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Neural circuits operate with delays over a range of time scales, from a few milliseconds

in recurrent local circuitry to tens of milliseconds or more for communication between

populations. Modeling usually incorporates single fixed delays, meant to represent the

mean conduction delay between neurons making up the circuit. We explore conditions

under which the inclusion of more delays in a high-dimensional chaotic neural network

leads to a reduction in dynamical complexity, a phenomenon recently described as multi-

delay complexity collapse (CC) in delay-differential equations with one to three variables.

We consider a recurrent local network of 80% excitatory and 20% inhibitory rate model

neurons with 10% connection probability. An increase in the width of the distribution of

local delays, even to unrealistically large values, does not cause CC, nor does adding

more local delays. Interestingly, multiple small local delays can cause CC provided there

is a moderate global delayed inhibitory feedback and random initial conditions. CC then

occurs through the settling of transient chaos onto a limit cycle. In this regime, there is a

form of noise-induced order in which the mean activity variance decreases as the noise

increases and disrupts the synchrony. Another novel form of CC is seen where global

delayed feedback causes “dropouts,” i.e., epochs of low firing rate network synchrony.

Their alternation with epochs of higher firing rate asynchrony closely follows Poisson

statistics. Such dropouts are promoted by larger global feedback strength and delay.

Finally, periodic driving of the chaotic regime with global feedback can cause CC; the

extinction of chaos can outlast the forcing, sometimes permanently. Our results suggest

a wealth of phenomena that remain to be discovered in networks with clusters of delays.

Keywords: dynamical system, transient chaos, delayed differential equation, synchrony, neural network, neural

dynamics

1. INTRODUCTION

Biological neural networks can involve delays below the millisecond time scale up to several
tens of milliseconds (Madadi Asl et al., 2018). A wide array of delays are involved in inter-
areal communication (Deco et al., 2009). A redundancy cancellation circuit in the cerebellum
of the weakly fish involves delay distributions between 10 and 70 ms (Bol et al., 2011). Local
circuitry also involves delays, which are often neglected in modeling studies due to the added
dynamical complexity they bring to the problem. But they have been shown to promote oscillations
(Belair et al., 1996; Brunel and Hakim, 1999; Bimbard et al., 2016), and play important roles in
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synchronization phenomenon (Coombes and Laing, 2009) and
learning phenomenon (Gerstner et al., 1996). They are of course
omnipresent in large scale neural control systems where they can
reach many hundreds of milliseconds, e.g., in reflex arcs (Longtin
et al., 1990).

What are the dynamical consequences of the existence of
multiple delays, either centered around a single mean delay, or
clustered into different groups? There is widespread belief that
systems with many delays can be treated as ones with a single
distribution of delays, i.e., a delay-differential equation with
discrete delays can be replaced by an integro-differential equation
with a suitably chosen delay or memory kernel. Accordingly, the
presence of many delays with a sufficiently broad distribution
should decrease the dynamical complexity (Longtin, 1990; Jirsa
and Ding, 2004; Eurich et al., 2005; Tavakoli and Longtin, 2020).

Recently it has been shown, using numerical experiments of
simple model physical systems along with a novel Lyapunov
spectrum estimation method for multi-delay non-linear systems,
that this complexity reduction can happen quite abruptly, and
therefore be more aptly named complexity collapse (Tavakoli
and Longtin, 2020). The effect has been investigated by adding
delays to standard one-delay systems in one variable, such as
the Mackey-Glass equation and the electro-optic model, or the
three-variable Lang-Kobayashi laser model. Our work here raises
and provides first answers to the question of whether this multi-
delay complexity collapse (MDCC) can occur in chaotic neural
networks with multiple neurons, i.e., with many state variables.

Note that we are distinguishing here between the number of
state variables that describe the time-varying quantities in these
models, and the infinite number of variables that relate to the
delay per se; all differential-delay systems are infinite-dimensional
by definition, regardless of the number of delays. Beyond this
distinction, it therefore remains to be seen how a cluster of delays
around somemean delay affects the chaotic properties of a neural
network, and whether additional clusters further cause increases
or decreases in dynamical complexity. While our previous study
allowed for a more precise diagnostic of attractor properties,
using permutation entropy and Lyapunov spectrum estimation,
here the large number of state variables (around 1,000) make
such computations prohibitively expensive. We thus resort to
other simpler metrics that focus on the time-dependent mean
and standard deviation of the activity variable averaged across
the network.

Of particular interest to us is the question of under which
conditions and with respect to which phenomena do delays
matter in realistic neural systems. The particular aspect of
this question that we focus on is the distribution of discrete
delays. Such delays, even acting alone, are notorious for causing
simple oscillations and, with the right shape and strength of
non-linearities, chaotic fluctuations; yet distributed delays are
known to counteract some effects of non-linearity (Longtin, 1990;
Herrmann et al., 2016). At which point should one think in
terms of continuous delay distributions, and what is expected
in the remaining vast domain between single and distributed
delays? And how are these issues at play in chaotic neural nets?
One expects that bifurcations can occur, but also novel forms of
multistability and susceptibility to rhythms impinging from other

FIGURE 1 | Network architectures. The solid lines provide the schematic of

the basic excitatory-inhibitory (EI) network in which the connections can have

multiple smaller delays (denoted here by τ ) characteristic of local circuitry. The

dashed lines account for an extra global inhibitory feedback with longer delay

T from population I to itself and to the E population.

brain areas. Such effects are indeed highlighted in the results
presented below, along with their robustness to noise.

