. Contact force = 5 nN.
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In this study, it was demonstrated that the properties of
membranes, such as water uptake and thermal/mechanical
strength, can be controlled by changing the length of the
perfluoroalkylene chains. The mechanism of the improvements
was discussed, which could be used to further design anion
ionomers.

4. EXPERIMENTAL SECTION
4.1. Synthesis of QPAF(C4)-4. 4.1.1. Synthesis of

Monomer (1,4-Bis(3-chlorophenyl)perfluorobutane: PAF-
(C4)). 1,4-Diiodoperfluorobutane (9.98 g, 22 mmol), 1-
chloro-3-iodobenzene (15.7 g, 66 mmol), Cu powder (14.0
g, 220 mmol), and DMSO (88 mL) were placed into a three-
necked flask (300 mL) with a nitrogen inlet and a mechanical
stirrer. After increasing the temperature to 120 °C, the mixture
was stirred under nitrogen for 48 h. After stirring, the solution
was washed with 500 mL of 0.1 M nitric acid. Subsequently,
stirring and filtering with 200 mL of methanol were carried out
repeatedly three times to obtain the target solution. The
obtained reaction solution was washed with methanol/
ultrapure water (500 mL, 3/2, volume/volume) solution
three times and dried at 60 °C in a vacuum oven to obtain 2.97
g of 1,4-bis(3-chlorophenyl)perfluorobutane as white fiber in
32% yield.44

4.1.2. Polymerization. 1,4-Bis(3-chlorophenyl)-
perfluorobutane (PAF(C4)) (1.83 g, 4.32 mmol), 6,6′-(2,7-
dichloro-9H-fluorene-9.9-diyl)bis(N,N-dimethylhexan-1-amine
(AF) (1.44 g, 2.95 mmol), 2,2′-bipyridine (2.84 g, 18.2 mmol),
and N,N-dimethylacetamide (DMAc) (18 mL) were placed
into a three-necked flask (100 mL) with a nitrogen inlet and a
mechanical stirrer. The mixture was heated and stirred at 80
°C. Then, bis(cyclooctadiene)nickel(0) (5.00 g, 18.2 mmol)
was added into the mixture. Subsequently, the homogeneous
mixture was poured into a mixture of methanol and
concentrated hydrochloric acid (1:1 by volume, 400 mL) for
polymerization to obtain a black precipitate for 3 h at 80 °C.
The crude product was filtered, washed with concentrated
hydrochloric acid (200 mL), and treated with saturated K2CO3
aqueous solution (200 mL). The product was washed with
water (200 mL) and dried in a vacuum oven at 60 °C to obtain
2.50 g of 1,4-bis(3-chlorophenyl)perfluorobutane (PAF(C4)-
4) (m = 1.00 and n = 0.51 in Figure 1b) as white fiber in 91%
yield.
4.1.3. Preparation of QPAF(C4)-4 Membranes. PAF(C4)-4

(2.5 g, 7.88 mmol of dimethylamino groups) and DMAc (16.5
mL) were added into a round-bottom flask (50 mL) with a
nitrogen inlet and a mechanical stirrer. Dimethyl sulfate (1.2
mL, 12.6 mmol) was added into the mixture for quaternization
of the polymer. The mixture was stirred for 48 h at 40 °C and
diluted with DMAc (20.0 mL). The mixture was poured into
pure water, dialyzed, evaporated, and dried under vacuum at
60 °C to obtain QPAF(C4)-4 (m = 1.00, n = 0.65) as white
fibrous solid in 83% yield. QPAF(C4)-4 (2.0 g) was dissolved
in DMAc (40 mL) and then filtered with a syringe stuffed with
cotton. The transparent solution was cast onto a flat glass plate.
The solution was dried at 40 °C overnight to form a light
brown transparent membrane. The resulting membrane was
dried at 60 °C under vacuum. By soaking the membrane in 1
M KOH aqueous solution at 80 °C for 48 h, the counter
anions were substituted with OH− ions. The resulting
membrane in the OH− form was washed and immersed in
degassed and deionized water for at least 1 day to completely
remove excess KOH. QPAF(C4)-4 in the Cl− form was

prepared by immersing the membrane in the hydroxide ion
form into 1 M hydrochloric acid for 48 h at room temperature.

