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Abstract: The finless porpoise (Neophocaena phocaenoides Cuvier, 1829) is distributed in the coastal
waters of Asia, throughout Indonesia to the east, and as far north as the Taiwan Strait. The finless
porpoise has been declared critically endangered by the WWF (World Wide Fund for Nature),
and in 2017 was rated vulnerable on the IUCN Red Threatened Species List. Since this species is
distributed near the coast and has many interactions with humans, effective conservation of the
species requires further studies into their genetic diversity and population. In this study, 45 samples
were obtained from bycatch or stranded individuals in the East, South, and West Seas, where Korean
porpoises were mainly distributed from 2017-2021. We compared 473 bp mtDNA sequences from the
control region. Pairwise fixation indices (Fsr) revealed that the two populations differed significantly
(Fst = 0.4557, p = 0.000). In contrast to high levels of genetic differentiation, gene flow was identified
as medium levels (Nm of 0.04-0.71). Our data suggest that finless porpoises may have undergone a
historic differentiation event, and that finless porpoises in the three regions could be divided into
two populations: West and East/South.

Keywords: finless porpoise; Neophocaena phocaenoides; genetic diversity; population structure;
mitochondrial DNA

1. Introduction

One of eight porpoise species is the finless porpoise (N. phocaenoides, Figure 1), a small,
toothed cetacean inhabiting shallow waters along tropical and temperate coastlines [1].
They are also found in the Indo-Pacific coastal waters, from the Persian Gulf to Korea.
Although their distribution in Korean waters is known only from Chollabukto (Zenra
Hokudo) on the Yellow Sea coast [2], the distribution may be continuous from the Chinese
border to the southern coast of the Korean Peninsula [3]. The waters in which they are
found are subject to intense human activity, and in some regions, a dramatic reduction
in population size has been observed [4]. The porpoise is presented in Appendix 1 of the
Convention on International Trade in Endangered Species (CITES) [1].

Understanding a species’ population genetic structure is necessary for its conserva-
tion [5]. Moreover, understanding and maintaining marine ecosystems rely on population
genetics [6]. Changes in the biological characteristics and genetic diversity of endangered
species may occur when stock management is not based on or is inappropriate for the
population structure. As a result, exact population limits for endangered species necessi-
tate a multidisciplinary approach, and genetic studies can provide vital information [7,8].
Although population genetic information is critical for informed management and conser-
vation of endangered species, sampling rare oceanic species remains challenging [6].
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Figure 1. An image of a finless porpoise, N. phocaenoides, taken by Hyun Woo Kim.

Phylogenetic and population genetic investigations have been carried out in order
to generate data for the effective management of Phocoenidae species. The finless por-
poise’s genetic structure appears to be unusually complex [9]. The majority of studies
in China discovered genetic differences in finless porpoises from different geographical
locations [10-16]. Japanese molecular genetics studies using mitochondrial DNA identified
five isolated populations in Japanese waters [1,17,18]. Three populations were identified
in China [19], and Yoshida et al. [1], studying the structure of five populations off the
coast of Japan, proposed that a detailed investigation of the structure of finless porpoise
populations across Asia is necessary for the future. In this study, the genetic diversity, gene
flow, population structure, and demography of finless porpoises in the East, West, and
South Seas off the coast of Korea were compared.

2. Materials and Methods
2.1. Sample Collection

The finless porpoise is a protected species in Korea. Forty-five finless porpoise muscle
tissue samples were collected from bycatch and stranded specimens off the coast of Korea
between 2017 and 2021 by a sampler trained by the Korea Coast Guard. The porpoises
were collected in the East, South, and West Seas of Korea (Figure 2).

Figure 2. Locations of N. phocaenoides samples. E, East Sea (blue circle); S, South Sea (purple circle);
W, West Sea (yellow circle).
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2.2. Mitochondrial DNA Sequencing

