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Abstract: We investigated the antioxidative activity of LX519290, a derivative of L-allo threonine,
in vitro and in vivo. To evaluate the antioxidative activity of LX519290, we performed several in vitro
assays (2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulphonic
acid) (ABTS) radical-scavenging assays, a ferric reducing antioxidant power assay, cupric-reducing
antioxidant capacity, and oxygen radical absorbance capacity assay) and evaluated inhibition against
the generation of nitric oxide (NO) and reactive oxygen species (ROS) in murine macrophage
(RAW264.7) cells. The results showed that LX519290 possessed very strong radical scavenging
activity and reducing power, and inhibited NO and ROS generation in a dose-dependent manner
without showing any cytotoxicity. LX519290 treatment also increased the total thiol content and
glutathione S-transferases (GST) activities in RAW264.7 cells. Finally, we also determined whether
LX519290 affects the mRNA levels of antioxidant enzymes in vitro and in vivo. The expression of
superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were markedly
higher in the sample-treated group than in the oxidative stress group. LX519290 treatment also
increased the transcriptional and translational activities of NF-E2-related factor-2 (Nrf-2) with
corresponding increases in the transcriptional and translational activities of haeme oxygenase-1
(HO-1). Collectively, the data demonstrated that LX519290 has potent antioxidative activity, decreases
NO and ROS generation, increases total thiol content and GST activities in RAW264.7 cells,
and increases the transcriptional and translational levels of antioxidant enzymes in vitro and in vivo.
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1. Introduction

Toxic reactive oxygen species (ROS) are generated during aerobic metabolism, and excessive
generation of ROS, which include superoxide anions (O2

•−), hydrogen peroxide (H2O2), and hydroxyl
radicals (OH•), causes oxidative stress [1]. Oxidative stress is mainly associated with the pathogenesis of
various disorders and diseases, such as diabetes, cancer, and cardiovascular disorders, and accordingly,
interest has recently been increasing in the use of antioxidants for the maintenance of human health and
prevention and treatment of certain diseases [2]. Antioxidants have shown a role in cellular protection
against oxidative stress through direct or indirect pathways depending upon their working mechanism.
In direct pathways, antioxidants scavenge reactive oxygen and nitrogen species by being consumed or
chemically modified. In contrast, indirect pathways are involved by upregulating phase II detoxifying
and antioxidative enzymes [3].
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Aerobic organisms have effective antioxidant networks to defend against oxidative stress,
involving primary enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx), as well as inducible phase II detoxifying enzymes such as haeme oxygenase-1 (HO-1)
and NAD(P)H:quinone oxidoreductase1 (NQO1) through the activation of NF-E2-related factor-2
(Nrf-2) [4]. Moreover, some antioxidants have displayed their antioxidant activity in both a direct and
indirect fashion and are referred to as bifunctional antioxidants [5]. For this reason, we studied the
antioxidative effects of LX519290, a derivative of L-allo threonine (Figure 1), using in vitro and in vivo
assays, to evaluate whether it has potency as a bifunctional antioxidant to lessen oxidative stress.
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volume) over 10 min, then stirred at 0 C for 2 h, warmed to 25 C, and concentrated. The product 
was next partitioned between ethyl acetate and water, thereafter, the organic layer was collected, 
dried over MgSO4, and concentrated. The residual fraction was purified by chromatography to allow 
a white solid carbamic acid tert-butyl ester. A solution of the resulting product (1.0 equivalent volume) 
and phenyl hydrazine (10.0 equivalent volume) in ethanol was refluxed at 100 C for 1 h. The solution 
was stirred at 25 C, and then the concentrated crude product was partitioned, and saturated with 
sodium hydroxide for collecting organic layer. The residue was purified by chromatography to afford 
a white powder LX519290 (R1 = phenyl, R2 = tert-butoxy). After these steps using L-allo threonine, 
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weight of 309.325. 
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[6,7]. The amino acid, L-allo threonine, another diastereoisomer of L-threonine, is not naturally 
existing in the human whole body and is a component of globomycin which is a peptide antibiotic 
exhibiting spheroplast-forming activity [8]. It is known that the amino acid can be biosynthesized by 
acetaldehyde and glycine in a serine hydroxymethyl transferase-catalysed aldol reaction in 
Escherichia coli [9]. Although the metabolic pathway of L-allo threonine in the human being remains 
unidentified, research has shown that it cannot be digested into L-threonine in chickens [10]. 
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Figure 1. Chemical structure of LX519290. LX519290 was synthesized using the following procedure:
A solution of L-allo threonine (1.0 equivalent volume) in methyl alcohol was added to acetyl
chloride (3.0 equivalent volume) dropwise at 0 ◦C. The mixture was permitted to warm gently
to reflux, evaporate, crystallize to produce L-allo threonine methyl ester as a white powder.
The subsequent product (1.0 equivalent volume) and sodium hydroxide (2.5 equivalent volume)
in dioxane/water (1:1, v/v) was cooled to 0 ◦C and treated portionwise with di-tert-butyldicarbonate
(1.1 equivalent volume) over 10 min, then stirred at 0 ◦C for 2 h, warmed to 25 ◦C, and concentrated.
The product was next partitioned between ethyl acetate and water, thereafter, the organic layer
was collected, dried over MgSO4, and concentrated. The residual fraction was purified by
chromatography to allow a white solid carbamic acid tert-butyl ester. A solution of the resulting
product (1.0 equivalent volume) and phenyl hydrazine (10.0 equivalent volume) in ethanol was
refluxed at 100 ◦C for 1 h. The solution was stirred at 25 ◦C, and then the concentrated crude product
was partitioned, and saturated with sodium hydroxide for collecting organic layer. The residue was
purified by chromatography to afford a white powder LX519290 (R1 = phenyl, R2 = tert-butoxy).
After these steps using L-allo threonine, LX519290 was attained. LX519290 has a unique structure that
consists of C15H23N3O4 with a molecular weight of 309.325.

