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Abstract: Weigh-in-motion (WIM) systems are used to measure the weight of moving vehicles.
Aiming at the problem of low accuracy of the WIM system, this paper proposes a WIM model
based on the beetle swarm optimization (BSO) algorithm and the error back propagation (BP) neural
network. Firstly, the structure and principle of the WIM system used in this paper are analyzed.
Secondly, the WIM signal is denoised and reconstructed by wavelet transform. Then, a BP neural
network model optimized by BSO algorithm is established to process the WIM signal. Finally, the
predictive ability of BP neural network models optimized by different algorithms are compared
and conclusions are drawn. The experimental results show that the BSO-BP WIM model has fast
convergence speed, high accuracy, the relative error of the maximum gross weight is 1.41%, and the
relative error of the maximum axle weight is 6.69%.

Keywords: WIM; BSO algorithm; wavelet transform; BP neural network

1. Introduction

The problem of vehicle overload seriously endangers traffic safety, not only easily
causing traffic accidents, but also causing fatal damage to the structure of roads and
bridges [1]. Weight measurement is the most direct way to identify overloaded vehicles.
Static weighing is a very mature method for weighing stationary vehicles with an accuracy
of 0.1%. However, static weighing of moving vehicles on the road requires the vehicle
to stop, which is likely to cause traffic jams and affect the efficiency of vehicle traffic.
Compared with static weighing, weigh-in-motion (WIM) can measure the weight of a
moving vehicle without affecting vehicle traffic, so it has a higher detection efficiency.
However, the application of WIM is limited due to its low precision. A proper estimation
of weighing accuracy is crucial for WIM systems to be efficient in direct enforcement
of overloading [2]. The study of Lhoussaine Oubrich et al. shows that the accuracy of
a WIM system is mainly affected by the quality of the road surface, axle load, speed,
and suspension system structure [3]. In addition, the distance between the sensor and
the wheel, the installation depth position of the sensor, and the pavement temperature
also affect the weighing accuracy of the WIM system [4,5]. There are many factors that
affect the accuracy of WIM, and the relationship between different influencing factors is
unknown. Therefore, it is difficult to determine the relationship between the accuracy of
WIM and different factors. Artificial neural networks (ANN) possess the characters of
strong nonlinear mapping, adaptive learning, fault-tolerance performance, and robustness.
They are widely used in pattern recognition, data processing, fault diagnosis, and so on.
Some researchers have used neural networks to improve the accuracy of WIM systems.
Sungkon Kim et al. used ANN to analyze the WIM signal of the main girders and the
weighing information of the vehicle to calculate the vehicle weight and axle weight of the
vehicle. Their study shows that the accuracy of ANN method is higher than that of the
influence line method in axle load calculation [6]. Yun Zhou et al. used a deep convolutional
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neural network to distinguish vehicle weight and bridge structure response to estimate
vehicle attributes [7]. Zhixin Jia et al. used the BP model to identify the sensor closest to the
tire–pavement contact area, and then used the signal from the sensor to predict the vehicle
weight. In their experiments, 96.5% of the test samples had a relative error of less than
5% [8]. However, the BP neural network is sensitive to the initial weights and can easily
fall into the local optimum, which makes its performance unable to reach the optimum.
Optimization algorithms such as the swarm intelligence algorithm and genetic algorithm
(GA) can adjust the initial weight of the BP neural network and reduce the possibility of
falling into the local optimum. Tiantian Wang et al. compared the performance of BSO,
particle swarm optimization (PSO), GA, and the grasshopper optimization algorithm (GOA)
on 23 benchmark functions. Experiments show that the performance of BSO algorithm
is better than other algorithms [9]. The BSO algorithm combines the information sharing
mechanism of the PSO algorithm and the search mechanism of the beetle antennae search
(BAS) algorithm is applied in different fields [10]. Jianming Zhou et al. used the BP neural
network optimized by the BSO algorithm to predict the parameters of each part of the
twisted pair and improved the prediction accuracy of the crosstalk of the twisted pair [11].
Lei Wang adjusted the control parameters of the robot hand trajectory planning through
the BSO algorithm and compared it with the PSO algorithm and the genetic algorithm to
verify the superiority of the BSO algorithm [12]. F.N. Al-Wesabi et al. used BSO to optimize
the weights and bias parameters of the least squares support vector machine to achieve
a better classification effect [13]. Parminder Singh et al. proposed an adaptive neuro-
fuzzy inference system for heart disease and multi-disease diagnosis and used the BSO
algorithm to optimize the parameters of the inference system, which improved the accuracy
and precision of diagnosis [14]. Aiming at the defects of the BP neural network and the
superiority of the BSO algorithm, this paper proposes a WIM model based on the BSO
algorithm and BP neural network. Firstly, the structure and principle of the WIM system
used in this paper are analyzed. Secondly, the WIM signal is denoised and reconstructed by
wavelet transform. Then, a BP neural network model optimized by the BSO algorithm is
established to process the WIM signal. Finally, the predictive ability of BP neural network
models optimized by different algorithms are compared and conclusions are drawn. The
purpose of this paper is to study the effect of improving the weighing accuracy of dynamic
weighing system based on a BP neural network optimized by different algorithms.