Genomic DNA was isolated from muscle samples using 10% Chelex 100 Resin (Bio-
Rad, Hercules, CA, USA). A 473 bp fragment of the CR was PCR amplified using the
following primers: MT4-F (5'-CCT CCC TAA GAC TCA AGG AAG-3'; [20]) and DIp5-R
(5’-GGA TGT CTT ATT TAA GRG GAA-3'; [21]). The PCR reaction mixture had a final
volume of 20 pL, including 13.8 uL of distilled water, 2 uL of 10 x PCR buffer, 0.4 uL of
2.5 mM dNTPs, 0.8 uL of each primer, and 0.2 uL of Ex-Tag polymerase (TaKaRa, Bio Inc.,
Shiga, Japan). The thermal cycling included an initial denaturation at 95 °C for 10 min,
29 cycles of denaturation at 94 °C for 30 s, annealing at 50 °C for 30 s, an extension at 72 °C
for 1 min, and a final denaturation at 72 °C for 5 min; the mixture was then kept at 4 °C.
The PCR products were cleaned using EXOSAP-IT (United States Biochemical Corporation,
Cleveland, OH, USA) prior to being sequenced on an ABI 3730XL DNA Analyzer using
BigDye Terminator v3.1 Ready Reaction Cycle Sequencing Kits (Applied Biosystems, Foster
City, CA, USA). Animal experiments were conducted under the guidance approved by the
Animal Research and Ethics Committee of the National Institute of Fisheries Science with
the authorization number: 2019-NIFS-11. The newfound mitochondrial haplotypes (control
region) were deposited in GenBank, with accession numbers ON470395-ON470439.

2.3. Data Analysis

The CR sequences generated were edited using BioEdit ver. 7.2.5 (Informer Tech-
nologies, Inc., Roseau Valley, Dominica) [22]. The sequences were aligned using Clustal
W [23]. DnaSP ver. 5.10.01 (University of Barcelona, Barcelona, Spain) [24] was used for
mtDNA haplotype definition. Fu’s Fs was used to test for evidence of population expan-
sion [25], while Tajima’s D [26], using DnaSP, was applied for neutrality evaluations for
equilibrium in mutational drift. The transitions, transversions, and mismatch distribution
parameters were approximated for each specimen through Arlequin ver. 3.5.1.2 (Institute
of Ecology and Evolution, University of Bern, Bern, Switzerland) [27]. Nucleotide diversity
(7t; [28]), haplotype diversity (/; [29]), and pairwise fixation index (Fst) were calculated
using Arlequin. The median-joining network (MJN) technique [30], using the POPART
v.1.7 (University of Otago, Dunedin, New Zealand) [31], was used to infer evolutionary
links between haplotypes and haplotype frequencies. In comparison to other rooting and
network strategies, such as split decomposition, minimum spanning trees, and TCS, this
method has been proven to generate the finest genealogies [32,33]. Gene flow (Nm) was
evaluated from pairwise Fgr; thatis, Nm = (1/Fst — 1)/2 [34].

3. Results
3.1. Genetic Diversity

We collected 473 bp sequences of the CR from 45 individuals of the finless porpoise
population. The CR sequences consisted of 20 haplotypes. Haplotype diversities (i) were
1.000 regardless of location; however, nucleotide diversities (77) varied by location: 0.003 in the
East Sea, 0.004 in the South and West Seas. Analyses of CR variability revealed that the finless
porpoise population possessed consistent haplotype and nucleotide diversities, indicating a
significant number of distinct haplotypes, as indicated by prior research (Table 1).

3.2. Structure of Population Genetics and Gene Flow

In terms of differentiation index, the index of each group in the East, South, and West
Seas was 0.374 (p < 0.001), and when analyzed with two groups, ES (East and South Seas of
finless porpoise; the ES population) and W (West Sea of finless porpoise; the W population),
the index was confirmed at 0.456 (p = 0.000). The pairwise fixation index (Fst) was higher
in the two populations, W and ES, than in the respective populations of the East Sea, South
Sea, and West Sea. This indicated a significant level of genetic differentiation between the
two populations, W and ES (Table 2). AMOVA analysis confirmed the genetic variation
between the population of 45.57%, and Fst showed a significant genetic structure (Table 3).
The median joining network of 10 haplotypes revealed that haplotypes are separated into
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two major clusters (Figure 3). One cluster was identified only as W, whereas the other was
constituted of haplotypes obtained from the ES. Moreover, the Fst data indicated that a
historic differentiation event may have happened between two clusters. Gene flow varied
from 0.597 to 1.753 between populations in our study. Following Wright [36], the Nm was
categorized into three grades: high (>1.0), medium (0.250-0.99), and low (0.0-0.249). Our
data identified a medium level (Nm = 0.597) gene flow. We found high levels of genetic
differentiation (Fst of 0.456) and medium levels of gene flow (Nm of 0.04-0.71) between
the W and ES populations, based on CR sequences.

Table 1. Indicators of molecular genetic diversity for the mitochondrial control area of N. phocaenoides

in Korea.
Location n nh H T References
East Sea 15 3 1.000 + 0.0022 0.0031 £ 0.0022 This study
South Sea 15 7 1.000 = 0.0025 0.0037 £ 0.0025 This study
West Sea 15 10 1.000 + 0.0029 0.0043 4= 0.0029 This study
SYS 18 10 0.9085 £ 0.0443 0.0042 £ 0.0026 Yang et al. [14]
YS 53 9 0.7138 £ 0.0394 0.0030 £ 0.0022 Yang et al. [14,35]
Abbreviations: 1, indicates number of individuals; nh, number of haplotypes; h, haplotype diversity; 77, nucleotide
diversity.