LX519290 has been previously screened by Heo et al. for anti-atopic and anti-asthmatic activity [6,7].
The amino acid, L-allo threonine, another diastereoisomer of L-threonine, is not naturally existing in
the human whole body and is a component of globomycin which is a peptide antibiotic exhibiting
spheroplast-forming activity [8]. It is known that the amino acid can be biosynthesized by acetaldehyde
and glycine in a serine hydroxymethyl transferase-catalysed aldol reaction in Escherichia coli [9].
Although the metabolic pathway of L-allo threonine in the human being remains unidentified,
research has shown that it cannot be digested into L-threonine in chickens [10].

In the current study, we investigated the antioxidative activity of LX519290 in vitro and in
a 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress animal model.

2. Results

2.1. Radical-Scavenging Effects of LX519290 in Vitro

To assess in vitro antioxidant activity, we first examined whether LX519290 possessed free radical
scavenging activity by using DPPH• and ABTS•+ scavenging assays. LX519290 reduced the DPPH•,
a stable organic nitrogen radical, in a dose dependent fashion (Figure 2A), and it was shown that
LX519290 has a higher antioxidant activity than its precursor L-allo threonine. Furthermore, in the
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decrease of the radical cation from 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS•+),
a combined electron transfer and hydrogen atom transfer assay, LX519290 also showed higher
antioxidant activity than L-allo threonine (Figure 2B).
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Figure 2. Radical scavenging effects of LX519290 in vitro. The 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical scavenging assay (A); 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS•+) radical
scavenging assay (B); ferric reducing antioxidant power (FRAP) assay (C); and cupric-reducing
antioxidant capacity (CUPRAC) assay (D) were conducted with various concentrations of LX519290,
and ascorbic acid was tested as a standard antioxidant compound; (E) The oxygen radical absorbance
capacity (ORAC) activities of the samples were measured by subtracting the area under the blank curve
from the area under the sample curve, to gain the net area under the curve (Net fluorescence decay
curve (AUC)). NT: not treated.

Next, we used ferric reducing antioxidant power (FRAP) and cupric-reducing antioxidant capacity
(CUPRAC) assays to assess whether LX519290 has an electron donating capacity. The FRAP test is
a pure electron transfer assay in which ferric ions are reduced by antioxidants that are detected by
the formation of a complex with the probe di-2,4,6-tripyridyl-s-triazine (TPTZ) [11]. Moreover, in the
CUPRAC assay, the chromogenic oxidizing agent bis(neocuproine)copper(II) chloride (Cu(II)-Nc)
reacts with n-electron reductant antioxidants and is reduced to the highly colored Cu(I)-Nc chelate
showing maximum absorption at 405 nm [12]. In this study, LX519290 showed an appreciably higher
reduction capacity than L-allo threonine (Figure 2C,D).

The oxygen radical absorbance capacity (ORAC) assay utilizes an AAPH-induced peroxyl
radical that mimics lipid peroxyl radicals comprised of the lipid peroxidation chain reaction in vivo.
Inhibition of peroxyl radical-induced oxidation of a fluorescent probe, fluorescein, by antioxidants
was continually monitored and the protective effect of an antioxidant was measured by evaluating
the area under the fluorescence decay curve (AUC) [13]. Net AUC values of Trolox and LX519290
were dose-dependently increased (Figure 2E, columns 5–7) and these results indicated that LX519290
(30 µM) exerted similar antioxidant activity to 0.5 mM Trolox (Figure 2E, comparing columns 2–4 with
columns 5–7).
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2.2. Cell Viability of LX519290

The effects of LX519290 on cell viability in RAW264.7 cells were comprehensively investigated
(Figure 3A). Cell viability with various doses (0.3–100 µM) of LX519290 was measured with
a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay kit. The mitochondrial
enzyme activity was taken as an indirect measure of the amount of viable cells. The results showed no
cytotoxic effects at doses up to 100 µM.
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Figure 3. Cell viability and inhibition of nitric oxide (NO) and reactive oxygen species (ROS) generation
in RAW264.7 cells. RAW264.7 cells were split and seeded at a density of 2 × 104 cells per well
(96-well plate) and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (A);
Griess reagent (B); and 2′,7′-dichlorofluorescin diacetate (DCFH-DA) assay (C) were conducted with
various concentrations of LX519290. *** p < 0.001 indicates a significant difference from the negative
control, using a one-way ANOVA followed by Tukey’s post hoc test. RAW264.7 cells were cultured
and treated with (b–d,f–h,j–l) or without (a,e,i) tert-butyl hydroperoxide (t-BHP) and/or ascorbic
acid (c,g,k)/LX519290 (d,h,l), as described in the Materials and Methods section. Phase contrast (a–d),
FITC (e–h), and merged (i–l) images were photographed to measure ROS generation. Scale bar: 50 µm.

