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Unconventional double-bended saturation
of carrier occupation in optically excited graphene
due to many-particle interactions
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Saturation of carrier occupation in optically excited materials is a well-established

phenomenon. However, so far, the observed saturation effects have always occurred in the

strong-excitation regime and have been explained by Pauli blocking of the optically filled

quantum states. On the basis of microscopic theory combined with ultrafast pump-probe

experiments, we reveal a new low-intensity saturation regime in graphene that is purely

based on many-particle scattering and not Pauli blocking. This results in an unconventional

double-bended saturation behaviour: both bendings separately follow the standard saturation

model exhibiting two saturation fluences; however, the corresponding fluences differ by three

orders of magnitude and have different physical origin. Our results demonstrate that this

new and unexpected behaviour can be ascribed to an interplay between time-dependent

many-particle scattering and phase-space filling effects.
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S
aturation of light absorption is a long-known central
phenomenon in nonlinear optics. It results from the
fermionic character of optically driven electrons exhibiting

Pauli blocking in the excited states. As a result, with increasing
light fluence, the probability to increase the carrier occupation in
the excited state due to light absorption is reduced. The saturation
behaviour can be exploited in optical devices for the modulation
of ultrashort laser pulses. In particular, mono- or multilayer
graphene can be used as passive mode-locking medium1–6. Here
the graphene sample is placed into the laser cavity1,3 or into the
output coupler5,6, which affects the relative amplification of the
frequency with highest intensity. As a result, the modulated pulse
becomes sharpened in bandwidth. The advantage of graphene as
a saturable absorber is a relatively low saturation intensity and an
extremely short recovery time (reflecting the ultrafast carrier

dynamics7–9) enabling high repetition rates1. Furthermore, the
broadband absorption of graphene allows for the modulation at
different wavelengths, where the intensity can be controlled
through the number of graphene layers1,2.

The widely used approach for modelling the saturation
behaviour is the two-level saturable absorber model10–12. It
describes the saturation of the carrier occupation after continuous
wave excitation accounting for the basic interplay of excitation
strength, recombination, dephasing and the Pauli principle. The
latter governs the high-intensity regime and explains the observed
saturation behaviour. In the low-intensity regime, the Pauli
blocking is negligible and the carrier occupation is proportional
to the light intensity. In a strict sense, the standard saturation
model can only be applied for two-level systems and continuous
wave excitations. Therefore, for solid-state absorbers, such as
graphene, exhibiting many electronic degrees of freedom and for
ultrashort pulses produced by mode-locked solid-state lasers, the
described scenario can only be of limited value.

In this work, we present a joint theory-experiment study on the
saturation behaviour of the maximal optically induced carrier
occupation in graphene. We apply a sophisticated theoretical
approach based on graphene Bloch equations8,13,14, which
significantly go beyond the standard saturation model. The
approach includes optical pumping and Coulomb- and phonon-
induced many-particle carrier scattering processes on the same
microscopic footing. We provide a microscopic view on the carrier
dynamics in optically excited graphene and reveal a new and
surprising saturation regime in the weak excitation regime that
cannot be explained by the standard Pauli-blocking-based saturable
absorber model. This results in a double-bended saturation of the
maximal optically induced carrier occupation. The theoretical
prediction is experimentally confirmed through differential
transmission measurements over a large range of excitation strengths.

Results
Saturation behaviour. The saturation behaviour has been mostly
studied by exploiting the two-level saturable absorber model10–12
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Figure 1 | Saturation behaviour in two-level systems and graphene.

(a) Saturation of the carrier occupation rc in a two-level system as a function

of the continuous wave intensity I (in units of the saturation fluence Is).