In section 2, we introduce the model of interest, namely, a
standard 80/20 excitatory-inhibitory (EI) model that has often
been used to mimic the cortex. It has local delays between the
E and I cells, but can also account for a global delayed inhibitory
feedback to both populations with a larger delay (see Figure 1,
dashed lines). This global feedback mimics a longer route for
inhibition that possibly involves other populations that are not
explicitly modeled. It is considered here because the complexity
collapse phenomenon (CC) does not occur in the EI network on
its own, but does in this slightly more complex dynamical system
with two delay clusters. In the section 3, we thus first probe how
a single delay within and between these sub-populations affect
the dynamics. In this network, neurons behave in a much more
complex manner as the time delay becomes smaller. Next, we
examine the activity and complexity of dynamics generated by
neurons under the influence of the global inhibitory feedback
term.Wewill present a novel form of behavior that is reminiscent
of a chimera (Larger et al., 2013; Majhi et al., 2019; Sawicki et al.,
2019), but with space replaced by time. In order words, we report
an alternation of asynchronous and synchronous epochs which
seem to follow Poisson statistics. We further show a paradoxical
effect in which the activity fluctuations are more constrained
the higher the noise is, which is a form of noise-induced order
(Matsumoto and Tsuda, 1983). As a consequence of the inclusion
of the additive noise with sufficiently large intensity, synchronous
activity can be suppressed.

We further provide preliminary observations of the effect
of periodic driving of the excitatory sub-population during
synchronous epochs, finding that it can alter the dynamics of the
whole network. Post-stimulation dynamics can be unpredictable,
leading either to transient high-frequency oscillations followed
by a return to chaotic dynamics with synchronous epochs, or to
CC with periodic behavior. The possibility of observing CC in
the presence of the global inhibitory feedback and external
stimuli led us to finally study the dynamics of these sub-networks
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in the presence of multiple local time delays. The non-linear
characteristic of this network prevents CC in the absence of the
global inhibitory delayed feedback. However, this non-linearity is
seemingly weaker when distributed delays in the local recurrent
EI circuitry co-occur with a global delay. For a larger width of
the distribution of delays, the transient chaos is replaced by a
simple oscillation.

Note that, for the sake of brevity, none of the phenomena
reported here are analyzed individually in great detail. We
have rather opted for a presentation of a few novel effects
related to CC that will hopefully guide future studies; all our
results are linked by the existence of multiple delays in various
clustered configurations.

2. MODELS AND METHODS

We consider an excitatory and an inhibitory sub-network of
rate model neurons, each coupled within itself and to the other
sub-network. The architecture corresponding to this network
is shown in Figure 1. The potential of an excitatory neuron is
designated as u, and an inhibitory neuron as v. A similar model
without local delay and global inhibitory feedback delay has been
studied in Rich et al. (2020). In parts of our work, we go beyond
this model by assuming that each of these sub-networks is also
affected by global delayed inhibitory feedback from the inhibitory
cells, with a global feedback strength κ ; this global feedback
delay is made longer than the local recurrent feedback delay. The
delayed feedback aspects of our model are similar to those in
Herrmann et al. (2016) and Hutt et al. (2016). The dynamical
equations for the potential of each unit in the network are:
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where the τl’s are the local conduction delays which may all
be the same, or be taken from a discrete probability density.
ξE,I(t) denote Gaussian white noises, chosen for simplicity here
as having the same strength σ =

√
2D with < ξE,I(t) > = 0 and

< ξi(t)ξj(t
′) > =δijδ(t − t′).

The firing rate function φ follows a sigmoidal function defined
as:

φ(u) =
1

1+ e−βu
. (2)

TABLE 1 | Parameters of the two-population model.

Symbol Definition A Value

Ne Number of excitatory units 800

Ni Number of inhibitory units 200

αi Dendritic rate constant—inhibitory 200 Hz

αe Dendritic rate constant—excitatory 100 Hz

β Response function gain 100

ne Number of excitatory connections for each neuron 80

ni Number of inhibitory connections for each neuron 20

wee e → e Synaptic connection strength 15

wei e → i Synaptic connection strength 15

wie i → e Synaptic connection strength −15.375

wii i → i Synaptic connection strength −15.375

κ Global feedback strength Variable

M Number of delays Variable

D Intrinsic noise level Variable

dt Integration timestep 0.1 ms

All parameters are described in Table 1. Some of our last results
consider the effect of a periodic input S(t) of different frequencies
to the excitatory population. In some of our simulations below,
we will consider multiple delays chosen from a discrete density.
This means that each unit is connected to all other units with
these multiple delays.