Table 2. Mitochondrial genetic differentiation analysis based on mtDNA control region using pairwise
fixation index (FsT) and gene flow (below value) of N. phocaenoides samples from coast off Korea.

Location ESW SW EW ES
0.374 **
ESW (0.837)
E 0.222 **
(1.753)
S 0.071*
(6.511)
0.456 **
w (0.597)

*p <0.05, ** p < 0.001; Abbreviations: E, East Sea finless porpoise; S, South Sea finless porpoise; W, West Sea finless
porpoise; ESW, East, South, and West Sea finless porpoise; SW, South and West Sea finless porpoise; EW, East and
West finless porpoise; ES, East and South Sea finless porpoise.

Table 3. Analysis of molecular variance (AMOVA) results for the genetic structure of N. phocaenoides
divided into two groups (ES and W) based on the mtDNA control region sequence.

Percentage of

Source of Variation Variance Variation Fst p-Value
Between populations 0.742 45.57 0.456 <0.001
Within populations 0.887 54.43

3.3. Demographic History

The difference between the estimates of 8 (0.234) and 6, (6827.474) for W was larger than
the difference between 6 (0.000) and 6; (2.246) for ES. The estimates of 6 for CR showed a
larger difference in the W (6 = 0.234, 6 = 6827.474) than in the ES (6 = 0.000, 61 =2.246). The W
deviated significantly from the neutral constant population size anticipations with statistically
significant negative values for Fu’s F; and Tajima’s D. This result reveals a significant excess of
singleton mutations relative to the neutral expectation, which is comparable with a bottleneck
or a selective sweep [16]. Although Fu'’s F; values of ES showed a significant negative value,
Tajima’s D showed no significant deviation despite a negative value display. The tau (t) value
of the W was 2.988 and the tau (t) value of the ES was 1.832, indicating that the estimated
time since the sudden population was 87,738 and 53,804 years ago, respectively (Table 4).
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Figure 3. Median joining network-based mtDNA control region sequence haplotypes of 45 finless
porpoises, including sequences from East, South, and West Seas. Aligned sequences were 473 bp long.
Circle color indicates the region: dark blue, East Sea; purple, South Sea; yellow, West Sea.

Table 4. Summary of the mtDNA sequence variability for populations of N. phocaenoides.

Location n ti tv T Taj 1£)na S Fu’s Fg T 0o 01
ES 30 7 0 0.0035 —0.537 —27.486 ** 1.832 0.000 2.246
w 15 5 5 0.0043 —1.614* —20.081 ** 2.988 0.234 6827.474 *
E 15 3 0 0.0031 —0.833 —23.695 ** 2.761 0.746 6828.067
S 15 7 0 0.0037 —0.925 —21.762 ** 0.633 0.000 26.705

* Significant at p < 0.05; ** p < 0.001. Abbreviations: n, indicates number of individuals; ti, number of transitions;
tv, number of transversions; 77, nucleotide diversity; T, 6y and 6, mismatch distribution parameter estimates from
mismatch analyses.

4. Discussion

Using mtDNA CR sequences, we compared the genetic diversity, population structure,
and demographic history of finless porpoises in the East, South, and West Seas. It is
believed that the spatial genetic organization of a population is a crucial component in its
short-term evolution [37]. It is the outcome of interactions between ecological elements,
and it is sensitive to human interventions, historical events, natural selection, and other
considerations. The key element impacting the small scale spatial genetic structure of
species with a restricted distribution range is limited gene flow. Species with limited gene
flow are susceptible to the phenomenon of individual aggregation, which influences the
spatial genetic structure of the population [38]. In this investigation, the genetic structure
of these populations in the confined space of the East Sea, the South Sea, and the West Sea
was determined, and it was observed that the species in this area were divided into two
populations, W and ES. It was verified that the medium-level gene flow had an effect on
the spatial structure of the population. The genetic diversity of the mtDNA CR sequence of
the finless porpoise analyzed here was confirmed to be similar to or slightly higher than
that found in previous studies, and the nucleotide diversity was low. These characteristics
have also been identified in other cetacean species [39—43]. In the Northwest Atlantic (H:
0.93), the levels of haplotype diversity of CR sequences in the finless porpoise were greater
than in the harbor porpoise, Phocoena phocoena [39]. The nucleotide diversity of finless
porpoises in the present study was lower than that previously reported for finless porpoises
in China (7r: 0.0042) [14]. The mtDNA sequence in this study showed high genetic diversity
compared to other Neophocaena species, Neophocaena asiaeorientalis. Chen et al. [44] and
Zheng et al. [5] reported a nucleotide diversity of 0.0011 for N. asiaeorientalis mtDNA CR
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from another Neophocaena species. The nucleotide diversity (0.0011 [5,44]) and haplotype
diversity (0.55 [44],0.65 [5]) were lower compared to the finless dolphins in the present
study. High haplotype diversity in conjunction with low nucleotide diversity may indicate
recent population expansion, according to a prior study [45]. Recent population growth is
consistent with the demographic assessments of the W and ES populations.