2.3. Inhibition Effects of LX519290 on Cellular Nitric Oxide (NO) and Reactive Oxygen Species (ROS)
Generation in RAW264.7 Cells

In cells stimulated with lipopolysaccharide (LPS) or other stimuli, the intracellular ROS
level in macrophages increased rapidly, causing oxidative stress. We then tried to evaluate the
antioxidant activity of LX519290 by examining NO generation and ROS generation. The LPS
stimulation significantly increased the accumulation of NO to 121.9% in the medium compared
with untreated control cells, whereas pretreatment with LX519290 notably decreased NO release
by 23.2% (p < 0.001), 38.4% (p < 0.001), and 40.0% (p < 0.001) at doses of 10, 30, and 100 µM,
respectively (Figure 3B). To further examine the effects of LX519290 on the ROS generation, tert-butyl
hydroperoxide (t-BHP)-induced RAW cells were analyzed by monitoring cell morphology. The results
showed that LX519290 pretreatment notably decreased t-BHP-induced ROS generation (Figure 3C).
Ascorbic acid (a positive control) also exhibited potential in inhibiting cellular ROS generation
(Figure 3C, comparison of f–h and of j–l). These results indicate that LX519290 inhibited intracellular
ROS as well as NO generation without any cellular toxicity.
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2.4. Effects of LX519290 Against Pro-Oxidant Challenge in RAW264.7 Cells

To illustrate, whether LX519290 has activity against pro-oxidant challenge, an H2O2 induced
cellular ROS generation assay was carried out. The increases in the ROS level seen are indicative of
intracellular oxidative stress in cells treated with H2O2 compared with untreated cells (Figure 4A);
however, LX519290-treatment, as expected, ameliorated ROS generation by up to 37% (p < 0.01),
72% (p < 0.01), and 85% (p < 0.01) at the 1, 3, and 10 µM doses, respectively, as compared with
H2O2-treated cells (Figure 4A).
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Figure 4. Effect of LX519290 against pro-oxidant challenge in RAW264.7 cells. RAW264.7 cells were
split and seeded at a density of 5 × 104 cells per well (96-well plate) and measured ROS generation (A);
total thiol content (B); glutathione S-transferases (GST) activity (C); and its mRNA expression (D)
which were conducted with various concentrations of LX519290. ## p < 0.01 indicates a significant
difference from the no treatment group; * p < 0.05 and ** p < 0.01 indicate a significant difference from
the H2O2-treated group.

To further scrutinize the possible role of LX519290 in protein thiol regulation, we next focused
on cellular thiol content measurement under pro-oxidant challenge conditions. In non-treated cells,
LX519290 did not show any significant change in cellular thiol content. In contrast, after pro-oxidant
challenge, the cellular thiol content was drastically decreased as compared to that of the non-treated cell,
whereas LX519290 treatment increased the total thiol content in the cells concentration-dependently
(Figure 4B). Furthermore, we also demonstrated the effects of LX519290 on the glutathione
S-transferases (GST) activity of cells and found that LX519290 has the potential to increase GST
activity in both normal as well as oxidative stress conditions (Figure 4C,D).

2.5. Effects of LX519290 on Gene Expressions of Antioxidants and Phase II Antioxidant Enzymes

To investigate the effects of LX519290 on antioxidant enzymes (SOD1, CAT, and GPx-1) and phase
II detoxifying enzymes (HO-1 and NQO1), RAW264.7 cells were treated with LX519290 for 24 h and
the transcription levels of SOD1, CAT, GPx-1, HO-1, and NQO1 genes were examined. PCR analysis
indicated a dose dependent increase in the mRNA expression of SOD1, CAT, and GPx-1, (Figure 5A)
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as well as HO-1 and NQO1 (Figure 5B). The protein level of HO-1 was further confirmed by Western
blot analysis (Figure 5C,D).
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Figure 5. Analysis of primary and Phase II antioxidant and detoxifying enzyme mRNA levels in
RAW264.7 cells. RAW264.7 cells were pretreated for 24 h with specified concentrations of LX519290.
The mRNA expression of primary antioxidant enzyme (A); and phase II antioxidant and detoxifying
enzyme (B) were measured by reverse transcription polymerase chain reaction (RT-PCR). The protein
level of haeme oxygenase-1 (HO-1) in time dependent (C); and concentration dependent (D); and the
nuclear translocation of NF-E2-related factor-2 (Nrf2) in time dependent (E); and concentration
dependent (F) were analyzed by Western blot.