The paper is organized as follows:

1. Structure and principle of the WIM system.
2. Wavelet transform algorithm.
3. BSO-BP algorithm.
4. Experimental results and analysis.
5. Conclusions.

2. Structure and Principle of the WIM System

The components of the WIM system include an integrated weighing platform, em-
bedded strain sensor, signal processing circuit, ground sensing coil, industrial computer,
and cloud platform. A structural diagram of a WIM system is shown in Figure 1. When
the vehicle passes the weighing platform, the embedded strain sensor deforms under
pressure and converts the weight signal into the voltage signal. The signal processing
circuit converts the voltage signal into the digital signal. The industrial computer calculates
parameters such as vehicle weight, vehicle speed, and number of axles, and uploads these
parameters to the cloud platform via the network.
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Figure 2. Weighing platform.

Two weighing platforms are installed in one lane. The two platforms are side by side.
A single weighing platform has a horizontal width of 1.75 m and a longitudinal width of
0.8 m. The bottom of the weighing platform is supported by two symmetrically placed
I-shaped beams. Two pressure sensors are installed symmetrically on an I-shaped beam.
The structure diagram of the weighing platform is shown in Figure 3.
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3. Pre-Processing of the WIM Signal

Wavelet transform is a transform analysis method which is widely used in the fields
of fault detection, image processing, and signal analysis [15–19]. Since the WIM signal is a
discrete signal, this paper uses discrete wavelet transform to process the WIM signal.

Daubechies (dbN) wavelet function is sensitive to irregular signals and it is widely
used in signal analysis. N is the order of the dbN wavelet function. When N is equal to 4,
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the dbN wavelet has the characteristics of good orthogonality and large vanishing moment.
Multi-layer decomposition and reconstruction of a weighing signal by db4 wavelet can
reduce the interference of noise signal and obtain a real WIM signal.

The waveforms before and after the wavelet transform are shown in Figures 4 and 5,
respectively.
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Figure 5. The weighing signal after wavelet transform.

According to Figures 4 and 5, it can be seen that the high-frequency noise in the
waveform is significantly reduced. The results show that the wavelet transform reduces
the interference of noise and makes the waveform closer to the ideal waveform.

4. BSO-BP Algorithm
4.1. BP Neural Network

The BP neural network has strong nonlinear mapping ability, which is widely used
in the fields of pattern recognition, parameter estimation, motion control, and classifica-
tion [20–24]. The structure of the BP neural network is shown in Figure 6.

In Figure 6, Xt (1 < t < n) is the input nodes and Yu (1 < u < m) is the output nodes. In
addition, wij represents the weight of the input layer to the hidden layer and wjk represents
the weight of the hidden layer to the output layer.
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4.2. PSO Algorithm

The PSO algorithm can search the best region in complex space through group coop-
eration [25]. Each particle constantly adjusts its search behavior by learning from its own
experience and that of other particles. Particles update their velocity and position by the
following formulas during each iteration:

Vi(k + 1) =ωVi(k) + c1r1[pibest − Xi(k)] + c2r2[pgbest − Xi(k)] (1)

Xi(k + 1) = Xi(k) + Vi(k) (2)

where Vi is the velocity of the particle i, Xi is the position of the particle i, pibest is the
historical optimal position of the particle i, pgbest is the global optimal position, k is an
evolution algebra,ω is an inertia weight, c1 and c2 represent learning factors, and r1 and
r2 represent random numbers between (0,1). In addition, the position and speed of the
particles need to be limited by parameters.