We assume that there are Ne = 800 excitatory units and
Ni = 200 inhibitory units in the whole network, and that the
probability of connection of any two neurons is 10%. Thus each
neuron is connected on average to 100 other neurons. The weight
matrix can be seen in Figure 2 in which the excitatory connection
weights are fixed at 15 and the inhibitory weights at −15.375
(the mean of the network and mean of the non-zero connections
in the network are approximately zero). The initial conditions
are picked randomly from a Gaussian distribution with zero
mean and unit variance. This choice of values gives a slightly
unbalanced network: there are 4 times more excitatory neurons
than inhibitory neurons, but the inhibitory weight divided by

the number of inhibitory connections (w
ii

ni
= wie

ni
) is 4.1

times the excitatory weight divided by the number of excitatory

connections (w
ei

ne
= wee

ne
). We have checked that the phenomena

reported here are robust in the sense that they are qualitatively
the same when the network is set up with similar weight ratios,
and in particular for the balanced case where the ratio is equal
to 4, i.e., with wii = wie = −15. The results below are also
qualitatively similar for the case where elements of the weight
matrices are picked randomly from Gaussian distributions such
that the mean of the excitatory neurons is 15 and the mean
of the inhibitory neurons is −15.375. Also, in the absence of
any delays, our network is in a chaotic state, as it is with small
local delays in the absence of global feedback and noise. In the
thermodynamic limit, the complexity of the dynamics decreases;
however, complex dynamics can still be observed provided that
smaller delay values are used (at least for the parameters N =
10000, ne = 800, and ni = 200 that we tested).
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FIGURE 2 | Network connectivity. Only 10 percent of the weights are non-zero.

3. RESULTS

The mean of the activity of the excitatory sub-network for

different time delays between interacting neurons can be seen in

Figure 3. For τ = 2 ms, chaotic behavior can be observed, with

no clear peak in the power spectrum, which in fact has power-

law characteristics. As the time delay increases to 5 ms, a peak

arises in the power spectrum at 70 Hz. This peak further shifts
toward the lower frequency of 55 Hz as the delay increases. When
the time delay between neurons in the local recurrent circuitry
is increased to 10 ms, chaotic dynamics can no longer be seen,
and harmonics appear in the power spectrum at integer multiples
of 25.6 Hz. For this latter case, when the dynamic is affected by
noise, one can use the mean-field method introduced in Hutt
et al. (2016) to study the dynamical property of the network. It
can be concluded that in this system, a larger delay leads to more
coherence between the neurons’ activities. We should mention
that when we increase connection numbers ne to 800 and ni
to 200, and the total number of units to 10, 000 for this set of
parameters, the dynamical behavior becomes simpler; but chaotic
behavior can still be achieved for smaller time delays.

In the next step, we examined how delayed global inhibitory
feedback from inhibitory units influences network dynamics.
In Figure 4, the dynamical behavior of the excitatory network
for different global feedback time delays and the smaller fixed
local time delay is shown. Without local delayed interactions,
the activity is a regular oscillation as is expected from purely
inhibitory networks with delay. Here we took the local time delay
τ = 2 ms and did the simulation for the fixed value of the
global feedback coefficient κ = −5 and variable global feedback
time delay T. The global feedback tends to align the dynamical
behavior of all units together, while the influence of the local time
delays leads to chaotic fluctuations.

The existence of the global feedback, along with the small
local delay, causes the appearance of a pattern of very low

activity punctuated by random, sudden and brief jumps to larger
values. We call these behaviors “dropout activities.” They can
be characterized by the time-dependent standard deviation (SD)
of the activity across the units in the excitatory sub-network
(Figure 4, middle panels). A stronger global feedback tends to
weaken the chaotic nature of the units. Each time that the
dynamics enter the state of deficient firing rate activity, the
standard deviation becomes very close to zero, meaning that
the whole network is highly synchronized in this low activity
state. Below we will see the paradoxical implications of this
behavior for spiking activity using a spiking rule on top of the
activities; spikes will be associated with the state of lower mean
activity because they are caused by strong fluctuations, i.e., it is a
fluctuation-driven spiking regime.

We can gain more insight by looking at the mean of the power
spectrum of the excitatory sub-network’s activity. As a result
of increasing the global feedback time delay, we can observe
that the peak around the 3–8 Hz low-frequency component
becomes sharper, and thus that there is enhanced more regular
low-frequency activity, a feature that stands out from the time
series. Furthermore, it can be seen in the insets that these
dropout activities are associated with high-frequency oscillations
with very low amplitude, which are also evident in the power
spectrum. As the global feedback time delay increases, the higher
frequency components become more prominent, such that for
T = 30 ms there are more high-frequency peaks that are
positioned approximately 30− 40 Hz from each other.

We illustrate in Figure 5 the influence of the global feedback
strength and assume that the local and global feedback time
delays are fixed. As for the previous case where the delay
was increased, we observe that increasing the strength of the
global feedback also promotes synchrony between units. In the
power spectra, similar to the case of increasing delay, the high-
frequency components become more evident as the units are
more synchronized. The enhanced standard deviation outside
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FIGURE 3 | Local dynamics alone. The left column shows the mean activity of the excitatory sub-network, and the right column plots the corresponding power

spectrum averaged over the activities in this sub-network. From top to bottom, the local time delay corresponds to (A,B) 2 ms, (C,D) 5 ms, (E,F) 7 ms, and (G,H) 10

ms.

dropouts raises the possibility for spiking, a fact that will be
confirmed below.