The maximal occupation is limited (dashed line) by Pauli blocking according

to the standard saturation model in equation (1). (b) In the low-intensity

regime of the standard saturation model the occupation is proportional to

the intensity (with slope 1/gG). Theoretical prediction of the saturation of

the maximal optically excited carrier occupation rc
k0 ;max in graphene in the

(c) high- and (d) low-fluence regime, respectively. The green and blue line

represent the extrapolation of the high- and the low-fluence data with

equation (1) yielding saturation fluences of FðhÞs ¼2 mJ cm� 2 and

FðlÞs ¼7:8mJ cm� 2, respectively (upper abscissa). Experimental data

demonstrating the saturation behaviour of the maximal differential

transmission DTmax/T0 measured in the (e) high- and (f) low-excitation

regime. The saturation fluences (denoted by the vertical lines) are

10 mJ cm� 2 and 7 mJ cm� 2, respectively. (g–j) Schematic illustration of

different saturation regimes in solid-state absorbers: (g) linear regime with

low-scattering efficiency. (h) The first surprising saturation already at low

intensities can be ascribed to Coulomb-induced out-scattering processes

(blue arrows). (i) The intermediate regime, where Coulomb-induced in-

scattering (red-arrows) becomes important and balances out the impact of

out-scattering. (j) The second saturation resulting from the standard Pauli

blocking of the optical excitation. The size of the filled (electrons) and open

(holes) dots schematically denotes the excitation strength.
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describing the saturation of the carrier occupation rc after
continuous wave excitation with the intensity I. The saturation
intensity Is is determined by Is/I¼ gG/4O2, with the
Rabi frequency O (p

ffiffi
I
p

), a constant recombination G and
dephasing rate g. Obviously, equation (1) accounts for optical
excitation (O), carrier recombination (G) and dephasing (g). Here
Pauli blocking governs the high-intensity regime I=Is � 1,
where an increase of carrier occupation to 0.5 results in optically
induced transparency, see Fig. 1a. In the low-intensity regime, the
carrier occupation rc is proportional to the intensity I/gG, where
the slope is given by the intrinsic time scales g� 1 and G� 1 of the
two-level system (Fig. 1b).

The standard saturation model from equation (1) cannot be
applied for solid-state absorbers with many electronic degrees of
freedom nor for optical excitations with short pulses. There are
fundamental differences in the electron dynamics in solids
compared to the simplest saturation model in equation (1): first,
for pulsed excitations, the transmission depends on time and,
therefore, the maximal transmission at the energy of the optical
excitation e0 and at a specific time tmax during an applied pulse is
used to characterize the saturation behaviour. This has been
applied in several recent studies investigating the transmission
saturation behaviour in graphene2,5–19. Second, the more non-
trivial electronic band structure elk of solids (here we discuss
graphene) makes the decay channels more complex, where
carrier–carrier and carrier–phonon-induced in- and out-
scattering for electronic states k (band l) plays the crucial role
rather than radiative recombination. In particular, many-particle-
induced scattering channels sensitively depend on the filling of
the surrounding phase space that is driven by the intensity of the
excitation pulse8,20. This results in different regimes characterized
by an interplay of time- and fluence-dependent scattering
processes and phase-space filling effects.

Here we investigate the saturation behaviour of the maximal
optically induced carrier occupation rc

k0;max in graphene, which
approximately determines the maximal differential transmission
DTmax/T0 measured in pump-probe experiments8. Here, k0

describes the optically excited momentum state in the
conduction band. We demonstrate a new and surprising
saturation regime of the carrier occupation in the excited state.
The observed scenario goes beyond the standard Pauli-blocking-
based saturable absorber model. We theoretically predict and
experimentally confirm double-bended saturation of the maximal
optically induced carrier occupation by measuring the differential
transmission of a probe pulse. A first illustration of our results is
shown in Fig. 1c–f. We find that the Pauli-blocking saturation is
valid in the strong-excitation regime and can be fitted by the
standard model from equation (1), see Fig. 1c,e for theory and
experiment, respectively. For low fluences, however, where the
standard model would predict a linear behaviour as shown in
Fig. 1b, we find a clearly sub-linear relation between pump
fluence and optically induced carrier occupation, see Fig. 1d,f
for theory and experiment, respectively. Again, the curvature at
low fluences follows saturation-like bending, equation (1), but the
corresponding saturation fluence lies three orders of magnitude
lower than in the high-fluence regime of Pauli blocking. Note that
this behaviour cannot be explained by the standard Pauli-
blocking saturation, since at the considered low fluences the
carrier occupations rc

k are below 10� 2, suggesting a linear
relation between optically induced carrier occupation and pump
fluence. In contrast, our calculations reveal that the
unconventional saturation-like behaviour can be ascribed to
Coulomb-induced out-scattering processes that efficiently balance
the pump-pulse-driven occupation in the state k0 (Fig. 1h). The
depopulation due to Coulomb scattering at low intensity occurs at
a comparable rate as the optical pumping increases the

occupation resulting in a deviation from the initial linear
increase of rc;max

k0
with the excitation intensity. This saturation-

like behaviour ceases with the increasing importance of
Coulomb-induced in-scattering processes (into state k0) that
balance out the impact of out-scattering (Fig. 1i) resulting in the
regular Pauli-blocking-based saturation behaviour at high pump
fluences (Fig. 1j).