4.3. Principle of BAS and BSO Algorithms

The BAS algorithm imitates the beetle’s search mechanism and random behavior [26].
The beetle uses its left and right antennae to detect the strength of food smells and adjusts
the direction of its search. Based on this simple principle, it can easily find food. Yinyan
Zhang et al. studied the convergence of the BAS algorithm, and the results show that BAS
algorithm has good performance [27]. The steps of the BAS algorithm are as follows:

1. Create a normalized random vector b. The calculation formula is as follows:

b =
rands(m, 1)
‖rands(m, 1)‖ (3)

where rands() is a random function, m is a spatial dimension, and b represents the vector
from the left antennae to the right antennae;

2. Create a spatial search model for the left and right antennae:

xrk = xk + dk × b/2 (4)

xlk = xk − dk × b/2 (5)

where xrk represents the position coordinates of the right antennae at the kth iteration, xlk
represents the position coordinates of the left antennae at the kth iteration, xk represents the
centroid coordinates of the beetle at the kth iteration, and dk represents the search distance
between the left and right antennae at the kth iteration;

3. f(xlk) and f(xrk) are calculated using the fitness function f(x);
4. Iteratively update the position of the beetle through search behavior:
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xk+1 = xk − δk × b× sign(f(xrk)− f(xlk)) (6)

where δk represents the step size of the tth iteration, and sign() represents the sign function;

5. Update search distance and step size:

dk = ηd × dk−1 + d0 (7)

δk = ηδ × δk−1 + δ0 (8)

where ηd is is the attenuation coefficient of the search distance, ηδ is the attenuation
coefficient of the step size, and d0 and δ0 represent the minimum distance threshold and
the minimum step threshold. Set d0 and δ0 to avoid the value of dk and δk being 0.

The objective function is calculated only twice in each iteration, so the BAS algorithm
has strong global search ability [28]. However, the single search characteristic of the BAS
algorithm makes it easy to fall into the local optimum when processing high-dimensional
data, and it can only solve the single-objective optimization problem [29]. The BSO algo-
rithm combines the search method of the BAS algorithm and the group information sharing
mechanism of the PSO algorithm, which not only accelerates iterative convergence, but
also reduces the possibility of falling into local optimum [30]. In the BSO algorithm, the
random direction b in the expression of the antennae is replaced by the speed of the PSO
algorithm. The expression is as follows:

xk
ird = xk

id + vk
id × dk/2 (9)

xk
ild = xk

id − vk
id × dk/2 (10)

where xk
ild and xk

ird are the position vectors of the left and right antennae of particle i in
the dth dimension at the kth iteration.

Increment of searching behavior of beetle antennae:

ξk+1
id = δk × vk

id × sign(f(xk
ird) − f(xk

ild)) (11)

where ξk+1
id represents the increment of the search behavior at the (k + 1)th iteration.

The updated formula for the position and velocity of the beetle swarm is as follows:

vk+1
id =ωvk

id + c1r1(pbestk
id − xk

id) + c2r2(gbestk
id − xk

id) (12)

xk+1
id = xk

id + vk+1
id + ξk+1

id (13)

where xk
id represents the position of the beetle i at the kth iteration, xk+1

id represents the
speed of the beetle i at the (k + 1)th iteration, c1 and c2 represent learning factors, r1 and r2
represent random numbers between (0,1), pbestk

id is the historically optimal position of
the beetle i, gbestk

id represents the historical global optimal position of the beetle swarm.
In the PSO algorithm, inertia weight ω is a fixed value. The research shows that

the inertia weight has a great influence on the searching range of particles. This paper
introduces the inverted S-shaped function to adjust the inertia weight to improve the
searching ability of the algorithm. The updated formula of the inertia weight is as follows:

ω = ωmax −
ωmax −ωmin

1 + ea−bt (14)

whereω represent random numbers between (0.4,0.9), b is equal to 0.2, and a is equal to 5.