So far, we have seen that either increasing the delay or
the strength of the global feedback, the degree of complexity
decreases. One difference between the two cases is that at large
global feedback coupling, the dynamic will be stuck in a regime of
high-frequency low-amplitude oscillation (not shown), while for
large global feedback time delay, oscillation with low frequency is
the dominant behavior of the sub-networks. The phase diagram
for different κ and different global feedback time delayT is shown
in Figure 6. For this computation, we counted the number of
activity drop-outs during 35 s following a 2-s transient, repeating
the simulation for different κ − T pair.

The pattern of sudden low activities caused by the global

feedback appears to be highly vulnerable as it can not be

sustained in most cases, and asynchronous fluctuations may

be reinstated. In Figure 7, these patterns are still found for

small noise intensities, while the standard deviation fluctuations

in these cases are more constrained. As the noise intensity

increases, these dropouts are less likely to occur. It can be
noticed that for significant noise intensity, the variations of
the time-dependent standard deviation become more confined

around 0.5; thus at higher noise, both the mean and the
standard deviation seem to stabilize. This appears to be a form
of noise-induced order from a chaotic state (Matsumoto and
Tsuda, 1983). A simple picture here is that the noise in fact
breaks up the synchronous periods and makes the dynamics
more homogeneously asynchronous. Despite the decreasing
occurrence of activity dropouts, the power spectrum still shows
peaks around the high-frequency component, although they are
reduced in size. The power spectrum at low frequency also
becomes flatter as D increases, with a clear transition to a power-
law regime at higher frequencies.

From the raster plots in Figure 8, we can understand better
the dynamics of all the neurons in the two different sub-networks
for different cases. In the absence of the global feedback (left
column), the mean network activity fluctuates more around the
zero value, and it occurs with higher amplitude. In this case, high
spiking activity can be observed, where this spiking activity of
individual neurons is based on the assumption that firing follows
an inhomogeneous Poisson process with the rate φ(x) (x is either
u or v) and the probability of firing in an interval (t, t + dt) is
given by (Rich et al., 2020):

p(x) = 1− e−φ(x(t))dt . (3)
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FIGURE 4 | Higher global feedback delay causes activity dropouts. Mean of the excitatory sub-network activity (A–D), the standard deviation of the activities of its

units (E–H), and the power spectrum averaged over the units in the excitatory sub-network (I–L) in the presence of global inhibitory feedback with fixed strength

κ = −5 without noise. From left to right, the global feedback time delay T equals 5, 10, 20, and 30 ms. The pulse-like epochs in the solution correspond to “activity

dropouts” where the sub-network is synchronized with a low firing probability. Paradoxically, between these dropouts, the time-dependent mean activity is lower but

its time-dependent fluctuations are stronger. Insets in the figures in the first row show the high-frequency low-amplitude oscillations that occur during the dropouts.

The more regular pulsing in (D) is associated with a low frequency peak and its harmonics riding on top of the broadband background.

By taking into account the global delayed feedback (three right
columns), activity dropouts can be seen in yellow bars in the
activity rasters at the top. With a strong enough global feedback
coefficient, and sufficiently long delay, the amplitude of the
fluctuations decreases and the mean of network activity shifts
down to more negative values. This makes sense given that the
global feedback is inhibitory. As a consequence, the network
spiking activity decreases. We can see clearly that the dropouts
are associated with epochs of high mean activity but low standard
deviation of activity—hence the name “dropout.” For stronger
noise intensity, the probability of dropouts decreases, resulting
in slightly more widespread spiking activity.

In themiddle row, it can be seen that for this set of parameters,
spiking activity is slightly higher in the inhibitory sub-network
compared to the excitatory sub-network, and there would rarely
be a spike during an epoch of dropout. With the decreasing of the
amplitude of the fluctuations of the standard deviation through
increasing noise intensity, we see that somehow the spiking
activity spreads out, especially in the inhibitory sub-network.

The histogram of the time difference between the two dropout
activities is shown in Figure 9. The statistic is calculated in the
following way. We first take the arbitrary threshold value of 0.06

for the standard deviation. We store the data for a duration
between the time the standard deviation falls below 0.06 and the
time that it rises above 0.1. During this interval, we record the
time corresponding to the minimum value of standard deviation.
This process is repeated up to t = 1, 500 s.

First, we only varied the global feedback strength κ from −4
to −6, and the effect of noise was only considered in the last
panel of Figure 9. Increasing the impact of global feedback on the
dynamics coincides with the increase in the probability of these
events in a shorter interval, and the statistic tends to be more
Poissonian. Due to the noise, the fluctuation around the arbitrary
threshold value increases and consequently, the time difference
between these events decreases significantly. In general, however,
greater noise levels tend to suppress dropout activity.

Externally applied stimuli can have a wide range of dynamical
effects, including suppression of chaos, entrainment, etc (Rajan
et al., 2010; Park et al., 2018). Of particular interest is the effect
of external periodic stimuli (chosen here with an amplitude of
0.2) on the dynamics in the presence of dropout activities. In
Figure 10, the noise is turned off, and only the sinusoidal external
input with different frequencies is applied for a duration of 1 s.
It can be seen that after a low-frequency stimulus such as 5
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FIGURE 5 | Higher global feedback strength causes activity dropouts. Mean (A–D) and standard deviation (E–H) of the excitatory sub-network activities, with the

corresponding mean power spectrum (I–L) in the presence of global inhibitory feedback without noise. From left to right the global feedback strength κ equals −1,

−2, −4, and −6 and in all cases, the global feedback time delay is T = 10 ms. Higher feedback strength causes more dropouts. As for the increased delay case,

between dropouts the standard deviation increases.

FIGURE 6 | Activity drop-out phase diagram in κ-T space. Red squares correspond to the cases where at least one activity drop-out was observed during 35 s, and

blue squares for the cases with no activity drop-out. Stronger and/or longer delay global feedback are seen to promote drop-outs.

Hz ceases, the chaotic network activity prior to stimulation is
replaced by a high frequency oscillation of 130 Hz. The duration
of these simplified dynamics beyond the stimulation is found to

vary as a function of stimulation frequency. For example, for a
15Hz stimulus, the duration elongates a little, but eventually the
system recovers its natural dynamical properties. As seen third
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FIGURE 7 | Noise suppresses activity dropouts. Mean activity (A–D), standard deviation (E–H), and power spectrum (I–L) averaged over the excitatory sub-network

for increasing noise intensity D and fixed global inhibitory feedback with time delay T = 10 ms and strength κ = −5. From left to right, D = 10−5, 5× 10−5, 10−4 and

5× 10−4. The dropouts seen in Figure 4B are no longer seen, and the fluctuations of the standard deviation decrease at higher noise intensity.

column in Figure 10, when the stimulation frequency is relatively
higher, the chaotic dynamics may not be recovered at all, or at
least not for a much longer time. Because timing and duration of
stimulation are crucial in applications, how the network responds
to stimulation appears highly complex, and a full investigation is
beyond the scope of this paper.

It has been shown (Tavakoli and Longtin, 2020) for many
dynamical systems from lasers to biological feedback system that
upon adding a sufficient number of delays to the dynamics,
a transition from chaos to simpler behavior such as periodic
motion, or even fixed-point behavior, can occur, provided that
the range of delays is sufficiently broad. In Figure 11, we show
the behavior of the network activity when multiple local delays
are included. Here we set the noise to zero, as well as the
periodic stimulation and the global feedback. We assume that the
minimum delay is equal to 2 ms, and more delays added at 1τ =
0.2ms increments up to a maximum delay of [2+0.2(M−1)] ms.

We carried out the simulation for M = 6, M = 11,
M = 16, and M = 21. Figure 11 shows that, in contrast to
the aforementioned delayed dynamical systems, the dynamical
properties are not affected so drastically upon adding more
delays. This is likely due to the fact that the local EI recurrent
dynamics have sufficient intrinsic non-linearity to support chaos
without relying on the delay. Our simulations for unrealistically
large local delays (with large spacing between delays, and up to a
largest delay of 242 ms for 21 delays) revealed no dropout activity

or complexity collapse when there was no delayed global feedback
(not shown).

It is interesting that for a single delay case, as we
saw in Figure 3, and for large enough delay, dynamics are
simple oscillatory. However, the presence of smaller local
delays makes the oscillatory dynamics chaotic. As we saw
earlier, global feedback delay can decrease the degree of
complexity in the chaotic dynamics. Therefore, we consider
the dynamics of the network with multiple local delays in
the presence of the global delayed feedback to see whether
we can observe the complexity reduction with multiple delays.
Parameters used in Figure 12 are the same as those used for
Figure 11.

A key finding is that in the presence of both local
recurrent delayed feedback and global inhibitory delayed
feedback, the dynamics are significantly affected by the
multiple local delay times. Indeed, Figure 12 reveals that,
as the distribution of the time delays broadens, the system
manifests transient chaos, which eventually converges to
a periodic limit cycle attractor with the low amplitude
oscillations. Hence, in the presence of a global inhibitory
delayed feedback, the system exhibits CC; but it requires
a longer delay inhibition to occur. The new feature with
respect to the previously reported MDCC is that here
the transition to simpler dynamical behavior involves
transient chaos.
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FIGURE 8 | Effect of noise on chaotic global activity dropouts. Top: Raster plots of neuron activities from simulations of Equations (1a) and (1b). Middle: Raster plots

of neuron spiking obtained by applying the Poisson spiking rule Equation (3) to simulations in the top row. Bottom: time-dependent mean and standard deviation of

the activities of units in the excitatory sub-network. In the left column, the noise and the global feedback are set to zero. In the second column, the global inhibitory

feedback is added, leading to the random occurrence of epochs of strong synchrony due to activity dropouts. The last two columns correspond to the cases with

additive weak and strong noise on the dynamics of the units. The global inhibitory feedback delay T is 10 ms and its strength κ is −5. The top rows show that the

inhibitory sub-network exhibits qualitatively the same behavior as the excitatory one, but with a slightly higher spiking rate.

FIGURE 9 | Frequency of chaotic activity dropouts increases with stronger feedback. The probability of intervals between successive low firing activity dropout events.

In the first three columns (A–C), the noise strength is D = 0 and the global feedback strength κ changes from −4 to −5 to −6. In (D), separate noise terms, each with

intensity D = 10−5, are added to the excitatory and inhibitory dynamics. In all cases the global feedback time delay T is 10ms.

4. DISCUSSION

We have focused on the properties of a rate-based neural
network with a small number of short delays in the local sparsely

connected EI recurrent circuitry, and how this is altered by
a longer delay that acts globally through all-to-all feedback

inhibition. Our goal was to investigate under which conditions,
if any, a broadening of the local delay distribution can lead to a
simplification of the chaotic dynamics seen for a single delay. By
construction, the setup of this problem also allows a preliminary
analysis of the effect of clusters of delays on local recurrent EI
dynamics, although we have limited our study to two clusters,

one of which contains only a single delay. But the means of these
clusters are related by a factor of 2-3. Apart from being relevant to
neural circuitry, the inclusion of the global feedback was found to
be necessary to see CC in a chaotic EI neural network, if the local
delays are not allowed to take on values that are too large.

Specifically, we first showed that an increase in the local
time delay could lead to a drastic change in the deterministic
dynamics. When this delay is unique and is increased from 2
ms to 10 ms, chaotic dynamics are abruptly replaced by regular
periodic synchronized network firing (Figure 3). This is a first
instance in which the complexity collapses in our network,
although in a manner that does not rely on the inclusion of

Frontiers in Systems Neuroscience | www.frontiersin.org 9 November 2021 | Volume 15 | Article 720744

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Tavakoli and Longtin Complexity Collapse in Neural Networks

FIGURE 10 | Frequency-dependent complexity collapse. Network dynamics when an external sinusoidal stimulation is activated for 1 s from t = 5.1 s until t = 6.1 s.

Here the global feedback strength is κ = −5 and the corresponding time delay is 10 ms.

FIGURE 11 | Broadening the local recurrent delay distribution has little effect in the absence of global delayed inhibition. Mean excitatory sub-network activity for

different number of delays M. From top to bottom, M = 6 (A,B), 11 (C,D), 16 (E,F), and 21 (G,H). Here the global feedback and the noise are set to zero. The delays

are confined to the interval [2+ 0.2(M− 1)] ms. No complexity collapse is seen, and the spectra are difficult to tell apart.

more delays (Tavakoli and Longtin, 2020); rather it appears to
simply arise from a bifurcation when the single delay parameter
is increased.

Adding a delayed global inhibitory feedback can however
lead to different interesting phenomena. The main one, show
in Figures 4, 5, features chaotic dynamics that exhibit sudden
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FIGURE 12 | Broadening the local delay distribution initiates complexity collapse in the presence of global delayed feedback. Mean excitatory sub-network activity for

different numbers M of local delays. From top to bottom, M = 6 (A,E), 11 (B,F), 16 (C,G), and 21 (D,H). The global feedback time delay T is 10ms and the feedback

strength κ is −4. The delays are confined to the interval [2+ 0.2(M− 1)] ms. The CC occurs faster the stronger the delay is.

pulses which we have termed “activity dropouts.” This effect
is more pronounced when the global feedback is strong or its
delay is large. Interestingly it is also associated with a power law
behavior of the mean activity over three orders of magnitude
(only 2.5 orders are shown). These activities contain a high-
frequency component that is embedded possibly an unstable
orbit in the chaotic attractor due to the local time delay. This
property becomes essential when other simplification factors
are added to the system, such as increasing the number of
local delayed interactions (Figure 12) or correlated input. While
adding uncorrelated input, such as white noise, does not destroy
this component completely, it helps maintain the activity’s
chaotic nature due to the recurrent local interaction (Figure 7).
But paradoxically, additive noise on the dynamics also leads to
a reduction in the size of the fluctuations in the time-varying
standard deviation. This is a form of noise-induced order from
a chaotic state first reported by Matsumoto and Tsuda (1983).

The activity dropouts are interesting because the global
feedback makes the standard deviation (SD) of the solution
on the attractor vary randomly (in fact, Poisson-distributed—
see Figure 9). The mean of the activity is higher during the
periods of low SD, yielding minimal spikes—thus the term
“dropout.” During the periods of high SD, the mean activity is
even lower, but the few cells that fluctuate the most are able to fire
during the higher portions of these fluctuations, and their spikes
drive the whole network activity. Note that the model does not
explicitly run on spiking; the spikes are a derived quantity from
Equation (3).

The more regularly aspects of the activity that involves
dropouts is reminiscent of the stabilization of unstable periodic
orbits using delayed feedback (Pyragas control), although the
precise form of the global feedback used here differs from the
one used in that chaos-control scheme. Nevertheless this global
feedback may create or reveal an underlying slower rhythm
embedded in the chaos and which becomes manifest as a lower
frequency peak and its harmonics in the power spectra (see
Figure 4L).

Complexity collapse in the sense of that in Tavakoli and
Longtin (2020) does appear in our work through the broadening
of the local delay distribution as seen in Figure 12; but for the
parameter range where we found this effect, the global inhibitory
feedback with longer delay must be present. It is possible that
other regimes occur in which CC does not rely on the presence
of this global feedback.

The novel behavior in Figure 8 is striking in that there
is a temporally random appearance of epochs of dropouts.
The time between these dropouts are reminiscent of up-
states seen experimentally in neuroscience, and the dropouts
as down states. This appears to be a novel deterministic
behavior that is synchronized across the network, i.e., it is
not a chimera. It survives the presence of moderate noise.
There is a sense in which the global inhibitory feedback
introduces longer time scales in the network dynamics - the
stronger it is, the less power there is at low frequencies
(Figure 5). This might share features and origins with the
long time scales that arise from introducing population
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clusters—instead of delay clusters as done here - into EI networks
in Litwin-Kumar and Doiron (2012).

Delayed inhibitory feedback has also been reported to elicit
transitions between quasi-periodic partial synchronization and
collective chaos (Pazó and Montbrió, 2016). Our dynamics here
appear to differ from that scenario in that the collective behavior
here is not periodic (our network also has E and I coupling).
Another point of comparison is the work in Luccioli et al.
(2019) where inhibition with long delay can bring on collective
oscillations as we see here in Figures 4, 5; it remains to be seen
whether a winner-take-all mechanism is at work in our system as
reported there.

The final point of interest is the fact that the broadening of
the local delay distribution brings on a collapse from chaos to
simple (limit cycle) dynamics in a time inversely proportional
to the width of that distribution (Figure 12). This is a form of
transient chaos in neural networks (Zillmer et al., 2009) that
relies here on delay clusters. It warrants a deeper investigation,
especially of its dependence on the initial state of the network.
It reflects special properties of the underlying attractor that
are emphasized also in response to external inputs. Indeed we
have uncovered a frequency-dependent silencing of the network
activity, or frequency-dependent CC that can be temporary or
even likely permanent, depending on the frequency. It is a
different form of persistence from stimulation reported in Park
et al. (2018); in particular, the silencing time seems to depend
on the timing of when the stimulus is applied (not shown). This

will be investigated elsewhere. This may bear on the reaction of
the activity of a neural network with delay clusters to extraneous
rhythms or artificial stimulation.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors under request, without undue
reservation.

AUTHOR CONTRIBUTIONS

ST and AL conceived the principle idea of the work and
structured the manuscript. ST carried out the numerical
simulation. All authors have written the manuscript.

FUNDING

This work was supported by Natural Sciences and
Engineering Research Council of Canada under Grant No.
RGPIN/06204-2014.

ACKNOWLEDGMENTS

AL thank the Natural Sciences and Engineering Research Council
of Canada for financial support.

REFERENCES

Belair, J., Campbell, S. A., and van den Driessche, P. (1996). Frustration, stability,

and delay-induced oscillations in a neural network model. SIAM J. Appl. Math.

56, 245–255. doi: 10.1137/S0036139994274526

Bimbard, C., Ledoux, E., and Ostojic, S. (2016). Instability to a heterogeneous

oscillatory state in randomly connected recurrent networks with

delayed interactions. Phys. Rev. E 94:062207. doi: 10.1103/PhysRevE.94.

062207

Bol, K., Marsat, G., Harvey-Girard, E., Longtin, A., and Maler, L. (2011).

Frequency-tuned cerebellar channels and burst-induced ltd lead to the

cancellation of redundant sensory inputs. J. Neurosci. 31, 11028–11038.

doi: 10.1523/JNEUROSCI.0193-11.2011

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of

integrate-and-fire neurons with low firing rates.Neural Comput. 11, 1621–1671.

doi: 10.1162/089976699300016179

Coombes, S., and Laing, C. (2009). Delays in activity-based neural

networks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1117–1129.

doi: 10.1098/rsta.2008.0256

Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., and Kötter, R. (2009).

Key role of coupling, delay, and noise in resting brain fluctuations.

Proc. Natl. Acad. Sci. U.S.A. 106, 10302–10307. doi: 10.1073/pnas.09018

31106

Eurich, C. W., Thiel, A., and Fahse, L. (2005). Distributed delays

stabilize ecological feedback systems. Phys. Rev. Lett. 94:158104.

doi: 10.1103/PhysRevLett.94.158104

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A

neuronal learning rule for sub-millisecond temporal coding.Nature 383, 76–78.

doi: 10.1038/383076a0

Herrmann, C. S., Murray, M. M., Ionta, S., Hutt, A., and Lefebvre, J. (2016).

Shaping intrinsic neural oscillations with periodic stimulation. J. Neurosci. 36,

5328–5337. doi: 10.1523/JNEUROSCI.0236-16.2016

Hutt, A., Mierau, A., and Lefebvre, J. (2016). Dynamic control of synchronous

activity in networks of spiking neurons. PLoS ONE 11:e0161488.

doi: 10.1371/journal.pone.0161488

Jirsa, V. K., and Ding, M. (2004). Will a large complex system with time delays be

stable? Phys. Rev. Lett. 93:070602. doi: 10.1103/PhysRevLett.93.070602

Larger, L., Penkovsky, B., and Maistrenko, Y. (2013). Virtual chimera

states for delayed-feedback systems. Phys. Rev. Lett. 111:054103.

doi: 10.1103/PhysRevLett.111.054103

Litwin-Kumar, A., and Doiron, B. (2012). Slow dynamics and high variability

in balanced cortical networks with clustered connections. Nat. Neurosci. 15,

1498–1505. doi: 10.1038/nn.3220

Longtin, A. (1990). “Oscillation onset in neural delayed feedback,” in Advances in

Neural Information Processing Systems 3 (NIPS 1990) (Denver), 130–136.

Longtin, A., Milton, J. G., Bos, J. E., and Mackey, M. C. (1990). Noise and critical

behavior of the pupil light reflex at oscillation onset. Phys. Rev. A 41, 6992–7005.

doi: 10.1103/PhysRevA.41.6992

Luccioli, S., Angulo-Garcia, D., and Torcini, A. (2019). Neural activity of

heterogeneous inhibitory spiking networks with delay. Phys. Rev. E 99:052412.

doi: 10.1103/PhysRevE.99.052412

Madadi Asl, M., Valizadeh, A., and Tass, P. A. (2018). Dendritic and axonal

propagation delays may shape neuronal networks with plastic synapses. Front.

Physiol. 9:1849. doi: 10.3389/fphys.2018.01849

Majhi, S., Bera, B. K., Ghosh, D., and Perc, M. (2019). Chimera states in neuronal

networks: a review. Phys. Life Rev. 28, 100–121. doi: 10.1016/j.plrev.2018.09.003

Matsumoto, K., and Tsuda, I. (1983). Noise-induced order. J. Stat. Phys. 31, 87–106.

doi: 10.1007/BF01010923

Park, S. H., Griffiths, J. D., Longtin, A., and Lefebvre, J. (2018). Persistent

entrainment in non-linear neural networks with memory. Front. Appl. Math.

Stat. 4:31. doi: 10.3389/fams.2018.00031

Pazó, D., and Montbrió, E. (2016). From quasiperiodic partial synchronization to

collective chaos in populations of inhibitory neurons with delay. Phys. Rev. Lett.

116:238101. doi: 10.1103/PhysRevLett.116.238101

Frontiers in Systems Neuroscience | www.frontiersin.org 12 November 2021 | Volume 15 | Article 720744

https://doi.org/10.1137/S0036139994274526
https://doi.org/10.1103/PhysRevE.94.062207
https://doi.org/10.1523/JNEUROSCI.0193-11.2011
https://doi.org/10.1162/089976699300016179
https://doi.org/10.1098/rsta.2008.0256
https://doi.org/10.1073/pnas.0901831106
https://doi.org/10.1103/PhysRevLett.94.158104
https://doi.org/10.1038/383076a0
https://doi.org/10.1523/JNEUROSCI.0236-16.2016
https://doi.org/10.1371/journal.pone.0161488
https://doi.org/10.1103/PhysRevLett.93.070602
https://doi.org/10.1103/PhysRevLett.111.054103
https://doi.org/10.1038/nn.3220
https://doi.org/10.1103/PhysRevA.41.6992
https://doi.org/10.1103/PhysRevE.99.052412
https://doi.org/10.3389/fphys.2018.01849
https://doi.org/10.1016/j.plrev.2018.09.003
https://doi.org/10.1007/BF01010923
https://doi.org/10.3389/fams.2018.00031
https://doi.org/10.1103/PhysRevLett.116.238101
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Tavakoli and Longtin Complexity Collapse in Neural Networks

Rajan, K., Abbott, L. F., and Sompolinsky, H. (2010). Stimulus-dependent

suppression of chaos in recurrent neural networks. Phys. Rev. E 82:011903.

doi: 10.1103/PhysRevE.82.011903

Rich, S., Hutt, A., Skinner, F. K., Valiante, T. A., and Lefebvre, J. (2020).

Neurostimulation stabilizes spiking neural networks by disrupting seizure-

like oscillatory transitions. Sci. Rep. 10:15408. doi: 10.1038/s41598-020-

72335-6

Sawicki, J., Ghosh, S., Jalan, S., and Zakharova, A. (2019). Chimeras in multiplex

networks: interplay of inter- and intra-layer delays. Front. Appl. Math. Stat. 5:19.

doi: 10.3389/fams.2019.00019

Tavakoli, S. K., and Longtin, A. (2020). Multi-delay complexity

collapse. Phys. Rev. Res. 2:033485. doi: 10.1103/PhysRevResearch.2.

033485

Zillmer, R., Brunel, N., and Hansel, D. (2009). Very long transients, irregular

firing, and chaotic dynamics in networks of randomly connected inhibitory

integrate-and-fire neurons. Phys. Rev. E 79:031909. doi: 10.1103/PhysRevE.79.

031909

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Tavakoli and Longtin. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org 13 November 2021 | Volume 15 | Article 720744

https://doi.org/10.1103/PhysRevE.82.011903
https://doi.org/10.1038/s41598-020-72335-6
https://doi.org/10.3389/fams.2019.00019
https://doi.org/10.1103/PhysRevResearch.2.033485
https://doi.org/10.1103/PhysRevE.79.031909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

	Complexity Collapse, Fluctuating Synchrony, and Transient Chaos in Neural Networks With Delay Clusters
	1. Introduction
	2. Models and Methods
	3. Results
	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