Nrf2 has been reported to be a crucial nuclear factor stimulating phase II enzymes. To confirm that
LX519290 activates these phase II enzymes through Nrf2, the transcription level of the Nrf2 gene was
analyzed and it was found that LX519290 significantly increased Nrf2 mRNA expression (Figure 5B).
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The protein levels of Nrf2 in the nucleus and the cytosol were also examined, and a time course study
revealed that treatment with LX519290 caused time dependent increases of Nrf2 translation into the
nucleus with a peak level at 12 h after treatment (Figure 5E).

2.6. In Vivo Antioxidant Activity of LX519290

Figure 6 shows ORAC activity in the plasma after intraperitoneal administration of AAPH and
antioxidant compounds for 10 days. The blood samples from the LX519290-treated group showed
the highest Net AUC values. The AAPH-treated negative control group showed a lower Net AUC
value (16.7%) than the saline-treated NT group. The ascorbic acid- or LX519290-treated groups showed
increased Net AUC values, by 1.39-fold and 1.44-fold (p < 0.01) respectively, from the value for the
negative control group (Figure 6A).
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Figure 6. The ORAC activity in the plasma after intraperitoneal injection of LX519290. (A) Rats were
randomly divided into four groups (n = 5 rats per group): a normal group (saline), negative control
group (AAPH, 50 mg/kg body weight), positive control group (ascorbic acid, 150 mg/kg body weight),
and LX519290 group (15 mg/kg body weight). ** p < 0.01, significantly different from AAPH-treated
group, using a one-way ANOVA followed by Tukey’s post hoc test. Analysis of mRNA levels of
NAD(P)H:quinone oxidoreductase1 (NQO1), glutathione peroxidase (GPx), superoxide dismutase
(SOD), and catalase (CAT) in liver tissue. Male Wistar rats, aged 7–8 weeks and weighing 230–270 g
(Samtaco Korea, Osan, Korea), were administered intraperitoneal AAPH with LX519290 for 10 days.
The liver was excised from each animal, and the mRNA level of NQO1 (B); GPx (C); SOD (D);
and CAT (E) was measured by RT-PCR. * p < 0.05, ** p < 0.01 indicates a significant difference from the
AAPH-treated group, using a one-way ANOVA followed by Tukey’s post hoc test.

We further examined whether mRNA expression levels of SOD1, CAT, GPx, and NQO1
were altered in rat liver tissue by treatment with LX519290 for 10 days. As shown in Figure 6,
treatment with 50 mg/kg AAPH decreased mRNA expression levels of the antioxidant enzymes,
whereas administration of LX519290 significantly changed the mRNA levels of SOD1 (141.9%; p < 0.05),
GPx (182.6%; p < 0.01), and CAT (72.1%; p < 0.01), which were markedly higher than those of the
AAPH-treated group, and NQO1 (91.6%; p < 0.01) mRNA recovered to the normal level.
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3. Discussion

ROS, including superoxide anion (O2
•−), hydrogen peroxide (H2O2), and hydroxyl radical (OH•),

are by-products of cellular metabolic reactions and pathways, and are intracellular, toxic species,
partially produced by reduction of oxygen (O2). It is well documented that ROS are more chemically
reactive than O2; thus, ROS were thought to act entirely as cellular harmful agents, extensively reacting
with lipids, proteins, and DNA [14]. Previously, we produced a unique chemical library using
a combinatorial chemistry technique. LX519290 was a hit derived from this library and exhibited
anti-atopic dermatitis [6] and anti-asthmatic activity [7]. Therefore, this protective effect may confer
an avenue for preventive and curative approaches by anti-oxidation and anti-inflammation. In this
regard, we examined the antioxidant effects of LX519290 using various in vitro and in vivo methods to
hypothesize a possible mechanism.

