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Chlamydia trachomatis (CT) is the most prevalent bacterial sexually transmitted infection
in the world, with more than 100 million cases reported annually. While there have been
extensive studies into the adverse effects that CT infection has on the female genital tract,
and on the subsequent ability of these women to conceive, studies into the consequences
on male fertility have been limited and controversial. This is in part due to the asympto-
matic nature of the infection, where it is estimated that 50% of men with Chlamydia fail to
show any symptoms. It is accepted, however, that acute and/or persistent CT infection is
the causative agent for conditions such as urethritis, epididymitis, epididymo-orchitis, and
potentially prostatitis. As with most infections, the immune system plays a fundamental
role in the body’s attempts to eradicate the infection.The first and most important immune
response to Chlamydia infection is a local one, whereby immune cells such as leuko-
cytes are recruited to the site of infections, and subsequently secrete pro-inflammatory
cytokines and chemokines such as interferon gamma. Immune cells also work to initiate
and potentiate chronic inflammation through the production of reactive oxygen species
(ROS), and the release of molecules with degradative properties including defensins, elas-
tase, collagenase, cathespins, and lysozyme. This long-term inflammation can lead to cell
proliferation (a possible precursor to cancer), tissue remodeling, and scarring, as well as
being linked to the onset of autoimmune responses in genetically disposed individuals.
This review will focus on the ability of the immune system to recognize and clear acute and
persistent chlamydial infections in the male genital tract, and on the paradoxical damage
that chronic inflammation resulting from the infection can cause on the reproductive health
of the individual.
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INTRODUCTION
Sexually transmitted infections (STIs) are a major public health
problem in most parts of the world, and are responsible for a
number of acute illnesses, infertility, long-term disability, and
premature death, in addition to contributing to an increase in
the spread of HIV. It is estimated that $90–160 million is spent
annually by the Australian health care system as a direct cost of
Chlamydia treatment; this includes both initial treatment with
antibiotics by a GP, and the more severe outcomes of untreated
infection (1, 2). Perhaps the highest cost is associated with indi-
viduals who have troubles conceiving as result of infection and
turn to assisted reproductive technologies (ART). In 2011 in Aus-
tralia alone, a total of 61,158 ART treatment cycles were performed
at a cost >$500 million (3). While there has been an increase in the
promotion of Chlamydia prevention and screening programs, the
largest barrier to reducing the rates of infection lies with the limited
knowledge that people between the ages of 16 and 24 years possess,
concerning the consequences, symptoms, prevalence, screening
recommendations, testing procedures, and treatment of Chlamy-
dia infection. It is, therefore, becoming essential that identification
and treatment of Chlamydia infection is instigated before irre-
versible tissue damage occurs. Underpinning a successful public

health program would be the development of a novel and effective
chlamydial vaccine for young men. However, in order to undertake
this, a thorough understanding of the intricate and often paradoxi-
cal immune response to Chlamydia infection in male reproductive
tissues is needed. This review will highlight the known impacts that
acute and chronic Chlamydia infection has on the male reproduc-
tive tract, as well as outlining some of the mechanisms that underlie
the immune response in these unique tissues.

CHLAMYDIA
BACKGROUND AND LIFE CYCLE
Chlamydiae are obligate intracellular Gram-negative bacteria that
are surrounded by a rigid cell wall. They are able to infect
both human (Chlamydia trachomatis and Chlamydia pneumonia)
and animals (Chlamydia muridarum, Chlamydia suis, Chlamydia
abortus, Chlamydia pecorum, Chlamydia psittaci, and Chlamydia
caviae) and depend entirely on the biosynthesis pathways of a
host cell to multiply, as they are unable to synthesize essential
nutrients (4, 5). For human C. trachomatis, there are 19 currently
identified serotypes, determined based on their major outer mem-
brane protein (MOMP) characteristics (6), with serotypes A, B,
and C causing trachoma of the eye, serotypes D through to K
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infecting urogenital tissue (7), and serotype L being responsi-
ble for lymphogranuloma venereum (LGV), an infection of the
lymphatics and lymph nodes (8, 9). Despite their common intra-
cellular lifestyles, Chlamydia exhibits a range of hosts, as well
as diversity in morphology, biological properties, and patholog-
ical consequences. The level of similarity for individual proteins
encoded by C. trachomatis and C. pneumonia spans a wide spec-
trum (22–95% amino acid identity between orthologs from the
two species) (10, 11).

Chlamydia exists in two developmental forms: the elementary
body (EB), which is infectious, non-replicating, and extracellu-
lar. It also displays no metabolic activity; and the reticulate body
(RB), which is non-infectious, replicating, and intracellular. Infec-
tion begins when the small (~0.2–0.3 µm) EB’s make contact with
the epithelial cell surface. It has been proposed that number of
receptor–ligand interactions take place at this point, after which
the EB is endocytosed. The endocytic-vesicles are modified by the
EB to prevent it from entering endocytic-lysosomal pathway and
are then trafficked on cytoskeletal intermediate filaments to the
endoplasmic reticulum/Golgi activity center. After arriving here,
the transformation of the essentially non-metabolically active EB
into the larger (~0.8 µm) metabolically active RB begins; the EB
DNA is relaxed, signals for DNA, RNA, and protein synthesis are
activated and RB cell division ensues. This intracellular Chlamydial
micro-colony is now termed an inclusion, and after several hours
of logarithmic RB growth, the inclusion expands. This, in conjunc-
tion with nutrient depletion and ATP scavenging from the infected
host signals the transformation of the non-infectious RB back into
the infectious EB, which are then exocytosed from the host cell
to infect neighboring epithelial cells, in order to perpetuate the
infection process (12–14) (Figure 1).

INFECTION/INTERACTION WITH HOST CELLS
Chlamydia are capable of invading the majority of cultured cells,
which would suggest that the receptor(s) that facilitate the invasion
are either ubiquitous, or that multiple receptors are used. How-
ever, the receptor–ligand interactions involved during chlamydial
entry have proven to be elusive. This is in part due to the use
of different species or strains of Chlamydia as well as different
experimental procedures and parameters, making it difficult to
draw comparisons between the multitudes of studies performed.
It is thought that the binding may be a two-step process in some
species, involving an initial, reversible, electrostatic interaction
mediated by heparin-sulfate proteoglycans (HSPGs) (15–17), fol-
lowed by high-affinity, irreversible binding to a secondary receptor
(11). In addition to this, cleavage of the N-linked oligosaccha-
rides, on the surface of C. trachomatis and C. pneumonia, inhibited
attachment of the bacteria to a number of cell types, suggesting that
glycan moieties of proteins expressed on the Chlamydia cell sur-
face also participate in binding (18). Some of the proposed ligands
that allow Chlamydia to attach to and infect host cells include the
MOMP (16, 19), heat shock protein 70 (20), and glycosaminogly-
cans (GAGs) (15). Studies have also shown that lipopolysaccharide
(LPS), one of the major components of the chlamydial cell sur-
face, may play a role in the infectivity of Chlamydia into host
cells, although the evidence suggests that the interaction may be
complex and rely on more than one moiety (21). There has also

FIGURE 1 | Chlamydia undergo a unique biphasic developmental cycle.
The infectious form of Chlamydia, the elementary body (EB) enters into the
host cell via endocytosis. Upon entry, the EB convert into the metabolically
active, non-infectious reticulate body (RB), which replicates within a
vaculolar compartment, termed the inclusion. Once the developmental
cycle is almost complete, the RBs revert back into EBs, stimulating host
cell lysis and release of the infectious EBs into the extracellular space.
These EBs then move onto to infect new host cells. Adapted from Roan and
Starnbach (346).

recently been some interest generated by the entry of C. trachoma-
tis into host cells via cholesterol-rich membrane domains, or lipid
“rafts,” which appear to be serotype-dependent (22).