Genetic studies of finless porpoises off the coast of Korea have been conducted pre-
viously [46], but no genetic differences were found, due to the limited number of South
Sea samples. Yoshida et al. [1] suggested that studies of populations of finless porpoises
in all Asian waters are necessary. The current study identified, for the first time, the exis-
tence of two distinct clades of finless porpoises in the three seas, a finding which suggests
that two distinct populations may be present. An analysis of the pairwise fixation index
(Fst) showed overall significant levels of genetic structuring (Fst = 0.4557, p = 0.000). As
a result of AMOVA analysis, molecular variation was 45.57% higher than in previous
studies (41.38% [14]), which is explained by molecular variation between populations,
indicating the population structure of the finless porpoise. Using CR markers, Yoshida
et al. [1] identified a significant population structure (Fst = —0.013-0.893, p < 0.05) of finless
porpoises in the coastal waters of Japan. These researchers concluded that there was a
distinct population in each of the five locations.

The population structure of finless porpoises was investigated by merging East and
South Sea porpoises along the east coast of Korea. Previous research reveals a continuous
distribution of porpoises in these waters; therefore, these data have been combined [47,48].

Our findings indicate that there is a new demographic structure of finless porpoise off
Korean shores. We found a negative and highly significant Tajima’s D value, suggesting a
historical population growth, a finding which is similar to the results of other studies [15,16].
The Fu’s Fs tends to be negative when there is an excess of recent mutations, indicating
deviation caused by population expansion and selection [49]. Consistent with the existence
of a bottleneck or selective sweep, these data suggest a considerable excess of singleton
mutations relative to the neutral expectation [16].

Using a rate of 3.6% per million years for mtDNA CR sequences divergence, the diver-
gence between clusters W and ES was predicted to have occurred 87,738 and
53,804 years ago. During the glacial epoch, a lowered sea level secluded the East Sea
from the Pacific Ocean [35,50]. The bearing bottom water appeared during the last glacial
age (115,000-11,700 years ago), and the vertical mixing of seawater significantly reduced or
stopped during this period [51]. The West Sea (Yellow Sea), located between the Korean
Peninsula and mainland China, was entirely exposed during the last glacial period, when
the sea level was 120-130 m lower than it is currently [52]. The difference in the values
of 6y (0.234) and 0 (6827.474) is evidence of population expansion in the West Sea, due
to the influence of the last glacial age. During this time, there was large-scale iceberg
discharge into the Pacific Ocean, and large volumes of freshwater would have been injected
into the ocean [53,54]. Therefore, it is possible that major changes have occurred in the
Pacific region and in the global climate. The finless porpoise in the East and South Seas
may have been affected by the new environment after the large icebergs were ejected. All
environmental events affect the status and diversity of genetic populations, which in turn
changes genomic regions [55]. This observation supports the possibility of a genetically
discrete finless porpoise population in the coastal waters of Korea. In a previous study
using a satellite tracking device, Park et al. [56] confirmed that the finless porpoises in the
South Sea migrated to the East Sea.

There was a statistically significant disparity between the West and East populations.
Therefore, these populations should be treated as separate management units. Samples from
the whole span of the South Sea and the East Sea were not included in this study. Genetic
samples of finless porpoises that were bycatch or stranded in the West Sea, the eastern portion
of the South Sea, and the southern portion of the East Sea were collected and analyzed. The
genetic examination of samples from three marine regions off the coast of Korea, however,
provides crucial information for the study of finless porpoises in Asia. In future research,
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it will be necessary to examine a wide variety of genetic samples from the East, West, and
South Seas off the coast of Korea, as well as to examine them in various ways (microsatellite,
SNP, NGS, and STR marker-related) by adding samples from the western and northern parts
of the South Sea. Our findings indicate the necessity of incorporating Korean population
genetics into stock assessment models of finless porpoises in order to ensure their sustainable
management. These findings may have substantial consequences for the conservation and
management of finless porpoises along the Korean coast.
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