4.4. Establishment of the BSO-BP WIM Model

The random initial weight of the BP neural network makes the network unstable and
easily falls into local optimum. The BSO algorithm is used to optimize the weights and
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thresholds of the BP neural network, which can reduce the possibility of the network falling
into a local optimum. The optimization steps are as follows:

1. The data processed by wavelet transform is used as the input sample of BSO-BP
neural network;

2. Set the size of the beetle swarm, the maximum number of iterations, the inertia
weight, and the search space dimension, etc. The search space dimension is calculated
as follows:

D = m × n + r × n + n + r (15)

where m represents the number of neurons in the input layer, n represents the number of
neurons in the hidden layer, and r represents the number of neurons in the output layer;

3. Randomly generate the position and speed of the beetle. According to formula 25, the
fitness function value is calculated. Save the individual optimal value and the group
optimal value:

f(xi) =
1
N

N

∑
i=1

(
x′i − xi

)2 (16)

where N represents the number of training samples, x′i represents the predicted value of
the training sample, and xi represents the true value of the training samples;

4. Update the step size of the beetle:

δk+1 = eta × δk (17)

where k is the number of iterations and eta is equal to 0.95.

5. Iterative optimization. Iteratively update the position, velocity and inertia weight of
the beetle. The individual optimal value of the beetle and the group optimal value of
the beetle swarm are updated according to the fitness value of the beetles;

6. The final iteration result is taken as the initial weight and threshold value of BP
neural network;

7. Train the BSO-BP WIM model. Continuously update the weight and threshold of the
network according to the error until the set accuracy is reached.

5. Experimental Results and Analysis

A total of three vehicles were tested. Among them, there is one two-axle car, one
four-axle car, and one six-axle car. In addition, each vehicle is divided into two states, empty
and full, to simulate different cargo loading conditions. Before the test, three vehicles were
statically weighed to obtain the static gross weight and static axle weight. After the test, the
dynamic gross weight, dynamic axle weight, and vehicle speed of the vehicle are recorded.
The test vehicles pass as close to a constant speed as possible, and the vehicle speed is less
than 70 km/h. A total of 261 groups of experimental data were collected. According to the
experimental data, the gross weight dataset and the axle weight dataset were respectively
composed. The gross weight dataset includes vehicle speed, number of axles, dynamic
gross weight, and static gross weight. The axle weight dataset includes vehicle speed,
number of axles, axle number, dynamic axle weight, and static axle weight. The parameters
of all tested vehicles are shown in Table 1.
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Table 1. Data from three test vehicles.

Number of
Axles Load

First
Axle
(kg)

Second
Axle
(kg)

Third Axle
(kg)

Fourth
Axle
(kg)

Fifth
Axle
(kg)

Sixth Axle
(kg)

Static
Weight

(kg)

2
Empty 1870 1440 / / / / 3310

Full 2358 2932 / / / / 5290

4
Empty 5512 4746 6326 5976 / / 22,560

Full 7339 8001 24,756 25,434 / / 65,530

6
Empty 4847 2905 2981 1197 1823 2957 16,710

Full 5591 7123 7318 10,315 11,523 12,080 53,950

5.1. Data Pre-Processing

This paper used MATLAB to construct a BSO-BP WIM model. The input data and
output data were normalized using the mapminmax function to improve the training speed
of the samples.

After the training of the BSO-BP WIM model, the prediction results of the model were
processed by inverse normalization.

5.2. Establishment of WIM Model and Parameter Selection

The input layer has three nodes, namely dynamic vehicle weight, vehicle speed, and
axle number. The purelin is the transfer function from the hidden layer to the output layer.
In the BSO algorithm, the population size N is 10, the learning factors c1 and c2 are both
equal to 2, and the convergence accuracy E is 0.001. The training time of the BP network
is 20,000, the learning rate is 0.01, and the target error is 0.000004. The gross weight test
set and the gross weight training set are randomly selected from the gross weight data set.
Among them, 10% of the data is used as the gross weight test set, and the remaining 90% of
the data is used as the gross weight training set for model training. Axle weight test set
and axle weight training set are established in the same way.

5.3. Prediction of Gross Vehicle Weight and Analysis of Results

The BSO-BP WIM model, the BP WIM model, and the PSO-BP WIM model are
established through the gross weight training set. The prediction errors of the three models
on the gross weight test set are compared. The comparison result is shown in Figure 7.
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In Figure 7, the gross weight prediction error of the BSO-BP WIM model is significantly
lower than that of the BP WIM model and the PSO-BP WIM model.

The average gross weight relative error and the maximum gross weight relative error
of the three models are shown in Table 2.