The compounds become an antioxidant if they (i) have a hydrogen or electron-donating
capacity, (ii) have the ability to stabilize and delocalize the unpaired unstable electron, and (iii) have
metal-chelating potential [15]. DPPH• and ABTS•+ are considered the most popular spectrophotometric
methods for the determination of the antioxidant capacity of any test molecule. In the DPPH assay,
the stable free radical DPPH accepts an electron or hydrogen radical from antioxidant and reduces
to become a stable diamagnetic non-radical DPPH-H molecule [16] with consequent discolouration
and decrease in absorbance. The degree of discolouration directly correlates with the magnitude
of scavenging potential of an antioxidant compound in terms of its hydrogen donating ability.
Moreover, in the ABTS•+ scavenging assay, the pre-formed ABTS•+ is generated by oxidation of
ABTS with potassium persulphate, which can be reduced in the presence of hydrogen-donating
antioxidants. As presented in Figure 2, LX519290 exhibited more effective radical cation scavenging
activity than its precursor, in agreement with previous results [11,17], indicating that the presence of
phenylhydrazine as well as the character of the side chain made a significant difference, possibly owing
to the ability to donate electrons or hydrogen atoms. FRAP assay involves the reduction of yellow
ferric tripyridyltriazine complex (Fe(III)-TPTZ) to blue ferrous complex(Fe(II)-TPTZ) by the action of
electron donating antioxidant which are measured spectrophotometrically at 593 nm [18]. The ability of
a compound to generate Fe(II) from Fe(III) defined as “antioxidant power” in the FRAP assay because
some antioxidants, such as ascorbic acid, can decrease both reactive species and Fe(III) and their ability
in lessening Fe(III) may reflect their ability in diminishing reactive species. Again, the CUPRAC
assay uses the copper(II)-neocuproine agent as the chromogenic oxidant. Because of the lower
redox potential of the CUPRAC reagent, reducing sugars and citric acid are not oxidized with the
CUPRAC reagent [12], therefore, copper reduction may be an even more sensitive indicator to measure
antioxidant potentiality [13]. In this study, the results demonstrated noticeable antioxidant potential
(in terms of FRAP and CUPRAC, measured as Ascorbic acid equivalent) of LX519290, which was
gradually increased with increasing concentrations of samples (Figure 2C,D). The ORAC method in
particular is considered a favorable method, owing to its biological relevance to in vivo antioxidant
efficacy [19]. In the improved ORAC assay, AAPH loses a dinitrogen to create an AAPH radical that
further reacts with oxygen quickly to make a more stable peroxyl radical, ROO•. In the presence
of antioxidants, ROO• accepts a hydrogen atom from the antioxidant to form ROOH and a steady
antioxidant radical. As a result, the injury to fluorescein, caused by the peroxyl radical, is inhibited,
and the reaction mechanism was decided to follow the hydrogen atom transfer mechanism [20]. In this
study, the net AUC values of LX519290 were increased in a dose-dependent manner, similar to Trolox
(Figure 2E), suggesting that LX519290 exhibited strong antioxidant activities in the in vitro assay
methods and may possibly follow the hydrogen atom transfer mechanism. NO is a reactive nitrogen
species (RNS). The interaction of NO with ROS causes the production of several RNS, including nitric
oxide, nitrogen dioxide, and peroxynitrite, that potentiate cellular damage [21]. Therefore, the decrease
in NO generation after LX519290 treatment indicates its antioxidant potential.

t-BHP is normally used as a model substance for evaluation of mechanisms of cellular modifications
resulting from oxidative stress in cells and tissues. t-BHP induced oxidative stress not only through
the production of peroxyl and alkoxyl radicals but also the depletion of GSH and the initiation
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of lipoperoxidation of membrane phospholipids with subsequent alterations to membrane fluidity
and permeability [22]. However, hydrogen peroxide (H2O2) is generated closely from all sources
of oxidative stress and can diffuse easily in and out of various kinds of cells and tissues. It is also
an important cause of oxidative injury due to its longer half-life than other ROS and can simply
transform into a hydroxyl radical, one of the most harmful free radicals [23]. 2′,7′-Dichlorofluorescin
diacetate (DCFH-DA) diffused into the cells where cellular esterases cleaved the diacetate moiety
to make more polar DCFH, which was trapped within the cells. Under oxidative stress conditions,
diverse ROS such as superoxide, hydroxyl radicals, hypochlorous acid (HOCl) are closely involved to
oxidize the intracellular DCFH to the fluorescent DCF and the level of fluorescence determined upon
excitation is related to the level of oxidation. Antioxidants mitigate the production of total ROS by
donating either hydrogen or electron to the oxidants, and prevent the oxidation process of DCFH-DA
to DCF and, finally, competitively inhibit the increase of fluorescence signal [24,25]. In this study,
treatment with LX519290 strongly inhibited the production of cellular ROS production (Figure 3C,
comparison of f–h and Figure 4A). The thiol functional group plays an important role in intracellular
antioxidant defense systems by directly reacting with some ROS and RNS; therefore, solvent-exposed
thiols within cells may contribute to endogenous antioxidant defense systems [26]. High thiol levels
may protect cellular proteins against oxidation either via the thiol redox cycle or by directly detoxifying
the ROS generated by exposure to stressor agents [27]. Here, LX519290 treatment increased the cellular
thiol content in a dose dependent manner (Figure 4B). GST belongs to a group of detoxification enzymes
that also require intracellular thiol tripeptide GSH for their catalytic activity [28], and LX519290
treatment significantly increased the cellular GST activity (Figure 5C) as well as its transcription level
(Figure 4D), which conclusively demonstrates the antioxidant properties of LX519290.

ROS scavenging activity plays a decisive role in cellular homeostasis during cell proliferation
and maintenance. Several enzymes SOD (EC 1.15.1.1), GPx (EC 1.11.1.9), and CAT (EC 1.11.1.6) are
associated with the removal of these free radical species within cells. If these enzymes are damaged
by several occurrences of oxidative stress, degenerative diseases can result [29]. Cytosolic superoxide
(O2
−) is produced by the one-electron reduction of O2 through the slippage of electrons from the

electron carriers of the mitochondrial electron transport chain. It is well known that O2
− is rapidly

converted into H2O2 by SOD. Additionally, H2O2 can be detoxified to H2O by the scavenging
enzymes, GPx and CAT. These enzymes act together in the metabolic pathway of free radicals [14,30].
In this study, LX519290 treatment significantly increased the mRNA level of antioxidant enzymes such
as SOD1, CAT, and GPx-1 (Figure 6A) in RAW264.7 cells, revealing that LX519290 has the ability to
maintain cellular homeostasis and to protect the cell from oxidative stress.