PATHOPHYSIOLOGY – MALES AND FEMALES
Approximately, 75% of C. trachomatis infections in women and up
to 50% of those in men are asymptomatic (23, 24). Clinical mani-
festations of C. trachomatis infections in women include acute ure-
thral syndrome, urethritis, bartholinitis, cervicitis, upper genital
tract infection (including endometritis, salpingo-oophoritis, and
pelvic inflammatory disease), perihepatitis, and reactive arthri-
tis (23). In women, untreated C. trachomatis infection can lead
to severe reproductive complications. Pelvic inflammatory dis-
ease is a particularly common complication of chlamydial infec-
tion with consequences including infertility, ectopic pregnancy,
chronic pelvic pain, and miscarriage (25–30). In fact, it is esti-
mated that up to two-thirds of cases of tubal-factor infertility and
one-third of cases of ectopic pregnancy can be attributed to C. tra-
chomatis infection (31). In addition to this, chlamydial infection
during pregnancy is associated with a number of adverse out-
comes, including preterm labor, premature rupture of amniotic
membranes, low birth weight, neonatal death, and post-partum
endometritis (32, 33). Chlamydial infection can also be transmit-
ted to the infant during delivery (34). An infant born to a mother
with an active infection has an estimated 50–75% risk of acquir-
ing infection. Indeed, approximately 30–50% of infants born to
chlamydial-positive mothers will have chlamydial conjunctivitis,
and at least half of these infants will also display nasopharyngeal
infection. Further to this, it is common in about 30% of cases that
infant with nasopharyngeal infection will also develop chlamydial
pneumonia (23).
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MALE GENITAL TRACT INFECTION AND PATHOLOGY
In men, C. trachomatis infection is known to be responsible for
urethritis (35), epididymitis, epidiymo-orchitis (36–38), and it is
becoming more widely accepted that it also acts as a causative
agent for prostatitis (39–44), as well as causing an enlargement of
seminal vesicles in the epididymis (37, 45–48), although the direct
consequences of the C. trachomatis infection on the prostate and
seminal vesicles remains unknown.

Urethritis
Urethritis is commonly defined as infection-induced inflamma-
tion of the urethra. The term is usually reserved for urethral
inflammation caused by an STD and is normally characterized into
gonococcal urethritis (GU), or non-gonococcal urethritis (NGU).
Interestingly, many patients with urethritis, including approxi-
mately 25% of patients with NGU, are clinically asymptomatic
(49). It is, therefore, unsurprising that C. trachomatis is a major
cause of urethritis in men. Various studies have estimated that 30%
of urethritis cases can be attributed to C. trachomatis infection
(50). In addition to this, it is though that up to 42% of NGU cases
may be caused by C. trachomatis (51). Importantly, C. trachomatis
infection appears to be equally present in both symptomatic and
asymptomatic urethral diseases (52, 53).

Epididymitis and epididymo-orchitis
Epididymitis and epididymo-orchitis are conditions exemplified
by inflammation of the epididymis and testes, respectively, with
or without infection. Indeed, according to the National Institute
of Health, in the United States, where the population contains
approximately 150 million males, 600,000 cases of epididymitis are
recorded each year (38). The symptoms for epididymitis include
pain, nodules, edema, urinary difficulties, fever, urethral discharge,
and infertility (54). The condition can be classified based on the
duration of symptoms as acute, sub-acute, or chronic. If the symp-
toms include pain and swelling, and desist within 6 weeks then the
case is termed acute. If there is pain without swelling and the
symptoms persist for longer than 3 months, then it is labeled as
chronic (43). Epididymo-orchitis occurs when the inflammation
from the epididymis spreads to the adjacent testicle (38). In men
younger than 14 years and older than 35 years, epididymitis is gen-
erally caused by infection with a common urinary tract pathogen
such as Escherichia coli. In those between 14 and 35 years, however,
it is most commonly caused by sexually transmitted Neisseria gon-
orrheae or C. trachomatis (55, 56). Importantly, decreased sperm
counts and decreased motility are often consequences of acute
epididymo-orchitis (57), and this pathology is also associated with
high rates of infertility (58).

Prostatitis
Prostatitis is a state of inflammation of the prostate, which can be
described both with and without infection. Prostatitis syndromes
can be divided into four different classifications: (I) acute, (II)
chronic, (III) non-bacterial prostatitis, chronic pelvic pain syn-
drome (CPPS), and (IV) asymptomatic inflammatory prostatitis
(59). Although acute and chronic prostatitis have a clear etiol-
ogy and patients respond well to anti-microbial treatment, these
types of prostatitis only encompass 10% of the cases seen in clini-
cal practice (60). CPPS is the most common prostatitis syndrome,

constituting 90–95% of cases. Patients with CPPS have no evidence
of urinary tract infection, making it a common disease of unclear
etiology (60). There have been a number of studies highlighting
the prevalence of C. trachomatis infection in patients with prosta-
titis (9, 39, 40, 42, 44, 46, 61–66). The rates of prevalence, however,
are variable between studies, and have been related back to differ-
ences in the types of samples analyzed, for example, urethral swab,
first void urine, semen, or expressed prostate secretion. In addi-
tion to this, concerns have been raised about the reliability of the
samples used in these studies. In particular, it has been postulated
that bacterial isolation from urethral swabs, expressed prostatic
secretions (EPS), and/or urine following prostatic massage, have
the potential to be contaminated as a result of transiting through
the urethra, thus limiting the interpretations that can be made
from such tests (64, 67). However, a number of studies indicate
that semen/EPS specimens are often positive for C. trachomatis in
patients with negative urethral swabs (40, 63, 66, 68). Moreover,
pure prostatic biopsies from CPPS have identified the presence of
C. trachomatis in the absence of urethral infection (39, 42). It is
thought that C. trachomatis infection of the prostate gland may
cause inflammation and thus impair the normal functionality of
the gland and impact on male fertility (69). As stated above, the
literature concerning this issue is controversial, with some reports
arguing in favor of a positive relationship between chronic prosta-
titis induced by C. trachomatis and altered semen quality (70–73),
whereas other reports support the concept that no alterations in
semen quality and male fertility are observed (46, 68, 74–79).

Seminal vesiculitis
Seminal vesiculitis is inflammation of the seminal vesicles, and
is most often a secondary outcome of prostatitis, although it is
also know to occur independently. It is still uncertain in human
beings whether C. trachomatis can infect seminal vesicles and lead
to inflammation and a specific pathology. This is mainly due to
the lack of clinical symptoms and/or significant consequences
that the infection produces (80). However, studies performed by
Furuya and colleagues reported the presence of inflammation in
the seminal vesicles of patients with acute epididymitis, and that
C. trachomatis was the pathogen most frequently detected in the
seminal vesicle fluid (81). In addition, vesiculitis-associated symp-
toms disappeared simultaneously with improvement in symptoms
of epididymitis after anti-microbial treatment (81). These finding
strongly suggest that seminal vesicles are involved in the urogen-
ital inflammation process. Furthermore, some researchers have
proposed that chlamydial epididymitis may originate from semi-
nal vesiculitis (37). This is supported by a reported case of seminal
vesiculitis appearing prior to acute epididymitis in a patient whose
female partner had been diagnosed with chlamydial cervicitis (82).
It has also been shown that patients with urethritis are more likely
to have accompanying seminal vesiculitis (83).