Theoretical and experimental approach. Before we analyse the
double-bended saturation and its microscopic origin in more
detail, we briefly introduce our theoretical and experimental
methods. The theoretical approach is based on Heisenberg
equations of motion formalism combined with tight-binding
wave functions8,20–23. To accurately model the dynamics of
optically excited carriers, we account for the light–carrier
interaction as well as carrier–carrier and carrier–phonon
scattering on a consistent microscopic footing by solving the
many-electron graphene Bloch equations. They constitute a
coupled set of differential equations for the occupation
probability rlk in the state k in the conduction and the valence
band (l¼ c, v), the microscopic two-band polarization pk and the
phonon occupation nj

q (not explicitly shown) with the
momentum q for different optical and acoustic phonon modes
j (refs 7,8,13,21):

_rc
k¼2I O�kpk

� �
þGin

k 1� rc
k

� �
�Gout

k rc
k; ð2Þ

_pk¼ iDok � gk½ �pk � iOk rc
k �rv

k

� �
þUk; ð3Þ

with the transition Dok¼ ec
k � ev

k

� �
=‘ þ 2nF kj j and Rabi

frequency Ok¼i e0
m0

Mk � AðtÞ, where e0 (m0) is the free electron
charge (mass), Mk the carrier–light coupling strength and A(t) is
the vector potential of the applied laser pulse. The in- and out-
scattering rates Gin

k;lðtÞ and Gout
k;lðtÞ contain contributions from the

carrier–carrier as well as carrier–phonon interaction and depend
explicitly on time and momentum, that is, implicitly on the
applied pump fluence. They have been calculated microscopically
within the second-order Born–Markov approximation. The total
dephasing contains non-diagonal Uk and diagonal dephasing gk,
which for symmetric conduction and valence bands reads
gkðtÞ¼Gin

k ðtÞþGout
k ðtÞ. More details on these equations can be

found in refs 7,8,13,20,21,24. The modelling is performed for an
intrinsic graphene monolayer; nevertheless, the results are still
valid for multilayer graphene samples, since the pump fluence
variation for different layers is negligibly small compared to the
studied pump fluence ranges25.

In the following, we consider pulsed excitation and probe at
1.5 eV where the initial thermal carrier occupation can be
neglected, so that the saturation of differential transmission
DTmax/T0 of the probe pulse is proportional to the maximal
occupation rc

k;max in the excited state. We briefly note that
compared to a previous study, where we have shown that for
ultrashort excitation pulses with a duration of just 10 fs, the
saturation behaviour of graphene follows the standard model
(equation (1)) over eight orders of magnitude in excitation
strength9, we increase here the excitation pulse duration to
B30 fs Using these parameters, we focus in this work on the most
interesting regime, where the internal time scales 1=Gin

k and
1=Gout

k are on the same order of magnitude as the pulse duration
s. In this regime, the competition between in-scattering, out-
scattering and the optical pump is most important.

Degenerate pump-probe experiments were performed at room
temperature on multilayer epitaxial graphene (50 layers) grown
by thermal decomposition on the C-terminated face of SiC26. A
pulsed near-infrared beam of photon energy 1.55 eV was split
into a strong pump and a weaker probe beam. We measure the
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pump-induced change in transmission for varied time delays
between pump and probe beam by monitoring the intensity of the
probe beam with a silicon photodiode. To this end, lock-in
amplification with a mechanical chopper modulating the pump
beam was employed27. Two laser systems were used including an
oscillator and an amplifier for the low and high-fluence range,
respectively. The oscillator (amplifier) delivered nJ (mJ) pulses of
30 fs (40 fs) duration. In all experiments, the polarization of pump
and probe beam was parallel. The maximal differential
transmission as a function of delay between pump and probe
beam was extracted for each fluence (Fig. 1e,f). We have verified
that the substrate does not contribute to the transmission via
nonlinear effects in the investigated fluence range by performing
experiments on the bare substrate.

Double-bended saturation in graphene. Now we turn to the
microscopic explanation of the double-bended saturation
observed in Fig. 1c–f and discuss its many-particle-induced origin
as well as the resulting implications for saturation experiments.
To get the basic physical picture of the elementary processes we
restrict our analytical analysis in good approximation to the
diagonal dephasing and derive the counterpart of equation (1) for
the solid-state two-band model based on equations (2 and 3).
Similar to the derivation of equation (1) for a two-level system,
we apply a parametric time dependence of rk(t) and pk(t) by
solving the graphene Bloch equations quasi-stationary ( _rk � 0,
_pk � 0) in rotating wave approximation, yielding