Under normal condition, Nrf2 is generally tethered in the cytoplasm by the Keap1 protein,
and plays a pivotal role in the activation of phase II enzymes, which can be achieved when Nrf2 is set
free and translocated to the nucleus by electrophiles and antioxidants [31]. We showed that LX519290
treatment was able to increase the mRNA level of Nrf-2 (Figure 5B), as well as its translocation into the
nucleus (Figure 4E,F), which increased the transcriptional and translational level of phase II antioxidant
and detoxifying enzyme HO-1, (Figure 5B–D, respectively) in RAW264.7 cells, in agreement with
previous results [32]. This indicated that the antioxidant activity of LX519290 in RAW 264.7 cells is in
part attributable to induction of HO-1, which is regulated by the activation of its transcriptional factor
Nrf2. HO-1, encoded by the HMOX1 gene, can alter haeme into the strong pro-oxidant biliverdin,
which is then transformed into bilirubin, a potent antioxidant [31]. We hypothesize that the mechanism
of interaction between LX519290 and Nrf2 may mimic the action of additional Nrf2 inducers such as
sulphoraphane and 5-O-caffeoylquinic acid, controlling Nrf2 nuclear translocation and antioxidative
responsive element (ARE)-dependent gene expression such as that of HO-1, Nrf2, and NQO-1 in
HT29 cells [33] and SH-SY5Y cells [34].

To establish the oxidative stress model, we used a broadly reported generator of free radicals,
AAPH. AAPH is a water-soluble azo small molecule and decomposition of AAPH produces 1 mole of
nitrogen and 2 moles of carbon radicals. The carbon radicals could either combine to generate stable
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products or react with molecular oxygen to produce peroxyl radicals [35]. As shown in Figure 6A,
the blood plasma net AUC value of the LX519290-treated group was dramatically higher than that of
the AAPH-treated negative control group. Additionally, the liver REDOX system was characterized by
measurement of the activity of hepatic antioxidant enzymes such as CAT, GPx, and SOD [36]. As shown
in Figure 6, it was evident that LX519290 increased mRNA expression levels of SOD1, GPx, and CAT
from the levels seen in the AAPH-treated group. Furthermore, NQO1 catalyzes two-electron reduction
and detoxification of quinones and/or their derivatives, and represents a cytoprotective mechanism
against oxidative damage. NQO1 is well known to sustain both α-tocopherol and coenzyme Q10 in their
decreased antioxidant state [37]. LX519290 significantly changed the mRNA levels of hepatic NQO1,
which recovered to the normal level in mice after the administration of AAPH (Figure 6). The data
showed that the compound exerted potent activity to ameliorate oxidative damage by scavenging free
radicals. As a result, we assumed that LX519290 increased the ORAC values for blood plasma, which
was likely due to the increases in the erythrocyte antioxidant enzymes: SOD and GPx [38]. The main
defense mechanisms for the prevention of liver damage enable the reduction of ROS by increasing
antioxidant enzyme activity [39]. Many studies have shown that the excessive ROS production
induced by CCl4 breaks the balance between ROS production and antioxidant defenses [40–42].
Recently, induction of hepatic SOD, CAT, and GPx activity by ursolic acid has been demonstrated in a
CCl4-treated mouse model [43].

In conclusion, the present study clearly demonstrates that LX519290 has a stronger antioxidant
activity than its parental L-allo-threonine in both electron-transfer and hydrogen atom transfer
assays, and has the potential to prevent H2O2-induced oxidative stress damage in RAW264.7 cells
through increases in cellular thiol content, and GST activity, as well as the expression of antioxidant
enzymes, the redox-sensitive transcription factor Nrf-2 inducible phase II antioxidant, and detoxifying
enzymes such as HO-1 and NQO-1. Moreover, LX519290 also has the potential in safeguarding against
AAPH-induced oxidative stress damage in an in vivo animal model, as confirmed by increasing
ORAC values and mRNA expression of antioxidant enzyme related-genes, including SOD, GPx, CAT,
and NQO1. Therefore, the identification of novel cytoprotective agents such as LX519290 against
oxidant damage, through their prospective implications, may help to better understand its activity
against the several pathophysiological conditions associated with oxidative stress.

4. Materials and Methods

4.1. Materials

All chemicals, solvents, reagents, and standards used in the experiments were purchased from
Sigma Chemical Co. (St. Louis, MO, USA). All solutions were freshly prepared with distilled water.
RAW264.7 murine macrophage cell line was purchased from American Type Culture Collection
(ATCC; no. TIB-71, Manassas, VA, USA). The detailed protocol used for preparing the compound
LX519290 is described elsewhere [44,45].