Table 2. Mean gross weight relative error and maximum gross weight relative error for the three models.

Model Mean Gross Weight Relative
Error/%

Maximum Gross Weight Relative
Error/%

BP 2.83 9.82
PSO-BP 2.62 18.78
BSO-BP 0.53 1.41

As can be seen from Table 2, the average gross weight relative error and maximum
gross weight relative error of the BSO-BP WIM model are lower than those of the PSO-BP
WIM model and the BP WIM model. The mean relative error of the gross weight test set is
reduced from 5.58% to 0.53%, and the maximum relative error is reduced from 15.07% to
1.41%. The results show that the BSO algorithm improves the accuracy and generalization
ability of the BP neural network, and its optimization effect is higher than that of the PSO
algorithm.

The fitness function values of the PSO-BP neural network and BSO-BP neural network
are compared. The fitness function value is the absolute value of the difference between
the predicted gross weight and the static gross weight. The comparison result is shown in
Figure 8.
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In Figure 8, the PSO-BP algorithm needs more than 50 iterations to reach the optimum
and its fitness value is about 70. The BSO-BP algorithm only needs 25 iterations, and
its fitness value is about 20. The results show that the BSO algorithm can improve the
convergence speed, enhance the optimization ability, and prevent the algorithm from falling
into local optimum.

5.4. Prediction of Axle Weight and Analysis of Results

The BSO-BP WIM model, the BP WIM model, and the PSO-BP WIM model are
established through the axle weight training set. The prediction errors of the three models
on the axle weight test set were compared. The comparison results are shown in Figure 9.
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The average axle weight relative error and the maximum axle weight relative error of
the three models are shown in Table 3.

Table 3. Mean axle weight relative error and maximum axle weight relative error of three models.

Model Mean Axle Weight Relative
Error/%

Maximum Axle Weight Relative
Error/%

BP 3.51 12.28
PSO-BP 3.12 13.52
BSO-BP 1.61 6.69

As can be seen from Table 3, the axle weight prediction error of the BSO-BP WIM
model is smaller than that of other models. The mean relative error of the axle weight
test set is reduced from 3.38% to 1.61%, and the maximum relative error is reduced from
6.86% to 6.69%. From the comparison results of Tables 2 and 3, it can be seen that the BSO
algorithm has a higher prediction accuracy for gross weight or axle weight.

Three axle weight samples with different axle numbers were selected from the axle
weight dataset. The original waveforms of the three axle weight samples were corrected
according to the predicted axle load. The corrected waveforms, original waveforms, and
static waveforms of the three axle weight samples were compared, respectively. The
comparison results are shown in Figures 10–12.
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As can be seen from Figures 10–12, the predicted axle weight of the BSO-BP WIM
model is the closest to the static axle weight. The comparison of axle weight waveforms is
more intuitive, which further verifies that the BSO algorithm has better performance.

6. Conclusions

This paper proposed a BP WIM model optimized based on the BSO algorithm to
improve the accuracy of the WIM system. The BSO algorithm combines the information
sharing mechanism of the PSO algorithm and the single search mechanism of the BAS
algorithm and has a stronger ability to find capabilities. After the initial weights of the BP
neural network are optimized by the BSO algorithm, the generalization and convergence
capabilities of the network are improved. After the optimization of the BSO-BP model,
the average relative error of axle weight of test set was reduced from 3.38% to 1.41%, the
maximum relative error of axle weight was reduced from 6.86% to 6.69%, the average
relative error of gross weight was reduced from 5.89% to 0.53%, and the maximum relative
error of gross weight was reduced from 15.07% to 1.41%. Experimental results show that
BSO-BP model can improve the accuracy of the WIM system, and the prediction accuracy
of gross weight was higher than that of axle weight. Meanwhile, the prediction accuracy of
gross weight and axle weight using the BSO-BP model is higher than that using the PSO-BP
and BP models. The results verify the superiority of the BSO algorithm, indicating that the
optimization ability of the algorithm is stronger than that of the PSO algorithm.

Although the BSO algorithm can improve the accuracy of the dynamic weighing
system, its performance is easily affected by parameters, and it takes more time to adjust the
parameters of the model to achieve better results. In addition, limited by the experimental
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conditions, the number of test vehicles is small, and the actual vehicle traffic situation
cannot be completely simulated.
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