DTðtÞ
T0
/ 2rc

kðtÞ¼
IðtÞ=IkðtÞ

1þ IðtÞ=IkðtÞ
þ 2Gin

k ðtÞ=gkðtÞ
1þ IðtÞ=IkðtÞ

; ð4Þ

with the time-dependent pulse intensity I(t) and also the formal
counterpart of the saturation intensity, denoted with Ik(t). Their
ratio reads IkðtÞ=IðtÞ¼g2

kðtÞ=4OðtÞ2. Provided that the full-time
dependence of the decay channels Gin

k (t), Gout
k (t) and gk(t)¼

Gin
k (t)þGout

k (t) is considered, the quasi-stationary solution from
equation (4) exhibits excellent agreement with the numerical
solution of the graphene Bloch equations (2 and 3), including the
saturation behaviour, see Fig. 2 illustrating the saturation
according to equation (4) and to the full numerical solution (red
and blue triangles).

The saturation dynamics for the solid-state continuum,
determined by equation (4), obviously differs from the two-level
case in equation (1): in a solid state, in-scattering

�
Gin

k0
ðtÞ
�

and
out-scattering processes

�
Gout

k0
ðtÞ
�

populating or depopulating the
optically excited electronic state k0 are possible. For graphene,
there is a linear relation between energy and momentum with
e0¼ :nF|k0|. The first term in equation (4) closely resembles the
standard carrier occupation saturation from equation (1), how-
ever a total rate gk(t) appears instead of a pure out-scattering
contribution Gg in the two-level case. Most importantly, an
additional purely many-particle term occurs. This new contribu-
tion scaling with the ratio of the in-scattering rate Gin

k (t) and the
total scattering rate gk(t) turns out to be of crucial importance to
reproduce the experimentally observed differential transmission
saturation behaviour (proportional to the pump-induced carrier
occupation) including the qualitative double bending as well as
the quantitative saturation intensities. The neglect of this many-
particle term leads to only a single saturation in the range of
3 mJ cm� 2 at very low occupations (green line in Fig. 2). This
means that a standard saturation model according to the first
term in equation (4), that is without considering carrier in-
scattering, would fail rigorously. It cannot even reproduce the
standard Pauli-blocking-based saturation behaviour in the
strong-excitation regime with pump fluences above 1 mJ cm� 2.
Therefore, the next step is to analyse the interplay of the in- and
out-scattering rates occurring in equation (4) to get a microscopic
understanding of the saturation behaviour in a solid-state
absorber.

The microscopically determined scattering rates Gin and Gout

are plotted in Fig. 3 as a function of fluence. Focusing first on the
low-excitation limit, where Gout � Gin, we find for the out-
scattering rate a constant offset G0 (owing to electron–phonon
scattering) and a dominating contribution proportional to
accumulated carriers with FðtÞ¼

R t
�1 IðtÞdt (owing to

Coulomb scattering), where FðtÞ is the fraction of the pump
fluence until time t (red lines in Fig. 3a). For very low pump
fluence, we find GoutEG0, that is independent of the fluence and
therefore rc

k0;maxðIÞ� I, as expected from the standard model,
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equation (1). However, with increasing pump fluence, the
maximal carrier occupation rc

k0;max saturates. It turns out that
due to the strong Coulomb interaction, the out-scattering rate in
the Bloch equations for rc

k0
rises for increasing intensity faster

than the contribution of the optical drive (O2(t)pI(t)) itself,
finally balancing the optical excitation. To understand this in
more detail, we consider equation (4): for the first bending, where
all results can be explained without Pauli blocking, we find

rc
k0;maxðIÞ � IðtÞ=IkðtÞ � 4OðtÞ2

GoutðtÞ2¼4OðtÞ2= G0þ cFðtÞð Þ2, where

c is a numerical factor depending on the material properties. That
is, rc

k0;max(I) saturates due to the denominator. The interplay
between the optically driven increase of the carrier occupation rc

k0

and an increasing intensity-sensitive depopulation of rc
k0

due to
the efficient Coulomb-induced out-scattering (Fig. 1h) results in
the first bending of rc

k0;max in the low-fluence regime, see Fig. 1d.
This means that already at low intensities, where Pauli blocking,
that is the denominator in equation (4), is neglected, the fluence
dependence of Gout

k (I) starts to become important and causes the
deviation from the linear dependence and thus leads to a bending.
Note that this bending has nothing to do with the regular Pauli-
induced saturation, since at the considered very low fluences, the
carrier occupation of the excited state is below 0.01 (Fig. 1d). In
contrast, our calculations reveal that the observed saturation-like
behaviour is a signature of Coulomb-induced redistribution (out-
scattering) at the expense of the simultaneous optical pumping in
a solid-state absorber.