4.2. Animals and Care

Male Wistar rats, aged 7–8 weeks and weighing 230–270 g (Samtaco Korea, Osan, Korea),
were used in the experiments. Animals were maintained in an air-conditioned room at a temperature
of 22 ± 1 ◦C and a humidity of 55% ± 1% with a 12 h light/dark cycle. They were fed a standard
commercial rodent pellet diet (Samtaco Korea), and had ad libitum access to water. The animal
tests complied with Guiding Principles for the Care and Use of Animals and the Guidelines of the
Committee of the International Association for the Study of Pain Research and Ethical Issues [46].
All animals were acclimatized to the laboratory environment for at least 1 week prior to testing
under the Guidelines of the Committee on Laboratory Animal Ethics, Kyungpook National University
(Approved IRB #2013-0095, Daegu, Korea; Date: 11 December 2013). Animals were randomly divided
into 4 groups each containing 5 mice. All procedures performed in studies involving animals were in
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accordance with the ethical standards of the institution or practice at which the studies were conducted.
This article does not contain any studies with human participants performed by any of the authors.
Informed consent was obtained from all individual participants included in the study.

4.3. Radical-Scavenging Activity Assays

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay was used for evaluation of
the free radical scavenging activity of LX519290 and was conducted following a previously described
protocol [47], with a minor modification. Briefly, 198 µL of a 0.2 mM solution of DPPH in 50% ethanol
was added to 2 µL of various concentrations of the sample. The mixture was allowed to stand at 25 ◦C
for 10 min and the absorbance was measured at 517 nm in a microplate reader (Victor3, PerkinElmer,
Turku, Finland). Ascorbic acid was checked as a standard compound. The ability to scavenge the
DPPH radical was estimated using the following equation:

DPPH radical-scavenging activity (%) =


(

Abscontrol − Abssample

)
Abscontrol

× 100 (1)

where Abscontrol is the absorbance of the control and Abssample is the absorbance of the sample.
All samples were analyzed in triplicate.

The method by Re et al. [48] was adopted for the ABTS assay with slight modifications.
Various concentrations of the sample were allowed to react with 198 µL of the ABTS•+ solution,
and the absorbance was measured at 734 nm. Ascorbic acid was tested as a positive antioxidant
compound. The ability to scavenge the ABTS•+ was calculated using the following equation:

ABTS•+-scavenging activity (%) =


(

Abscontrol − Abssample

)
Abscontrol

× 100 (2)

where Abscontrol is the absorbance of the control and Abssample is the absorbance of the sample.
All samples were analyzed in triplicate.

For the measurement of reducing power, the ferric reducing antioxidant power (FRAP) assay
was carried out, as described previously [49]. Two microliters of the aqueous sample at varying
concentrations and 198 µL of FRAP reagent were mixed, and the absorbance was recorded at a 595 nm.
Ascorbic acid was also used as a standard compound.

The cupric-reducing antioxidant capacity (CUPRAC) of LX519290 was determined according
to a previously described assay [12]. A solution of 10 mM CuCl2, 7.5 mM neocuproine,
and 1 M ammonium acetate buffer (pH 7.0) was added and the resultant solution was mixed to
the samples. Following a 1-h incubation period at 25 ◦C, the absorbance was measured at 450 nm.
Ascorbic acid was tested as a standard compound.

4.4. Oxygen Radical Absorbance Capacity Assay

The oxygen radical absorbance capacity (ORAC) assay was carried out according to a previous
report [13]. Trolox (a water-soluble analog of Vitamin E) was used as a positive control. The experiment
was conducted at 37 ◦C under pH 7.4 conditions with a blank sample in parallel. The analyzer was
set to record the fluorescence of 200 nM fluorescein every minute after the addition of 20 mM AAPH
with a 480 nm excitation and a 520 nm emission wavelength. The results were calculated using
the differences in the areas under the fluorescence decay curves between the blank sample and
experimental sample, and were expressed as area under the curve (Net AUC) values.

4.5. Cell Viability

Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay as described previously [50]. For the assay, RAW264.7 cells were split and seeded into
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a 96-well flat bottom microplate at a density of 2 × 104 cells per well and incubated at 37 ◦C for 1 h.
The cells were then treated with different concentrations of LX519290. After 24 h of incubation, 20 µL of
MTT (5 mg/mL in phosphate-buffered saline (PBS) solution was added to each well, and the plate
was incubated for another 2 h. Absorbance values were then measured at 450 nm using a microplate
reader (Victor3, PerkinElmer).

4.6. Measurement of Cellular NO Generation

The concentration of NO in the medium was measured using Griess reagent as an indicator of
NO generation, as described previously [51]. RAW264.7 cells were split and seeded into a 96-well flat
bottom microplate at a density of 2 × 104 cells per well and incubated at 37 ◦C for 1 h. The cells were
then treated with 1 µg/mL lipopolysaccharide (LPS) at various concentrations of LX519290. After 24 h
incubation, NO concentration of the supernatants was measured by adding Griess reagent, thereafter,
the absorbance of the mixtures was measured using a microplate reader (Victor3, PerkinElmer) at
a wavelength of 520 nm.

4.7. Measurement of Intracellular ROS Generation

ROS production was evaluated using the ROS-responsive fluorescence indicator,
2′,7′-dichlorofluorescin diacetate (DCFH-DA), as described earlier [52]. To determine intracellular
ROS scavenging activity, RAW 264.7 cells were split at a density of 2 × 104 cells per well in a Lab-Tek
chambered cover glass (Thermo Fisher Scientific, Waltham, MA, USA). After 24 h, the cells were
treated with the samples of LX519290 and 200 µM tert-butyl hydroperoxide (t-BHP) and incubated for
2 h to induce ROS generation [53]. Subsequently, the cells were incubated with 20 µM DCFH-DA for
30 min and then analyzed under a confocal laser-scanning microscope (Carl Zeiss, Jena, Germany).
Ascorbic acid was used as a positive control to compare with LX519290.