4.2. NMR. NMR spectroscopy was carried out with JNM-
ECA500 (JEOL) for the determination of the synthesized
species. Chloroform-d and dimethylsulfoxide-d6 (DMSO-d6)
were used as deuterated solvents. Tetramethylsilane (TMS)
was used as a reference substance.

4.3. Gel Permeation Chromatography. K-805 L
(Shodex) was selected as the separation column of gel
permeation chromatography. UV-2077 (Jasco) was used as
the detector, and the detection wavelength was 270 nm.
Chloroform in which 0.02 M triethylamine was dissolved was
used as an eluent. The eluent flow rate was 1.0 mL min−1. The
calibration curve for the molecular weight was created using
standard polystyrene, Mn and Mw of the measured samples
were calculated from the obtained calibration curve, and the
degree of dispersion was obtained from Mw/Mn.

4.4. IEC Measured by Titration.Mohr’s method was used
to measure the IEC of the membrane.54 In an acid−base back-
titration, the OH− from the membrane was treated with excess
HCl, and the decrease in the amount of H+ was measured via
titration with NaOH. On the other hand, because Mohr’s
method uses a Cl−-form membrane, it is not affected by carbon
dioxide in the air, and thus, more accurate values can be
obtained.
After immersing the dry membrane (Cl− form) in 12.5 mL

of a 0.2 M sodium nitrate aqueous solution, 1.0 mL of a 0.1 M
sodium chloride aqueous solution was added, and ion
exchange was carried out by stirring overnight. A potassium
chromate aqueous solution (1.6 mL) (0.25 M) was added to
the obtained solution and stirred. Sodium hydrogen carbonate
aqueous solution (1 mL) (0.1 M) was added to make the
solution weakly basic. A 0.01 M silver nitrate aqueous solution
was added dropwise to the prepared solution using a burette,
and the endpoint was defined, at which the yellow solution
became slightly reddish. The titration was performed at least 3
times both for the reference and for this measurement, and the
values (2.09, 1.98, and 1.93 meq. g−1) were averaged. The IEC
was calculated according to eq 1:

= −IEC
amount of dropping of silver nitrate aqueous solution (mmol)

Cl form membrane weight (mg)
(1)

4.5. OH− Conductivity. The sample was cut into 1 cm × 3
cm and attached to a cell for conductivity measurement. The
distance between Au probes was 1.0 cm. Conductivity
measurements were performed with 1255B/1287 of Solartron,
using the AC 4-terminal method (300 mV, 10−100,000 Hz).
For impedance, Z, the value at which the phase angle
converges to 0° on the board plot was used. The conductivity
σ (S cm−1) was calculated by Formula 2.

σ = ×L
Z A

1
(2)

4.6. Water Uptake. The water uptake (ΔW(%)) measure-
ment was measured after the conductivity measurement shown
below. From the difference between the water-containing
membrane weight (Wwet) and the dry membrane weight (Wdry)
of the membrane, it was calculated using Formula 3.

Δ =
−

×W
W W

W
(%) 100wet dry

dry (3)
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The mass of the water-containing membrane was quickly
measured after wiping off water droplets on the surface of the
sufficiently water-containing film with a pro-wipe or the like.
The weight of the dried membrane was weighed after vacuum
drying the moistened membrane at 50 °C overnight. Water
swelling was not measured because of a large error in
measuring the volumes of the membranes.
4.7. Dynamic Viscoelasticity. A membrane was cut out to