As shown in Fig. 2, the additional many-particle in-scattering
dominated contribution (second term in equation (4)) is
essential to understand the high-intensity saturation, where Pauli
blocking is dominant. The dynamics of the Coulomb-induced
in-scattering rate Gin

ðccÞ is shown in Fig. 3b. We find a linear
and quadratic dependence on the fluence FðtÞ with
Gin
ðccÞðtÞ¼c1FðtÞþ c2F 2ðtÞ, where c1 and c2 are fitting parameters,

see red lines in Fig. 3b. As a result, at sufficiently high fluences,
the second, in-scattering dominated term in equation (4) becomes
as important as the out-scattering from rc

k0
for the saturation

behaviour. At elevated intensities, the in-scattering finally
balances out the loss of carrier occupation in the optically excited
state rc

k0
through out-scattering processes, see Fig. 1i (detailed

balance limit). In this regime, the carrier occupation increases
again due to the optical pump, that is linear with the pump
fluence, until a strong-excitation regime (mJ cm� 2), the Pauli-
blocking regime, is reached. Here in- and out-scattering are in
balance and the conventional Pauli blocking of the excited state
results in a standard saturation behaviour.

Discussion
Now, we can summarize our results from a microscopic point of
view by distinguishing four distinct intensity regimes (Fig. 4a):
(A) linear regime at very low pump fluences (few mJ cm� 2),
where the maximal optically induced carrier occupation scales
linearly with the intensity rc

k0;max(I)pI/G0 with nearly intensity-
independent scattering rate G0 (owing to electron–phonon
scattering; Fig. 1g). (B) First saturation-like behaviour driven by
Coulomb-induced carrier out-scattering (B10mJ cm� 2) that
efficiently depopulates the optically excited state causing a
deviation from the linear scaling (Fig. 1h). Here equation (4)
simplifies to rc

k0;max(I)E4(O(I)/Gout
k (I))2 and the bending results

from the strong increase of the intensity-dependent out-scattering
rate. (C) Intermediate regime (few 100 mJ cm� 2), where the
Coulomb-induced in-scattering balances out the out-scattering
resulting again in an approximately linear increase of the carrier
occupation due to the optical pump (Fig. 1i). (D) Second, Pauli
blocking caused saturation in the high-excitation regime (few
10 mJ cm� 2; Fig. 1j). The different regimes are also recognizable

regarding the time tmax maximizing rc
k0;max(t) (with respect to the

centre of the excitation pulse). The discrete steps of tmax arise
from our calculation beyond the rotating wave approximation
and corresponds to a single-cycle duration of the exiting intensity,
Fig. 4b. In the out-scattering dominated regime, tmax shifts to
earlier times due to the faster increasing out-scattering rate
compared to the optical drive. Consequently, the time where out-
scattering overbalances the excitation shifts towards tmaxE0 fs. As
soon as in-scattering becomes significant the delay between pulse
centre and tmax rises again. In the Pauli-blocking regime, tmax is
constant.

In summary, based on a joint theory-experiment study, we
have found a yet undiscovered double-bended saturation of the
optically excited carrier occupation in graphene for optical pulse
excitations having a duration in the range of the predominant
scattering channels. This unconventional behaviour beyond the
standard saturable absorber model is explained by the universal
structure of Coulomb-induced many-particle scattering processes,
clarified via in- and out-scattering and their fundamental scaling
with the pump fluence. In particular, we have identified both in
theory and experiment a surprising low-intensity saturation-like
behaviour of the optically excited carrier occupation that is not
due to Pauli blocking, but can be ascribed to the out-scattering-
induced depopulation of electronic levels. Even if our accom-
panying analytical approach is an approximation, it covers
important aspects of the dynamics. Most importantly, we find
that in solids, a sub-linear relation between the optically excited
carrier occupation and the pump fluence is not a sufficient
criterion for an absorption saturation by means of fermionic Pauli
blocking. We note that due to the universal structure of Bloch
equations for solids, the observed effects are not restricted to
graphene. The gained insights will be also valuable for the
technological application of graphene as saturable absorber in
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lasers generating ultrashort pulses28. Here the optically induced
transmission of graphene at comparably low fluences is a specific
advantage over conventional materials. Specifically, the fluences
are typically in the 10 mJ cm� 2 range, which corresponds to the
regime of the predicted unconventional saturation behaviour.

Data availability. The data that support the findings of this study
are available from the corresponding author upon request.
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