4.8. Activity of LX519290 Against Pro-Oxidant Challenge

To illustrate the antioxidant activity of LX519290 against pro-oxidant challenge, we measure
H2O2 induced ROS generation using the ROS-sensitive fluorescence indicator DCFH-DA method
with a slight modification [54]. In brief, RAW264.7 cells were first cultured in bottom transparent
black 96-well plates (4 × 105 cells /mL) for 24 h followed by treatment with varying concentrations of
LX519290 and incubated for 30 min. Then, the medium was removed and the wells were mildly washed
twice with PBS, and H2O2 (1 mM) was used as a pro-oxidant challenge for 30 min. Finally, DCFH-DA
(40 µM) was added and incubated for 30 min at 37 ◦C in the dark. After incubation, DCF fluorescence
intensity was analyzed at an excitation wavelength of 485 nm and an emission wavelength of 535 nm
using a fluorometric plate reader (Victor3, PerkinElmer).

4.9. Total Thiol and Glutathione S-Transferase Measurement

Total thiol and glutathione S-transferases (GST) measurement was carried out according to the
manufacturing protocol using a commercial kit (MAK151 for thiol quantitation, CS0410 for GST activity,
Sigma-Aldrich, St. Louis, MO, USA).

4.10. AAPH-Induced Oxidative Stress in Rats

After one week of acclimatization, five random rats in each group were intraperitoneally
administered AAPH (50 mg/kg) with antioxidants, ascorbic acid (150 mg/kg), or LX519290 (15 mg/kg)
for 10 days. All drugs were dissolved in normal saline and prepared just before use. The no
treatment (NT) group was injected with normal saline instead of AAPH and antioxidant compounds.
After 10 days, blood samples were collected via heart puncture using a heparin-coated syringe, under
carbon dioxide anesthesia for the ORAC assay [13] to determine the remaining antioxidant compounds
in the plasma. Liver tissue was also collected and then analyzed by reverse transcription PCR (RT-PCR).
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4.11. Reverse Transcription PCR Analysis of Gene Expression

Total RNA was isolated from RAW264.7 cells and liver tissues using TRIzol reagent (Life Technol.,
Gaithersburg, MD, USA), according to the manufacturer’s protocol. The RNA (1–10 µg) was transcribed
into first-strand cDNA using an RT-&GO Mastermix (MP Biomedicals, Seoul, Korea), and the product
was used as the PCR template. RT-PCR was performed using a Takara PCR thermal cycler and
the following SOD1, CAT, GPx1, NQO1, and GAPDH (glyceraldehyde-3-phosphate dehydrogenase)
primer sequences were used: SOD1: forward, 5′-AGG GCG TCA TTC ACT TCG AG-3′; reverse,
5′-TCC TTT CCA GCA GCC ACA TT-3′; CAT: forward, 5′-AGG CTC AGC TGA CAC AGT TC-3′;
reverse, 5′-GCC ATT CAT GTG CCG ATG TC-3′; GPx1: forward, 5′-GCT CAC CCG CTC TTT ACC
TT-3′; reverse, 5′-GAT GTC GAT GGT GCG AAA GC-3′; GST: forward, 5′-TGA GAG GAA CCA
AGT GTT TGAG-3′ reverse, 5′- CAG GGG GAC TTT AGC TTT AGAA-3′; HO-1: forward, 5′-TGA
GAG GAA CCA AGT GTT TGAG-3′; reverse, 5′-CAG GGG GAC TTT AGC TTT AGAA-3′; NQO1:
forward, 5′-ATT GTA TTG GCC CAC GCA GA-3′; reverse, 5′-GCA CTC TCT CAA ACC AGC CT-3′;
Nrf-2: forward, 5′-CTT TAG TCA GCG ACA GAA GGAC-3′; reverse, 5′-TCC AGA GAG CTA TTG
AGG GACT-3′; GAPDH: forward, 5′-GCG AGA TCC CGC TAA CAT CA-3′; reverse, 5′-AGT GAT
GGC ATG GAC TGT GG-3′. Genes for SOD1, CAT, GPx1, NQO1, and GAPDH were amplified with
a denaturation step at 94 ◦C for 30 s, an annealing step at 58 ◦C for 30 s, and an extension step at 72 ◦C
for 30 s for 30 cycles. The mRNA levels were normalized to the housekeeping gene, GAPDH.

4.12. Statistics

All experiments were basically carried out in triplicate and the results are expressed as the
mean ± standard deviation (SD). Statistical significance was determined by a Student’s t-test or
one-way analysis of variance (ANOVA), using the program IBM SPSS statistics. When the data from
the ANOVA were significant, the differences in antioxidant activity among the LX519290 samples
were analyzed by a post hoc test, either Tukey’s or Duncan’s test [7]. The critical level for statistically
significant results was defined as p < 0.001, p < 0.05, or p < 0.01.
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