0.5 cm × 3 cm, and the dynamic viscoelasticity measurement
was carried out using DV-200 (IT Measurement Control). The
stored viscoelasticity (E′), loss viscoelasticity (E″), and tan δ at
0−90% RH at a humidity rise rate of 1% min−1 were obtained
at a constant temperature of 80 °C at a measurement
frequency of 10 Hz. The measurements were performed in 3
cycles, and the data in the third cycle were used.
4.8. Tensile Test. A dumbbell-shaped membrane was used

for the tensile test using Autograph AGS-J500N (Shimadzu). A
tensile test was performed at 80 °C and 60% RH. The
maximum stress and the elongation rate were determined with
an expansion rate of 10 mm min−1.
4.9. UV−Vis Light Absorption Spectroscopy. The UV−

vis light spectra were measured using V-670 (JASCO) at room
temperature. The sample used was a 5 wt % ionomer solution
using DMAc as a solvent, which was spin-coated on a quartz
substrate at 6000 rpm for 60 s.
4.10. DFT Calculation. DFT calculations were carried out

with Materials Studio DMol3 package (BIOVIA, version
2021). Further details can be found in the Supporting
Information.
4.11. TEM. For TEM, the membranes were ion-exchanged

by immersing in the PtCl4
2− aqueous solution. The membranes

were rinsed with deionized water and dried in vacuum for 12 h.
The stained membranes were embedded in epoxy resin and
subsequently sectioned to 60 nm thickness with a microtome
(Ultracut UCT, Leica). Each specimen was placed on copper
grids. TEM images were taken with a transmission electron
microscope (H-9500, Hitachi) with an accelerating voltage of
200 kV.
4.12. SAXS. The SAXS measurements of AEMs in Cl− form

were performed using a NANO-Viewer (Rigaku) with an
environmental chamber.47 As the X-ray source, Cu (Kα) was
used. After the AEMs were treated in 1 M hydrochloric acid
solution at room temperature for 48 h, they were subsequently
immersed in deionized and degassed water for 24 h. The
AEMs were then installed in the SAXS environmental
chamber. Under a N2 atmosphere, each specimen was
equilibrated at least for 2 h at 40 °C and humidity between
30 and 90% before the SAXS measurements. The scattering
patterns were obtained using a high-speed 2D detector
(PILATUS 100 K/R, Rigaku).
4.13. CS-AFM. To avoid the absorption of CO2, QPAF-

(C4)-4 and QPAF(C6)-4 membranes were placed in 1 M
KOH aqueous solution for 48 h and rinsed in deionized and
degassed water for 24 h. The membranes, while still wet, were
pressed at room temperature with gas diffusion electrodes
(GDEs) prepared by spraying a catalyst ink containing Pt
catalyst supported on carbon black (TEC10E50, 47.9 mass
%-Pt, Tanaka Kikinzoku Kogyo), with ionomer (AS-5,
Tokuyama Co.) as a binder on a GDL with a microporous
layer (25 BC, SGL Carbon Group Co.) using a pulse−swirl−
spray apparatus (Nordson).32 The specimen was subsequently
installed in an environmental chamber. Humidified air was
continuously supplied to the chamber (dead volume = 500

mL) at 100 mL min−1 for 2 h before the measurements.
During the AFM measurements, the flow rate was lowered to
10 mL min−1.
CS-AFM measurements were carried out at 40 °C and 70%

RH with a commercial AFM system (SPM-5500, Agilent)
under ultrapure air (CO2 less than 5 ppb).48−53 OH− ions
formed at the cathode at a silicon AFM tip (Nanoworld)
coated with Pt−Ir alloy were transferred to the anode through
the AEM and oxidized to oxygen at the anode.53 Topographic
and current images were simultaneously obtained in the
contact mode (contact force = 5 nN, tip voltage = −0.2 V). To
ensure no tip damage, no membrane degradation, and no
influence of carbonates, two identical images at the same
position were obtained in the scanned range of 5 μm × 5 μm
before the scanned area was decreased to 1 μm × 1 μm. The
scanning rate was 0.6 line s−1.
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