CHLAMYDIA AND MALE INFERTILITY
While it is clear that the inflammation caused during chlamy-
dial infection has a direct effect on the male reproductive tract
itself, it remains largely controversial as to whether infection with
Chlamydia has a dramatic effect on sperm quality and subse-
quent male infertility. Studies using electron microscopy have
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demonstrated an interaction between Chlamydia and sperm in
biopsies taken from both testis and epididymis, in addition to
semen samples (84, 85). In addition to this, a study using trans-
mission electron microscopy showed that specific C. trachomatis
serotypes (86). More conclusive evidence for negative effects of
Chlamydia infection on male fertility is offered in a number stud-
ies that demonstrate that the EBs of C. trachomatis can lead to
apoptosis of human sperm in vitro, via the activation of specific
caspases (87–89). It is well known that this effect can be elicited
by Chlamydia LPS (90, 91). Based on this evidence, it has been
proposed that chlamydial LPS interacts with CD14 on the sur-
face of the sperm leading to an increased production of reactive
oxygen species (ROS), subsequently activating apoptotic caspases
(92). Importantly, excessive generation of ROS has been corre-
lated with an increase in sperm defects both in vitro (93) and in
infertile men (94). In support of the detrimental effects of infec-
tion on male fertility, a number of studies have demonstrated
that C. trachomatis infection correlates with reduced sperm motil-
ity (95–98), increased proportion of sperm abnormalities (99), a
significant reduction in semen density, sperm morphology and
viability (100), and an increase likelihood of leukocytospermia
(98, 101). Co-infection with Chlamydia and Mycoplasma results
in over threefold more sperm cells presenting with fragmented
DNA than uninfected controls (98). In contrast to this, however,
there have been multiple studies that suggest that positive mark-
ers for C. trachomatis infection are not associated with altered
sperm parameters and quality (46, 68, 74–79, 102). A role for
C. trachomatis in male factor infertility is also yet to be proven
(24, 31). A number of studies have attempted to prove an asso-
ciation between infection and infertility. For example, Mosli and
colleagues examined chlamydial incidence via direct immunoflu-
orescence and culture of urethral swabs in age-matched partners
of infertile couples (MPIC) and fertile controls, and demonstrated
rates of Chlamydia infection to be 25 and 4%, respectively (103).
However, it is difficult to compare these results with other studies
performed due to the variance among the studies including the
differences in patient demographics, the methods of Chlamydia
diagnosis used and the samples that were examined (43).

It has been estimated that 5–10% of male factor infertility can
be attributed to inflammatory or autoimmune responses, includ-
ing orchitis, epididymitis, and epididymo-orchitis, as discussed
above. However, an additional etiology caused by these immune
responses is the production of anti-sperm antibody (ASA) forma-
tion. Indeed, ASA can be found in the seminal plasma or attached
to the sperm surface in 5–12% of infertile men (104).These ASAs
function to impair sperm fertilizing ability including affecting
motility (105, 106), the ability to undergo a successful acrosome
reaction (107), penetration of the cervical mucosa (108), binding
to the zona pellucida (109), as well as sperm-oocyte fusion (110).
These antibodies directed against sperm antigens can be found in
the seminal fluid and seminal plasma in men, as well as in the
follicular fluid in women. They can also be detected in the blood
serum of both men and women (111). However, only those anti-
bodies that are bound to the sperm are considered to have an effect
on fertility (108, 112).

While all of the studies performed into the direct effects
that Chlamydia infection may have on the fertility of untreated
males, it is also important to consider the role that the immune

response toward the bacterial infection may play toward creating
the observed pathophysiology. While the biochemical environ-
ment, and immune response, of reproductive organs such as the
prostate and the epididymis closely relate to those of mucosal
tissues, the micro-environment that the developing sperm exist
in within the testes is immunologically privileged. Indeed, devel-
oping sperm cells are produced long after the immune library
has been established, and harbor specific antigens that cannot be
found in any other organ, tissue, or cell within the body. As a
consequence of this, these developing cells and the resultant sper-
matozoa are deemed to be “foreign” by the male immune system.
However, the immune privileged environment, they experience
within the testis and the epididymis aid in preventing an immune
response (113,114). In addition to this, foreign cells are able to exist
within the testes without the induction of a large-scale immune
response (115–117).

TESTIS AS AN IMMUNE PRIVILEGED SITE
Structure of the testis
The testes fulfill two major functions for male reproduction: the
first is to produce morphological mature and functional sperma-
tozoa, and the second is the production and controlled release of
sex steroids (primarily androgens). The testis is compartmental-
ized both histologically and functionally into two distinct regions
to accommodate the two separate functions. Spermatogenesis
takes place in the seminiferous tubules, while androgens are syn-
thesized in the Leydig cells in the interstitial compartment that
is dispersed between the tubules. The seminiferous tubules are
tightly coiled, and originate and terminate at the rete testis. Each
tubule is surrounded by myoid pertitubulur tissue that, together
with the Sertoli cells, provides structural support, and secretes
the components of the basal membrane enclosing the seminif-
erous epithelium. The columnar Sertoli cells extend from the
basal lamina toward the lumen of the tubules, and are respon-
sible for the physical support of the developing germ cells, as well
as providing essential nutrients and growth factors (Figure 2).
The most prominent components of the interstitial space are the
Leydig cells that work to produce steroid hormones. The inter-
stitium also contains blood vessels and immune cells, such as
macrophages, dendritic cells (DC), lymphocytes and increasingly
with age, mast cells (118) (Figure 3). Also studies performed
by Holstein and Davidoff have described the presence of large,
flat fibroblastoid cells, which compartmentalize the microves-
sels, the Leydig cells and part of the seminiferous tubules (119).
These cells, termed “co-cells” (abbreviated from connective tissue
cells/compartmentalizing cells/covering cells), appear to produce
extracellular matrix components such as decorin, vimentin, and
fibroblast surface protein (120), and are typically found only in
human testis. The variability in the extracellular matrix com-
ponents observed is important for cell–cell interactions within
the testis (121). Some of these proteins are able to bind to vari-
ous types of growth factors, creating a reservoir from which the
bioavailability of these growth factors can be modulated (122).

Blood–testis barrier
The blood–testis barrier is formed by tight junctions between
neighboring Sertoli cells localized in the seminiferous epithelium,
and function to restrict the movement of molecules through the
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FIGURE 2 | Mammalian spermatogenesis occurs within the
seminiferous tubules of the testis, with development of the
mature sperm cells occurring in a radial fashion from the
basement membrane into the lumen. Spermatogonia reside on the
basement membrane and undergo mitotic division to produce
pre-leptotene spermatocytes. These primary spermatocytes undergo

meiosis to give two pachytene spermatocytes, which in turn undergo
meiosis to give round spermatids. These cells elongate and develop
into mature spermatozoa. Sertoli cells support the germ cells as they
develop, providing essential nutrients. Adapted from
‘Spermatogenesis Online’. Reproduction Data Systems 2011–2012.
mcg.ustc.edu.cb/sdap1/spermgenes

intracellular spaces (Figure 3). The barrier divides the seminif-
erous tubule into two distinct compartments: the basal com-
partment, which contains spermatogonial stem cells and early
stage spermatocytes, and the adluminal compartment contain-
ing meiotic pachytene and secondary spermatocytes, in addition
to haploid spermatids. The importance of the blood–testis barrier
in creating immune privilege was first demonstrated using Sertoli
cell-depleted, androgen-receptor knockout mice. The integrity of
the tight junctions that form the blood–testis barrier was compro-
mised in these mice, and as such, immune molecules were able to
pass into the adluminal compartment and mount an attack on the
spermatocytes and spermatids held within. This lead to an arrest
in spermatogenesis, and it was proposed to have downstream neg-
ative effects on fertility (123). However, it is well known that the
blood–testis barrier alone cannot be wholly responsible for the
immune privileged status that exists within the testis, as germ
cell auto-antigens have been shown to be expressed in the basal
compartment and in spermatogonia and early spermatocytes,

which are not protected by the blood–testis barrier (124, 125).
As described previously, the blood–testis barrier is incomplete
in the rete testis, a location where large numbers of morpho-
logically mature spermatozoa expressing newly adapted surface
molecules, move toward the epididymis (126, 127). Furthermore,
Head and Billingham demonstrated that allografts placed in the
interstitial space outside the blood–testis barrier, could survive for
an extended period without experiencing immune rejection (117).
They concluded that mechanisms additional to the physical barrier
must be in place to maintain immune privilege in the testis. The
blood–testis barrier terminates at the rete testis, and subsequently,
spermatozoa are no longer protected from immune attack,which is
confirmed by the observation that various forms of autoimmune
orchitis manifest first in the rete testis (126–129). Spermatozoa
move from the rete testis into the epididymis, which consists of a
long, convoluted duct, and gain the capacity for fertilization. The
epididymis also contains a blood–epididymis barrier, although
this barrier is more functionally related to those found in other
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FIGURE 3 |The presence of the blood–testis barrier creates a region of
immune privilege within the testis. At the onset of puberty, developing
sperm cells express novel antigens that the immune system would normally
identify as “foreign.” However, segregation of antigens in the seminiferous

tubules from the immune cells that are able to enter into the interstitial space
of the testis prevents the body from eliciting an immune response against
these vulnerable cells. Adapted from ‘Blood-Testis Barrier’. Immunopaedia.org
2010. www.immunopaedia.org.za/index.php?id+668

epithelia, with fewer exclusively apical tight junctions (130–132).
In contrast to the seminiferous epithelium, T-lymphocytes and
macrophages are frequently found within the epididymis epithe-
lium and in the lumen of the epididymal duct (133–135), sug-
gesting that the epididymis operates within a different immune
environment to that of the testis.

IMMUNE RESPONSE
INNATE IMMUNITY
The first line of defense from chlamydial genital infection is the
mucosal barrier of the genital tract. However, upon entering the
mucosal lining and establishing a productive infection, it is the
innate immune system that provides the next stage of defense
against the bacteria. Although epithelial cells, which are the initial
targets for Chlamydia infection, are not considered to be a part of
the classical innate immune system, they are capable of initiating
and sustaining innate immune responses (136). It is well known

that C. trachomatis infection in both human beings and murine
epithelial cells can induce the production of pro-inflammatory
cytokines such as interleukin 1 (IL-1), Il-6, and tumor necrosis fac-
tor alpha (TNFα) (137, 138). In addition, secretion of chemokines
such as Il-8 by infected cells can recruit classical innate immunity
cells such as natural killer (NK) cells and DCs, which are abun-
dant in the genital mucosa (139). However, as discussed above, the
testis as an immune privileged site differs in the way the immune
response develops against foreign pathogens, and thus warrants
further exploration.

Neutrophils and natural killer cells
Neutrophils are the most predominant form of white blood cell,
and have the dual functions of immune surveillance and in situ
elimination of microorganisms (140). NK cells are classified as
being cytotoxic lymphocytes that play a similar role to that of neu-
trophils (141). Importantly, NK cells and neutrophils are the first
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immune cells that are recruited to the site of chlamydial infection.
It is thought that neutrophils work to reduce direct chlamydial
infection and limit spreading, with human neutrophils being able
to effectively inactivate C. trachomatis in vitro (142, 143). Addi-
tionally, mice that were neutrophil depleted had up to a 10-times
greater burden of C. muridarum in the female genital tract than
neutrophil-competent controls. However, both sets of mice were
able to effectively eliminate the infection within the same period
of time (144), which suggests that neutrophils are not critical for
the resolution of the infection. As neutrophils are usually the first
immune cells recruited to the site of infection, and are gener-
ally short-lived (145, 146), it is likely that the primary role for
neutrophils is to reduce chlamydial infection and to limit it from
spreading. In the context of the testes, the short-life span of the
neutrophils is particularly important, as these cells are a major
source of tissue-damaging cytokines, such as matrix metallopro-
teinase 9 (MMP9), during acute infection (147), and a prolonged
life span for these cells may contribute to fibrosis and infertility. In
support of this, recent evidence has emerged that indicates that C.
trachomatis may delay neutrophil apoptosis, prolonging their life
span (148). It remains unclear whether neutrophils carry out the
same function in the clearance of Chlamydia from the immune
privileged space of the testis, although their presence has been
documented in the rat testis (149), and they have been shown to
accumulate in the interstitium of mouse testis 9–12 h following

exposure to E. coli (150). NK cells are more traditionally known
for the role they play in viral infections and cancers. However,
they have also been shown to be important in the early immune
response and subsequent elimination of bacterial infections (151,
152), are their activity becomes enhanced in the presence of
cytokines such as IL-12 and interferon γ (IFNγ) (Figure 3). While
it has been shown the NK cells exist in the testis, their specific func-
tion remains unknown, although it is assumed that they undertake
a traditional role in virus and tumor surveillance (153).

Dendritic cells
Dendritic cells are recognized as being the archetypal antigen
presenting cells (APCs). DCs migrate as immature or precursor
cells from the bone marrow into peripheral tissues, whereupon
they receive activation signals associated with inflammation or
pathogen invasion. Once activated, they migrate to the local lymph
nodes, where they mature and phagocytose the antigen. Once
internalized, the DCs degrade the components of the antigen
and present their peptides to T-cells via major histocompatibility
complex (MHC) receptors, which activate the T-cells to initiate a
cell-mediated and/or humoral immune response (Figure 4). DCs
also have the ability to tolerize T cells to antigens, thereby minimiz-
ing aggressive autoimmune responses (154). Immature DCs have
increased capacity to internalize antigens, but low T cell stimula-
tory activity, while mature DCs reciprocally down-regulate their

FIGURE 4 | Innate and adaptive immune responses to Chlamydia
infection. Upon infection, antigen presenting cells (APC) such as
macrophages and dendritic cells are sequestered to the site of infection
where they begin to release pro-inflammatory cytokines such as IFNγ and
IL-12. The chemokines in turn activate natural killer (NK) cells and induce

the maturation of T cells into either CD8+ or CD4+ T cells. CD4+ T cells go
on to form either T-helper 1 (Th1) or T-helper 2 type (Th2) T cells. Th1 cell
interact with B cells via the T cell receptor (TCR) and the major
histocompatibility complex (MHC) to produce antibodies against the
chlamydial infection.
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ability to endocytose antigens but have high functioning T lym-
phocyte stimulatory capabilities (155). In addition to this, mature
DCs express surface T cell stimulatory molecules such as CD40,
CD80, and CD86, as well as MHC class II molecules. They also
produce bioactive IL-12 and TNFα, and display altered migratory
behavior (156), and are ultimately potent stimulators of immune
responses. In contrast to this, those DCs in a resting state have
been implicated in the creation of self-tolerance (157), with the
presentation of “self” antigens on the surface of DCs thought to
play a significant role in the initiation of autoimmunity, and its
progression toward autoimmune disease (158, 159). Further to
this, as DCs are APCs, they are not capable of targeting specific
antigens, but instead present a wide range of antigens on their cell
surface, including what have been labeled as danger signals. The
working hypothesis, or “danger model” suggests that stressed or
damaged cells and tissues express and release heat shock proteins
(Hsps) during injury caused by trauma, inflammation, pathogens,
or toxins. Recently, it has been shown that these Hsps act as tes-
ticular autoantigens, and may provide a mechanism for how DCs
in the testis participate in the activation of lymphocytes and the
subsequent damage of testicular tissue (160).

Both MHC class I and II molecules are expressed in the inter-
stitial tissue of testis, including on macrophages and Leydig cells.
In addition, DCs also express MHC class II molecules in the testis
(161). Interestingly, developing germ cells fail to express MHC
antigens on their surface,perhaps giving an indication of how these
cells avoid detection by CD4+ and CD8 + T cells (162–168). How-
ever, despite the importance they play in regulating the immune
response in other tissues, very few studies have investigated DCs
in the testis. Cells that express DC markers or possess DC-like
morphology have been observed in the testes of mice (169, 170),
rats (117), and human beings (165, 171). Although these markers
are also expressed on macrophages, the positive identification of
these cells as DCs remains difficult. Nevertheless, co-stimulatory
molecules such as CD80 and CD86 are expressed in the testis of
14- to 22-week-old non-obese diabetic mice (172), as well as in
the rat testis (161), which suggests that DC-dependent activation
of T-lymphocytes via binding to their specific antigens is at least
possible in rodent testis.

Sertoli cells
Sertoli cells are somatic cells that, as described above, provide
essential support for developing sperm cells in the testis and have
a critical role in the establishment and maintenance of immune
privilege. A number of studies have demonstrated that Sertoli cells
possess the ability to act as immunosuppressants (173), and are
capable of being transplanted into a variety of tissues (174–176)
and inducing immune tolerance (173). In addition to this, these
cells are known to possess characteristics more traditionally dis-
played by immune cells, and thus are thought to play an essential
role in the immune response within the testis. They are capa-
ble of phagocytosing apoptotic spermatogenic germ cells (177),
producing anti-microbial proteins (178–180), and perhaps most
importantly express pattern-recognition receptors (PRRs) such
as Toll-like receptors (TLRs) (181–184). TLRs operate by rec-
ognizing pathogen-associated molecular patterns (PAMPs) and
structural subunits, including those for microbial cell walls (e.g.,

peptidoglycan), cell membranes (e.g., LPS), and virulence proteins
(e.g., flagellin) (185), that are absent in the host. Upon recognizing
these PAMPs, the TLRs become activated and induce production
of pro-inflammatory cytokines, as well as cell adhesion molecules
that recruit macrophages, neutrophils, and NK cells, and invoke
maturation of DCs. They also secrete specific anti-microbial prod-
ucts such as interferons and defensins (186). To date, 10 TLRs have
been identified in human beings, and 13 in mice (187), and the
roles that each TLR plays depend on which PAMPs it recognizes.
TLR2, in conjunction with TLR1 and TLR6 recognize various
bacterial components (peptidoglycans, lipopeptide, and lipopro-
tein of Gram-negative bacteria, and lipopeptide of mycoplasma)
(188, 189). TLR3 recognizes the dsRNA that is produced by repli-
cating viruses (190). TLR4 in association with the co-receptor
CD14 and the extracellular molecule MD-2 recognizes LPS (191,
192). TLR5 recognizes a highly conserved structure that is spe-
cific to bacterial flagellin (193). The presence of TLR2 and TLR4
on Sertoli cells has been demonstrated in both prepubertal and
adult testis, with TLR5 and TLR6 also detected at lower levels.
Importantly, it has been shown that the presence of IFNγ or TLR
agonists induces a significant increase in TLR2, TLR4, and TLR6
mRNA, and TLR2 protein becomes up-regulated (181). Further
to this, stimulation with pro-inflammatory cytokines resulted in
Sertoli cells being able to bind lymphocytes, as well as secrete
IL-6, indicating the potential to promote inflammation in the
testis (181).

Interferon γ

Interferon γ plays a functional role in both the innate and adap-
tive immune response (Figure 4). It has the dual responsibility of
inhibiting the growth of Chlamydia (194), as well as being one
of the main cytokines important for type 1 T-helper cell (Th1)
immune response (195). IFNγ is a cytokine produced by NK cells,
as well as CD4+ and CD8+ T-cells, in response to signals such
as Interleukin 2 (IL-2), basic fibroblast growth factor (bFGF) and
epidermal growth factor (EGF). The importance of IFNγ in vivo
has been shown through enhanced levels of bacterial infection in
IFNγ−\− or IFNγ-receptor−\− mice, compared to controls (196–
200). However, mice are able to resolve chlamydial infection in the
absence of IFNγ, suggesting that while beneficial in the process of
clearing chlamydial infection, it is not essential, and that there are
T-and B-lymphocyte dependent mechanisms also playing roles.
Indeed, studies using double-knockout mice null for both IFNγ

(IFNγ−\−) and T-and B-lymphocytes (RAG−\−), demonstrated
that when infected with C. pneumonia, the null mice displayed
a higher rate of mortality, when compared with IFNγ−\− and
RAG−\− mice single KO mice (201). IFNγ has been shown both
in cell culture and in vivo models to provide protection against
infection by C. muridarum and C. psittaci (202–204). The mech-
anism of action of this inhibitory effect is not the direct result of
the IFNγ acting on the Chlamydia but instead due to alterations
made to the host cell physiology and environment that impact on
the ability of the Chlamydia to grow and replicate.

IFNγ affects human host cells in vitro by inducing the expres-
sion of indoleamine 2, 3-dioxygenase (IDO), an enzyme that
catalyzes the initial step in the degradation of the amino acid
tryptophan to N-formalkynurenine and kynurenine (205). IDO
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has been shown to mediate potent immunosuppression in classical
immune responses, as well as fetal tolerance, tumor resistance, reg-
ulation of autoimmune responses, and maintenance of immune
privilege in the epididymis (206–211). Depletion of exogenous
intracellular tryptophan by IDO has been shown to starve the
Chlamydia of an amino acid essential for its ability to differentiate
into infections EBs (194, 203, 212). However, there are chlamydial
species, which have successfully adapted to tryptophan starvation
by transforming into a unique non-replicating but viable form
(213). Following removal of IFNγ from the host cell, and sub-
sequent resumption of tryptophan synthesis, these unique forms
quickly differentiate back into infectious EBs and continue the
infection. This cycle is known as a “persistent” infection, and is
discussed in more detail in below.

Furthermore, it is well established in murine cells that IFNγ

also activates inducible nitric oxide synthase (iNOS), an enzyme
that catalyzes the production of anti-microbial reactive nitro-
gen intermediates, including nitric oxide (NO), from l-arginine
(214). There have been a number of studies showing a correla-
tion between the inhibition of intracellular chlamydial growth and
the induction of NO secretion (214–219), suggesting that control
of chlamydial infection in mice may involve the activation of the
cytokine-iNOS system. In support of this, a recent study has linked
IL-17A and IFNγ, suggesting that they work in a synergistic fashion
to up-regulate iNOS, and subsequently NO production, in order
to inhibit chlamydial growth.

Iron has also been shown to be important for Chlamydia
survival (220–222). It is thought that the ability of IFNγ to
down-regulate transferrin receptor (223–226), which regulates
the import of iron into the cell, may limit the availability of
the amount of intracellular iron available to the bacterium, thus
limiting its growth. This has been shown to be true for other
bacterial species such as Legionella pneumophila (225) and Sal-
monella typhimurium (227). In addition to this, IFNγ is able of
enhancing the phagocytic capabilities of macrophages, and may
promote the engulfment and subsequent elimination of Chlamy-
dia (228, 229). It has been known for some time that IFNγ is
produced by the Sertoli cells, peritubular cells and, at low levels,
early spermatids within the testes (230). It has also been shown to
influence testicular germ-cell tumors (TGCTs), paradoxically hav-
ing either anti- or pro-apoptotic activity depending on the tumor
type. Within these tumors, IFNγ bind to its receptor (IFNγ R)
and activates the JAK/STAT (Janus kinase/signal transducer and
activator of transcription) pathway. JAKs that have been activated
by IFNγ phosphorylate STAT1 proteins, which are translocated
to the nucleus, resulting in the transcriptional activation of spe-
cific target genes. Several of these genes have been identified, but
the gene of note that is shown to be activated by IFNγ is that
of interferon regulatory factor 1 (IRF-1) (231). IRF-1 mediates a
diverse range of functions, including tumor suppression, myeloid
differentiation, macrophage activation, antigen presentation, and
T- and B-cell differentiation (232). In addition to this, studies by
Kanzaki and colleagues has demonstrated the presence of IFNγR
in rat Sertoli cells and that it also regulates the expression of the
IRF-1 gene in the testis, potentially as a means of regulating the
apoptosis if neoplastic germ cells (233). Importantly, interstitial
macrophages also express high levels of IFNγ and TNFα during

testicular inflammation, and that abnormal elevation of these
cytokines has been associated with reduced fertility in inflamed
testes (234). A recent study by Gao and colleagues further indicates
that IFNγ works synergistically with TNFα, having pronounced
disruptive effects on the blood–testis barrier and Sertoli-germ
cell adhesion in the seminiferous epithelium, resulting in reduced
fertility (235).

In the epididymis, however, it appears that IFNγ plays a
minor role in the establishment and maintenance of the immune
response. Although IDO is highly abundant in the epididymis, its
expression is constitutive, and is IFNγ-independent. It is, there-
fore, thought that the epididymis is constantly in an inflammatory
state, as IDO is considered to be a component of the early immune
response to inflammation and infection (236).

Macrophages
Macrophages are phagocytic immune cells produced through the
differentiation of monocytes and are central for the induction
of the innate immune response. They are also APC, equipped
with PRRs that aid in the recognition of various moieties from
pathogens termed PAMPs, in addition to danger-associated mol-
ecular patterns (DAMPS) (237). During Chlamydia infection,
macrophages migrate to the infected site (238), phagocytose
the bacteria (239), and depending on the specific receptor-
PAMP/DAMP match, induce various downstream effectors and
pathways to produce pro-inflammatory cytokines (240, 241).
Macrophages are activated by IFNγ, which is produced by CD4+

and CD8+ cells, and works to convert resting macrophages into
potent cells with increased antigen presenting capacity, increased
synthesis of pro-inflammatory cytokines and toxic mediators, and
augmented complement-mediated phagocytosis (Figure 4). Fur-
ther to this, the destruction of Chlamydia inside macrophages
has been associated with autophagy, a process by which cells
degrade cytoplasmic proteins and organelles (242–244). Studies
have also demonstrated that macrophage autophagy can enhance
antigen presentation to T cells (245). It is now well known
that the macrophages make up the majority of the immune
cells found within the testis (118, 246). Under normal condi-
tions, macrophages, and indeed all other leukocytes, are found
exclusively in the interstitial space. It is only under pathologi-
cal conditions that macrophages are able to enter the germ cell
compartment where they are capable of phagocytosing degener-
ating germ cells. In addition to possessing features common to
all macrophages, testicular macrophages also appear to play an
important role in male reproductive function. Indeed, it has been
shown that macrophages within the testis exist in direct contact
with Leydig cells, forming specialized contact sites known as dig-
itations (247, 248). Furthermore, they are involved in Leydig cell
development and the regulation of steroidogenesis in adults (249–
253). The high levels of macrophages present within the testis
are almost exclusively regulated by a Leydig-cell-mediated mech-
anism, with testosterone and macrophage-migration inhibitory
factor (MIF) playing only minor roles, if any at all (254). The evi-
dence for the close relationship between testicular macrophages
and Leydig cells is represented by the loss of approximately 50%
of these macrophages in Leydig-cell-depleted testis (255). These
macrophages are also capable of influencing Sertoli cell function,
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and subsequent spermatogenesis through the release of soluble
mediators (256).

It is well-established testicular macrophages are responsible
for establishing and maintaining the immune response within
the testis. Macrophages from normal tissues are APCs, with the
ability to direct the outcome of T cell responses, and the expres-
sion of major histocompatibility (MHC) class II expression on
the testicular macrophages suggests a similar role for these cells
(118). However, the antigen presenting capabilities of testicu-
lar macrophages have yet to be fully elucidated, although it is
known that they suppress both T cell responses in vitro (257) and
in vivo (258). Interestingly, a number of studies have shown the
testicular macrophages are significantly poorer at producing pro-
inflammatory cytokines, as well as IL-1β and TNFα, although the
production of prostaglandins and other cytokines are not inhib-
ited (257, 259–261). However, despite this limitation in testicular
macrophage function, the testis is still able to support an inflam-
matory response. Evidence suggests that testicular somatic cells
such as Leydig cells, Sertoli cells, and peritubular cells, are capable
of producing various pro-inflammatory mediators such as MIF,
iNOS, and various isoforms of IL-1 (113, 262–268). In the rat
testis, at least two subsets of macrophages have been identified,
one which is recognized by the monoclonal antibody ED1, and
the other which is a surface antigen recognized by the mono-
clonal antibody ED2 [reviewed by Hutson (269), Hedger (246),
Hedger and Meinhardt (270), Hedger and Hales (113), and Hut-
son (248)]. While the ED2+ subset forms the majority of the
macrophages expressed in the rat testis, a significant proportion
of ED1+ ED2− cells are also present, representing about 15–20%
of the population. These are assumed to be circulating “inflam-
matory” monocytes or recently arrived macrophage. While the
ED2+ cells do not participate in the inflammatory response, it is
clear that an influx of ED1+ monocytes during acute or chronic
inflammation shift the cytokine balance toward and inflammatory
response with the potential to overcome the immune privilege
(271–273). Interestingly, it has been shown that in models of acute
inflammation, the testis appears to possess a mechanism capa-
ble of counterbalancing the influx of ED1+ monocytes, as the
increase observed is only temporary and resolved after 1–2 days
(271). This mechanism is unable to counter-balance the inflam-
mation caused by chronic infection, however, where the increase
in macrophage number persists for much longer (274). In the
mouse testis, a sub-population of macrophages has been identi-
fied that are capable of expressing high levels of TNFβ and appears
to exhibit a tolergenic phenotype (275). In contrast to those iden-
tified in the rat testis, these macrophages have been recognized
as having immunosuppressive qualities, as demonstrated by their
inability to induce T-lymphocyte proliferation and their reduced
antigen presenting activity (275).

ADAPTIVE IMMUNITY
Although the innate immune response is important as a first line
of defense against Chlamydia infection, the adaptive response is
necessary in limiting the spread of the infection, and in providing
protection against recurrent infections. The adaptive, or acquired,
immune response involves creating immunological memory after
the initial response to the pathogen, which leads to an enhanced

response in the case of subsequent exposure to the same pathogen.
There are two cell types that regulate this immune response: T-
lymphocytes and B-lymphocytes. Both cell types rely on their
ability to distinguish between “self” and foreign antigens pre-
sented on the cell surface, a process that is regulated by the MHC.
The B-lymphocytes, or B cells, regulate the humoral immune
response, producing antibodies against foreign antigens. The
T-lymphocytes, or T cells, regulate the cell-mediated immune
response, and can be divided into sub-types. CD8+ T cells are also
known as cytotoxic T cells and work to induce death in infected
host cells. These cells predominately recognize foreign antigens
presented on the cell surface by class I MHC. CD4+ T cells or helper
T cells can be divided once again into two sub-types: Th1 cells,
which induce the production of cytokines such as IFNγ. Release of
IFNγ activates macrophages and induces B cells to make opsoniz-
ing and complement fixing antibodies. Th2 cell are characterized
by the release of Interleukin 4 (IL-4), which in turn activate B cells
to make non-cytolytic antibodies leading to humoral immunity.
These cells recognize foreign antigens presented by class II MHC.

T cells
The involvement of T cells in the immune response against
chlamydial infection was first demonstrated when Rank and col-
leagues observed that immunodeficient mice developed chronic
C. muridarum infection following intravaginal inoculation, while
their wild-type counterparts were able to clear the infection within
20 days (276). T cells unable to recognize pathogens or antigens
without the help of APC, such as DC or macrophages. Once these
cells phagocytose chlamydial EB, or infected host cells contain-
ing RBs, they degrade the chlamydial components and present
the peptides via the MHC class I/II – antigen complexes. Stud-
ies in both human and mice have shown that both CD4+ and
CD8+ cells are present at the site of chlamydial infection (238,
277–279). Both types of T-cell have been shown to recognize C. tra-
chomatis antigens, including outer membrane protein 2 (OMP2)
(280), polymorphic outer membrane protein D (POMP-D) (281),
MOMP, heat shock protein 60 (hsp60) (282–284), chlamydial pro-
tease activating factor (CPAF) (285), pmpG, PmpF, and RpIF (286,
287). Upon C. trachomatis infection, CD4+ cells become activated,
begin to proliferate and migrate to the genital mucosa (286, 288–
292). These T-cells exhibit a characteristic Th1 response, secreting
large amounts of IFNγ required to aid in clearing bacterial infec-
tion (290, 293). Previous studies have shown that infection of
CD4−\− mice with C. trachomatis results in higher infection load
during primary infection, in addition to diminished protection
from secondary infection (290). However, there has been contro-
versy regarding the protective immunity that CD4+ T cell memory
provides following C. trachomatis infection (290, 294). Indeed, one
such study utilized antibodies to deplete CD4+ T cells and showed
that previous infection with C. trachomatis does not induce strong
protective immunity upon secondary infection, and that CD4+ T
cells are not essential for clearance of infection (294). Conversely,
there have been many studies highlighting the important of CD4+

T cells in providing protective immunity against bacterial infection
(295, 296). More recently, a study compared the ability of wild-type
mice and B cell-deficient mice to clear C. trachomatis genital infec-
tion, and demonstrated that CD4+ T cell immunity was essential
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for protective immunity to secondary infection (297). Evidence
from Gondek and colleagues support this, whereby they demon-
strated that infection of the upper genital tract with C. trachomatis
induces a robust Chlamydia-specific CD4+ T cell response that
is both necessary and sufficient to clear infection and provide
protection against re-infection (298). The role of CD8+ T cells
in aiding in clearing a bacterial infection was first described in
studies using a mouse model whereby splenic CD8+ T cells could
specifically lyse Chlamydia-infected fibroblasts. In addition to this,
CD8+ cytotoxic T cells induced partial protection when adop-
tively transferred into infected mice (288, 299, 300). CD8+ cells
control infection of intracellular pathogens through a number of
mechanisms, including cytotoxicity via granule exocytosis, pro-
duction of anti-microbial peptides, and production of cytokines
and chemokines. It is assumed, based on these abilities that CD8+

T cells function by lysing infected cells and depriving the pathogen
of its intracellular environment, as well as releasing inflamma-
tory mediators that render developing bacteria non-infectious,
and recruiting or activating other immune cells to limit the sur-
vival of the pathogen (301). Although both CD4+ and CD8+ T
cells contribute protective immunity during Chlamydia infection,
differences exist depending on the model of Chlamydia and the
mode of infection studied. For example, depletion of CD8+ but
not CD4+ T cells in immune mice diminishes immune protection
upon challenge with C. psittaci (302).

In contrast, in a model of C. trachomatis infected mice, deple-
tion of CD4+ T cells abrogates protection more significantly
compared to a decrease in CD8+ T cells (303, 304). It is important
to note that CD4+ T cells are often required for the induction
and preservation of a functional CD8+ T cell response, and in
their absence both CD4+ and CD8+ T cell effector functions are
severely impaired (301). T cells comprise approximately 15% of
the total leukocyte population in the interstitium of rodent testis
(118, 305), with CD8+ cytotoxic T cells predominating over CD4+

T cells (306). Unfortunately, very little is known about the function
that T-lymphocytes carry out in the testis although there is evi-
dence that activated memory T cells, which would normally affect
an immunological response, are instead targeted for destruction
when they enter the testicular environment (307, 308).

B cells and antibodies
The importance of B cells and the antibodies they produce in
mediating immunity against Chlamydia infection was demon-
strated more than four decades ago, when it was observed that the
presence of Chlamydia-specific antibodies correlated with reduced
rates of infection in human beings (309, 310). Later, studies went
on to demonstrate that monoclonal antibodies directed against
the primary Chlamydia antigen MOMP could neutralize infection
in vitro (311, 312), in addition to being moderately affective at
providing immunity when passively administered to mice (313).
Numerous Chlamydia proteins have also been shown to induce
antigen-specific antibodies (314). There are several mechanisms
by which B cells are able to modulate immunity during Chlamydia
infection. The first and most predominate mechanism is through
antibody-mediated neutralization, whereby the B cell produces
specific antibodies directed against chlamydial peptides (315).
Secondly, through antibody-dependent cellular cytotoxicity that

targets cells that have antibodies attached to their surface for lysis
(316). Finally, B cells aid in the formation of antibody–antigen
complexes that bind to receptors on APC. These then enhance
phagocytosis and antigen presentation to CD4+ T Cells (317).
Until recently, it has been thought that B cells were predomi-
nantly important in controlling secondary chlamydial infection
but their presence for clearing primary infection was not essen-
tial. This was based on evidence form Su and colleagues showing
that B cell-deficient mice control Chlamydia infection as effi-
ciently as wild-type mice but had delayed clearance of secondary
infections (318, 319).

Latterly, it was observed that B cell-deficient mice depleted of
CD4+ T cells are unable to control secondary chlamydial infection
in contrast to mice who were devoid of CD4+ T cells alone were
able to clear the secondary infection after only a slight delay (320).
This has since been attributed to the ability of B cells to produce
specific antibodies, as passive transfer of immune serum or anti-
Chlamydia antibodies into B cell-deficient, CD4+ depleted mice
rescues their ability to clear a secondary infection (321). Moreover,
the susceptibility of these B cell-deficient, CD4+ depleted mice
to Chlamydia infection suggests a relationship between CD4+

T cells and B cells in providing protective immunity. Further to
this, a study by Li and colleagues proposes that it is the antibody-
producing ability of the B cells, and not antigen presentation that
is responsible for the containment of bacterial infection, as CD4+

T cell priming was markedly reduced in B cell-deficient mice, and
Chlamydia were unable to disseminate as far compared with con-
trols. Interestingly, these studies demonstrate a potential role for
B cells in regulating local T cell activation and bacterial dissemi-
nation during primary Chlamydia infection (322). Under normal
conditions, B cells are very rarely detected in rat testis (255), and as
such the specific role that B cells and antibodies play in controlling
bacterial infections in the testis remains unknown.

PERSISTENCE AND AVOIDING THE IMMUNE RESPONSE
Persistence is defined as a long-term association between Chlamy-
dia and the host, in which the organism remains viable but in a
culture-negative state. The exposure of Chlamydia to cellular and
molecular stresses is the most common cause for the bacteria to
enter into a state of persistence. This state is normally character-
ized by the existence of large pleomorphic RBs, termed aberrant
bodies (ABs), which are non-infectious, viable, and thought to
be clinically undetectable. One of the defining features of the
ABs, as opposed to dying or dead RBs, is that the removal of the
stressor often allows the Chlamydia to re-enter the normal devel-
opmental life cycle. The transition of RBs into ABs can be induced
in vitro by treatment with antibiotics, deprivation of amino acids,
heat shock, or pro-inflammatory cytokines (323). Treatment of
Chlamydia with antibiotics, such as penicillin or erythromycin,
arrests chlamydial development by blocking the conversion of RBs
into EBs, as shown when McCoy cells infected with C. trachomatis
were treated with erythromycin 12 h post-infection, and developed
abnormally large RBs (324).

In addition to this, it was more recently observed that addi-
tion of ampicillin to culture media of C. pneumoniae-infected
HeLa cells resulted in the formation of aberrant, giant RBs (325).
Interestingly, when compared with C. trachomatis infection of the
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same cell type, the C. pneumonia took much longer to recover
and re-enter a normal developmental cycle (325). The reason for
this remains unclear, although it is intriguing as C. pneumoniae are
normally recognized for being very efficient at reactivation follow-
ing the removal of other types of stressors, such as tryptophan-
depletion, or co-culture with IFNγ (see below) (326). It has been
proposed that these studies give an indication toward the possi-
bility that inadequate microbial therapy may allow Chlamydia to
persist in vivo.

In contrast to the mechanism in place for inducing persis-
tence with antibiotics, depletion of amino acids from the culture
medium of Chlamydia-infected cells arrests the development of
both the bacteria and the host cell until such a time as the
amino acids are re-introduced back into the system (327). Inter-
estingly though, re-introduction of the amino acids does not
results in full recovery of Chlamydia development, with smaller
particle sizes observed (328). While the progressive depletion of
all amino acids causes abnormal development, the depletion of
tryptophan is particularly important. Most species of Chlamydia
regulate tryptophan for survival (329). As described previously,
IFNγ induces the expression of the cellular tryptophan-degrading
enzyme indoleamine 2,3-dioxygenase (IDO). In the majority of
Chlamydia species, lack of this essential amino acid results in
death. However, some species have instead adapted to this mode of
starvation by reverting to a persistent state. Depletion of nutrients
other than amino acids has also been shown to contribute toward
inducing persistence, with examples including the removal of glu-
cose from C. trachomatis in McCoy cells resulting in temporary
loss of infectivity and an abnormal morphology comparable to
that observed in amino acid depletion (330).

The form of nutrient-depletion that has been the best char-
acterized, however, has been the depletion of iron. Exposure of
C. trachomatis to iron chelators causes significant morphologi-
cal changes that were distinct even from those observed in other
persistence systems (331). Importantly, addition of iron-saturated
transferrin is able to rescue the infectivity of the Chlamydiae. Expo-
sure of Chlamydia in culture to moderate levels of the cytokine
IFNγ induces the formation of large ABs (328, 332), as described
in other persistence models although with different growth charac-
teristics (333) and altered or decreased expression of predominant
chlamydial proteins or constituents such as LPS, the 60 kDa outer
membrane protein (OMP) and the MOMP (334). The mechanism
of action is through the activation of IDO by IFNγ, resulting in
tryptophan depletion (see above) (202). As with other models, the
addition of tryptophan into the culture results in reactivation of
the developmental cycle. Interestingly, observations recorded by
Caldwell and colleagues suggest that each species of Chlamydia
has its own pattern of resistance to the inhibitory effects of IFNγ,
and this relates directly to polymorphisms in tryptophan synthesis
genes (335). For example, ocular serovars of Chlamydia possess a
non-functional tryptophan synthase and are consequently unable
to produce tryptophan of their own accord, which would make
them more susceptible to inhibition by IFNγ. Genital serovars,
however, have a functional tryptophan synthase, and are capable
of using indole as a substrate for tryptophan synthesis (335). Per-
sistence has also been demonstrated in vivo, with electron micro-
scopic visualization of morphologically aberrant Chlamydia forms

in diseased tissue. Nanagara and colleagues showed that atypical,
pleomorphic AB with poorly defined outer membranes dominated
within infected fibroblasts and macrophages from patients with C.
trachomatis-associated reactive arthritis (336). In addition, minia-
ture C. trachomatis forms have been observed in total ejaculate and
expressed prostate secretions from patients with chronic chlamy-
dial prostatitis (337) and in the oviducts of mice experimentally
infected with C. trachomatis (338). Importantly, there is also evi-
dence for the ability of Chlamydia to become reactivated in vivo.
A study performed by Dean and colleagues demonstrated the
individuals experiencing recurrent infections possessed chlamy-
dial isolates of the same genotype (339). Unfortunately, this study
could not make allowance for recurrence from infected partners.
However, an additional study did show a 10% recurrence of genital
C. trachomatis infection in individuals that reported abstinence or
complete condom use following treatment with antibiotics (340).

It is well understood that Chlamydia utilizes the state of per-
sistence not only to continue its infectious life cycle but also as a
means of evading the host immune response. However, Chlamy-
diae have also developed additional means of remaining unde-
tected. One such survival strategy employed by both C. trachomatis
and C. pneumonaie is to inhibit apoptosis of the host cells (341,
342), which ensures that host cell lysis does not occur prior to the
completion of the bacterial developmental cycle. It is also thought
that inhibition of apoptosis may limit the number of apoptotic
infected cells available to APC, and allow infected cells to resist
being killed by effector CD8+ T cells (301). Nevertheless, the influ-
ence that Chlamydia has on host cell apoptosis is complex and
controversial, as studies have also shown Chlamydia is also able to
induce apoptosis (343).

The induction of apoptosis is thought to occur in two ways:
firstly through the expression of Chlamydia proteins associated
with death domains, which may promote apoptosis through asso-
ciation with mammalian death receptors (344, 345). Although
it appears counter-intuitive for Chlamydia to both induce and
suppress apoptosis, it may help protect the bacterium from the
immune response in vivo. As mentioned previously, it has been
proposed that Chlamydia may restrict apoptosis in order to com-
plete the developmental cycle, allowing RBs to convert back into
infectious EBs. Once the developmental cycle nears completion, it
may be beneficial for the bacterium to induce apoptosis in order to
avoid necrosis,which is known to stimulate inflammation and sub-
sequently enhance Chlamydia-specific immune response. It may
also aid in the release of infectious EBs into the cytosol (346). In
addition to this, it has been proposed that Chlamydia may down-
regulate MHC class I and II expression on infected cells in order to
evade T cell-mediated immune recognition. This is evidenced by
the secretion of a chlamydial protease-like activity factor (CPAF)
into the cytosol of C. trachomatis or C. pneumonaie infected cells,
which then works to degrade specific host cell transcription fac-
tors that control the constitutive and IFNγ-inducible expression
of MHC class I and II molecules, respectively (347–349). Down-
regulation of MHC expression on infected cells has the potential
to limit their recognition by CD4+ and CD8+ T cells, in addition
to rendering the infected cells susceptible to lysis by NK cells. Evi-
dence for Chlamydia’s ability to evade the immune system in vivo
is indirect. It is clear that previous exposure of human beings
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to C. trachomatis does not provide robust immunity against re-
infection, and this may be due to poor development of an adequate
immune response (8). Studies performed in mice have demon-
strated that Chlamydia-specific T cells do not appear to develop
into memory T cells capable of mounting a robust recall response
when compared with infection with well-known pathogen such as
vaccinia (8).

CHRONIC INFLAMMATION
Following chronic or recurrent genital tract infection with C. tra-
chomatis, the chronic inflammation that develops can lead to tubal
scarring, ectopic pregnancy, and infertility in women (350), as
well as epididymitis, prostatitis, and orchitis in men (see above).
As discussed above inflammation is primarily caused by the acti-
vation of macrophages during the immune response, resulting
in the release of different mediators that perpetuate the pro-
inflammatory response such as IL-1, TNFα, and prostaglandins.
While this pathway is thought to result in the majority of the tissue
damage associated with the pathology of Chlamydia infection, a
number of other factors may also contribute to the etiology.

The first of which is the presence of ROS. ROS comprises
several oxidizing, oxygen-containing species that are generated
in a physiological system through one-electron-transfer reactions
during metabolism, and include hydroxyl radical (OH−), super-
oxide anion radical (O−2 ) and hydrogen peroxide (92). ROS are
known mediators of the immune response, and work by pro-
moting endothelial dysfunction through the oxidation of crucial
signaling proteins (351). