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Human diseases are usually linked to multiloci genetic alterations,

including single-nucleotide polymorphisms (SNPs). Methods to use these

SNPs for disease risk prediction (DRP) are of clinical interest. DRP algo-

rithms explored by commercial companies to date have tended to be com-

plex and led to controversial prediction results. Here, we present a general

approach for establishing a logistic model-based DRP algorithm, in which

multiple SNP risk factors from different publications are directly used. In

particular, the coefficient b of each SNP is set as the natural logarithm of

the reported odds ratio, and the constant coefficient b0 is comprehensively

determined by the coefficient and frequency of each SNP and the average

disease risk in populations. Furthermore, homozygous SNP is considered a

dummy variable, and the SNPs are updated (addition, deletion and modifi-

cation) if necessary. Importantly, we validated this algorithm as a proof of

concept: two patients with lung cancer were identified as the maximum risk

cases from 57 Chinese individuals. Our logistic model-based DRP algo-

rithm is apparently more intuitive and self-evident than the algorithms

explored by commercial companies, and it may facilitate DRP commercial-

ization in the era of personalized medicine.

Genome-wide association studies (GWASs) are

increasingly uncovering the effect of genetic alterations

in most of the common diseases [1] and are consider-

ably accelerating the commercialization of personalized

medicine [2]. One of the genetic alteration based appli-

cations for personalized medicine is disease risk predic-

tion (DRP) [3–5], which has been reported to benefit

individuals in terms of improving their lifestyle choices

and facilitating preventive screening [3,4,6,7]. However,

the discrepancy among DRPs of different direct-

to-customer companies (e.g., 23andMe, Navigenics

and deCODEme) has been widely reported [8–11] and

substantially limits their commercialization. Such dis-

crepancy has been mainly attributed to the difference

in the selection of single-nucleotide polymorphism

(SNP) risk factors and DRP algorithms. Although it is

impossible for different DRP providers to select a pal-

ette of the same SNP risk factor markers for one type

of disease, there is a high demand for the development

of a general DRP algorithm.

Retrospectively, the algorithms of three DRP com-

panies (23andMe, deCODEme and Navigenics) have

notable differences in principle (as described in Data

S1) and are complicated and compromised [9,10].

Whereas 23andMe and deCODEme transform the

odds ratio (OR) of each SNP into a likelihood ratio,

Navigenics transforms it into the relative risk. There-

after, 23andMe multiplies the likelihood ratios of
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single genotypes by the average odds of the disease

and converts these odds into risks, deCODEme multi-

plies the likelihood ratios by the average risk of dis-

ease, and Navigenics calculates the relative risks for all

of the possible genotype combinations.

Apparently, these DRP algorithms are not suitable

for generalization because of the following limitations

[9,10]. First, all of them require the OR values of both

homozygous and heterozygous SNPs. However, the

OR values for many homozygous SNPs are not avail-

able in the existing GWAS literature, and this may

limit the utility of high-risk SNPs whose OR values

are available for only the heterozygous forms. Second,

the DRP algorithm used by Navigenics requires a sub-

stantial amount of computer working memory [10].

Third, the DRP algorithm used by deCODEme is

apparently not normalized; that is, the calculated risk

might be larger than the upper limit value of 100%

under certain circumstances. It is thus highly demand-

ing to develop a more self-evident, robust and reliable

algorithm for DRP.

Logistic regression has been widely used for risk fac-

tor identification and evaluation in general, [12] as well

as in GWASs in particular. After a regression analysis

of the experimental data, the generated logistic model

containing certain risk factors can be applied for DRP

[5,12–15]. However, the SNP risk factors related to a

disease are usually identified in many studies by differ-

ent groups of researchers; therefore, the generated

logistic models in these studies are also different and

would not be suitable for DRP directly. From this per-

spective, a method to build a general logistic model

that integrates multiple SNP risk factors from multiple

publications is in high demand for DRP. The algo-

rithms explored by commercial DRP companies repre-

sent such efforts but apparently cannot meet the needs

[8–11].

Here, we present a general approach to build a

logistic model for DRP, in which multiple SNPs from

multiple publications are integrated and can be

promptly updated. Our model largely overcomes the

aforementioned limitations of the currently used algo-

rithms. Furthermore, we validated the model on lung

cancer with Chinese individuals, illustrating its signifi-

cance in preventive screening.

Materials and methods

Data collection from the literature

For each selected SNP, the original literature was down-

loaded, and the OR values for both homozygous (if avail-

able) and heterozygous SNPs were collected. SNPs with an

OR <1.15 were omitted. Then, the frequency of each SNP

in Chinese individuals and all individuals was extracted

from the National Center for Biotechnology Information

database by searching each SNP ID (for details, refer to

Table 1), and the lifetime risk for lung cancer in Chinese

men and women was assigned according to the Chinese

Cancer Registry Annual Report 2010 [16]. These data were

used by the algorithm for the regression analysis, as

described in the Results and Discussion.

Ethics approval and consent to participate

The experiments in genotyping human SNPs were approved

by the Ethics Committee of Third Hospital of Peking

University. We confirm that our study is compliant with

the ‘Guidance of the Ministry of Science and Technology

of China for the Review and Approval of Human Genetic

Resources’, and the study methodologies conformed to the

standards set by the Declaration of Helsinki. The experi-

ments were undertaken with the understanding and written

consent of each subject.

Human subjects

Patients were normally subjected to different clinical tests,

including peripheral blood-based clinical tests. The remain-

ing blood (around at a volume of 1.5 mL) of each patient,

accompanied with the information of only sex, age, smok-

ing and clinical symptoms, was transferred by the hospital

to us for DNA extraction and SNP genotyping, with the

data being analyzed anonymously.

SNP genotyping

Genomic DNA was extracted from peripheral blood by

using a QIAamp DNA Blood Mini Kit (Qiagen, Valencia,

CA, USA) in accordance with the manufacturer’s instruc-

tions. The primers for SNP genotyping were designed using

MassArray Assay Design v4.0 according to the sequence

information flanking the SNP, were synthesized by Invitro-

gen and were validated by MassArray Analyzer Compact.

The PCR, removal of free dNTP and sequencing by Mas-

sArray Analyzer Compact (Sequenom, San Diego, CA,

USA) were performed according to the manufacturer’s

instructions.

Statistics

Each sample was resequenced independently, and all of the

SNP sequencing results were consistent between indepen-

dent repeated experiments. Risk calculation was performed

using Microsoft Excel (Microsoft, Redmond, WA, USA).

A statistical analysis was performed in the MICROORIGIN

software using the ANOVA algorithm at a significance

level of 0.05.
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Results and Discussion

Logistic model generated from a designed study

does not meet the need for DRP on an increasing

number of SNP-related diseases

Logistic regression has been widely used for risk factor

identification and evaluation, and is generally pre-

sented as follows:

LogitðPÞ ¼ lnð P

1� P
Þ ¼ b0 þ b1x1 þ bixi. . .þ bnxn ð1Þ

where bi and xi are the coefficient and the logic value

of each risk factor, respectively. Then, the disease risk

P is expressed as follows:

P ¼ 1

1þ e�ðb0þb1x1þbixi...þbnxnÞ : ð2Þ

In a research study, researchers usually use a major-

ity of their experimental data to estimate the coeffi-

cients in Eqns (1,2) by using statistical software

through a maximum likelihood estimation algorithm

[12]. Then, the remaining experimental data are sub-

jected to the generated logistic model for validation

[12]. Further, researchers can use the generalized

model to predict the disease risk of new subjects.

Apparently, this strategy is useful and effective for

DRP based on the traditional risk factors [12].

In general, only one or a few novel SNP risk factors

related to a disease are identified in a specific GWAS,

in which the coefficients are determined and a specific

logistic model is generated as described above. If the

disease is linked to only these SNP risk factors,

the logistic model generated from this GWAS is suit-

able for DRP directly. However, most human diseases

are usually linked to a large number of SNP risk fac-

tors (sometimes up to 100 [17]), and each of them has

a minor effect on the disease risk. In particular, these

SNPs are identified one by one by different research

groups and are thus timely reported in multiple publi-

cations. Accordingly, the logistic models generated in

these studies are different and are not interchangeable

for DRP directly.

Generation of the logistic model for DRP by

directly using multiple SNPs from multiple

publications

Now, the question is how to integrate the multiple

SNPs from multiple publications to build a general

model for DRP. Commercial DRP companies have

developed algorithms to directly use the information

of multiple SNPs from multiple publications for DRP

by incorporating the OR value and the population fre-

quency of each SNP, which are usually available in the

GWAS literature and/or public databases. These algo-

rithms, however, are complicated and lead to dis-

crepant DRP results [8–11]. We thought to integrate

the multiple SNP risk factors from multiple publica-

tions into a logistic model for DRP (as indicated by

Eqn 2).

Regarding Eqn 2 for DRP, we need the coefficient

bi of each SNP and the constant coefficient b0, as well

as the value of xi for each SNP that can be determined

by the SNP genotyping of the subject. One way to

determine bi and b0 is to resequence the known SNP

risk factors in a large number of subjects and then per-

form a logistic regression analysis. This strategy,

although used previously [5], does not make full use of

the knowledge of the SNP risk factors that have been

reported and thus has compromised cost-effectiveness.

In particular, if a new SNP risk factor related to the

disease is discovered, an additional clinical study needs

to be performed for its incorporation into the logistic

model.

In our approach, bi in Eqn ( 2) is not estimated by

a statistical analysis on the clinical data as performed

by Ripatti et al. [5]. Rather, it is obtained directly by

transforming the reported OR value of the SNP

according to the logistic regression as follows:

bi ¼ lnðORiÞ ð3Þ
This is based on the definition of OR in a logistic

regression model as follows:

ORi ¼ oddsðxi þ 1Þ
oddsðxiÞ ¼

Pðxiþ1Þ
1�Pðxiþ1Þ

PðxiÞ
1�PðxiÞ

¼ eb0þb1x1þbixiþbiþ...þbnxn

eb0þb1x1þbixiþ...þbnxn

¼ ebi

ð4Þ

where the OR value of a SNP risk factor is explained

as the ratio of the relative disease risk of the person

at risk to the relative disease risk of a person not at

risk.

Next, b0 can be determined as follows: if a SNP risk

factor plays a role in the disease development, its con-

tribution with respect to individuals should be consid-

ered the same as that with respect to populations.

Then, Eqn 1 for an individual can be converted to the

following form for populations:

ln
P0

1� P0

� �
¼ b0 þ b1f1 þ bifi. . .þ bnfn ð5Þ
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where the population frequency (fi) of each SNP and

the average population disease risk (P0) are usually

available in public databases; the coefficient (bi) of

each SNP has been already determined through

Eqn 3. Then, b0 can be calculated using Eqn 6 as

follows:

b0 ¼ ln
P0

1� P0

� �
� ðb1f1 þ bifi. . .þ bnfnÞ ð6Þ

Apparently, b0 reflects the contribution of the

unidentified and/or unselected SNP risk factors, as

well as of the non-SNP risk factors, including the tra-

ditional risk factors (e.g., smoking and drinking).

Importantly, if new critical SNPs are identified and

need to be incorporated into our model, b0 can be

recalculated according to Eqn 6. In other words, our

logistic model for DRP can be updated quickly if nec-

essary.

In addition, the variance of P for each subject is

collectively determined by the sum of the product of

the variance of each bi and the logic value xi (accord-

ing to Eqn 2), with the variance of each bi being

derived from the variance of OR for each SNP (ac-

cording to Eqn 3). In this regard, OR with a smaller

variance is favorable when multiple ORs are available

for a specific SNP as reported in multiple publica-

tions.

Equations 1–6 represent a general approach to estab-

lishing a logistic model-based DRP algorithm by com-

bining multiple SNPs from multiple publications, as

summarized here. First, the SNP risk factor markers

for a specific disease are selected from the existing

GWAS literature, collecting their OR values and

population frequencies. Second, the coefficient bi of

each SNP and the constant coefficient b0 are deter-

mined using Eqns 3 and 6, respectively; therefore,

Eqn 2 for DRP is ready. Third, the SNP risk factors

for the subject are determined experimentally. Fourth,

DRP is performed using Eqn 2. Note that both

homozygous and heterozygous SNPs are suitable for

DRP in our algorithm. If the OR value for the

homozygous form of a SNP is available, it is considered

a dummy variable and xi is set as ln(ORhomozygous)/ln

(ORheterozygous).

Collection of SNP markers for lung cancer risk

prediction in Chinese individuals

Thus far, about 400 000 reference SNPs have been depos-

ited for human genomes (refer to the National Center for

Biotechnology Information SNP database: https://www.

ncbi.nlm.nih.gov/snp/docs/RefSNP_about/). Of these,

about 71 600 SNPs have been found to be associated

with human diseases and traits, as reported in the

NHGRI-EBI GWAS Catalog database [18,19] ( https://

www.ebi.ac.uk/gwas/). Lung cancer is considered a

partially inherited complex disease [4], and about 80

SNPs have been reported to be associated with it [17].

Among these SNPs, a threshold value of 1.15 was set

subjectively, and some genetically dependent SNPs were

omitted. In the end, eight representative SNPs were

selected for the lung cancer risk prediction in our study.

The OR value and the population frequency for each of

these eight SNPs in Chinese individuals were collected

(Table 1).

Generation of algorithms for lung cancer risk

prediction

Then, we determined b for each SNP (Table 1) accord-

ing to the aforementioned rules. Given the lifetime risk

for lung cancer in Chinese men and women being 5.62%

and 2.56%, respectively, b0 was calculated as �3.742

and �4.560 (for details, refer to Table 1). Together, the

SNP-based risk prediction for lung cancer with Chinese

men and women was finalized as follows:

Utilization of the algorithm for lung cancer risk

prediction in Chinese individuals

To demonstrate the effectiveness of our logistic algo-

rithm, we collected blood samples of 48 Chinese sub-

jects (38 men and 10 women), genotyped the eight

selected SNPs (for details, refer to Table S1) and then

calculated the lung cancer risk of each subject by using

Eqns (7,8). Remarkably, subject 17, who was diag-

nosed as the sole lung cancer patient among these 48

subjects and had the symptoms of poorly differentiated

adenocarcinoma in the right lung and multiple metas-

tases, had the highest absolute lifetime risk of 28.3%

and a relative lifetime risk of 5.0 (Table 2). The abso-

lute lifetime risk of this patient was significantly higher

PðmenÞ ¼ 1=ð1þ e3:742�0:399x1�0:604x2�0:285x3�0:262x4�0:270x5�0:166x6�0:199x7�0:148x8Þ ð7Þ

PðwomenÞ ¼ 1=ð1þ e4:560�0:399x1�0:604x2�0:285x3�0:262x4�0:270x5�0:166x6�0:199x7�0:148x8Þ ð8Þ
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than that of the remaining 47 persons (P = 0.0000024)

and was significantly higher than that of the remaining

37 men (P = 0.000015). In addition, the average life-

time risk for the 38 men and the 10 women was 8.9%

and 5.5%, respectively (Table 2); both of these values

were not significantly different from the average dis-

ease risk of men and women (P > 0.05).

In another batch of genetic screening for nine subjects,

we found that a female patient diagnosed with non-small-

cell lung cancer had an absolute lifetime risk of 16.2%

and a relative lifetime risk of 6.3 (Table 2), which was sig-

nificantly higher than that of the remaining eight normal

subjects. These results, although based on a test with a

small group size and a limited number of positive patients,

indicated that our algorithm was sensitive, to a certain

degree, in screening the high-risk lung cancer patient.

Conclusions

In this study, we developed a general logistic model-

based algorithm to calculate the disease risk by

directly using multiple SNP risk factors from multiple

publications, and tested this algorithm on Chinese

individuals for lung cancer risk prediction. The logistic

algorithm that we explored was apparently more intu-

itive and self-evident than the algorithms adopted by

commercial DRP providers [7–11], although similar

input parameters were used [9,10] (i.e., the average

population risk of disease, the OR value and the geno-

type and/or allele frequencies of the SNPs).

Table 1. SNPs and parameters of logistic model for lifetime risk prediction of lung cancer. NA, not available.

SNP ID

Risk

base

Frequency

in

Chinese

individuals

Frequency

in

all

individuals

OR of

heterozygous

SNPs

OR of

homozygous

SNPs References ab

bb0
calculation

rs1820453 G 0.239 0.374 1.49 1.65 [20] 0.399 0.174

rs716274 G 0.25 0.438 1.83 2.96 [20] 0.604 0.294

rs9981861 G 0.125 0.332 1.33 cNA [21] 0.285 0.036

rs16951095 C 0.805 0.917 1.3 NA [22] 0.262 0.211

rs1051730 T 0.037 0.185 1.31 NA [23] 0.270 0.010

rs402710 C 0.733 0.657 1.18 NA [24] 0.166 0.121

rs2808630 G 0.22 0.211 1.22 NA [25] 0.199 0.044

rs7626795 G 0.207 0.246 1.16 NA [25] 0.148 0.031

Men cRisk b0 Women cRisk b0 Sum 0.921

0.0562 �3.742 0.0256 �4.560

aIn the logistic model, coefficient b for each SNP was calculated as the natural logarithm of the OR value of the heterologous SNP on the basis of

Eq 3. bFor SNP without the OR value of the homozygous form, it was the product of b and the frequency in Chinese individuals (e.g., for rs9981861,

0.285 9 0.125 = 0.036). Otherwise, it was calculated as the sum of two products contributed, respectively, by the heterozygous and homozygous

SNPs [e.g., for rs1820453, according to the Hardy-Weinberg equilibrium, the frequencies of heterozygous and homozygous SNPs in Chinese individu-

als were calculated as 2 9 0.239 9 (1 � 0.239) = 0.364 and 0.239 9 0.239 = 0.057, respectively, and the total contribution was calculated as ln

(1.49) 9 0.364 + ln(1.65) 9 0.057 = 0.174]. cThe average lifetime risk for lung cancer in Chinese men and women was set as 5.62% and 2.56%,

respectively, according to the Chinese Cancer Registry Annual Report 2010 [16].

Table 2. Lung cancer risk and clinical symptoms for 48 subjects.

ID

Absolute

risk

Relative

risk Sex Symptom

17 0.283 5.0 M Poorly differentiated

adenocarcinoma in the right

lung, multiple metastases

23 0.174 3.1 M Normal

27 0.174 3.1 M Normal

25 0.152 2.7 M Normal

26 0.145 2.6 M Normal

16 0.141 2.5 M Normal

2 0.138 2.5 M After surgery for the right knee

ligament reconstruction

32 0.122 2.2 M Normal

22 0.119 2.1 M Normal

24 0.119 2.1 M Normal

19 0.094 1.7 M Normal

4 0.092 1.6 M Lumbar spinal stenosis

10 0.092 1.6 M Lumbar disc herniation

11 0.092 1.6 M Normal

30 0.087 1.5 M Normal

28 0.086 3.4 F Non-Hodgkin’s lymphoma

15 0.084 1.5 M Normal

43 0.081 1.4 M Normal

18 0.081 3.2 F Tubal pregnancy

33 0.078 1.4 M Normal

8 0.077 1.4 M Normal

31 0.077 3.0 F Cholecystitis

9 0.076 1.3 M Normal

34 0.073 1.3 M Normal

1 0.072 1.3 M Normal

Continued
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Our logistic algorithm had several advantages: (a)

the coefficient b in the risk calculation equation

directly reflected the contribution of each SNP and

was simply determined by the OR value; (b) the SNP

risk factor markers and the OR value were adjustable

and/or promptly updated if necessary, such that b0
could be recalculated using the new set of SNP mark-

ers; (c) the SNP risk factor markers, with or without

the OR value for the homozygous forms, were all suit-

able for risk prediction; and (d) accordingly, the non-

SNP risk factors (e.g., smoking and drinking) could

also be included in our logistic model for DRP. There-

fore, our study is of interest for the commercialization

of DRP, given that similar logistic model-based algo-

rithms can be established for common complex dis-

eases (e.g., diabetes, cardiovascular disease and

cancers) that have been reported to be linked quantita-

tively to multiple SNP risk factors [17].
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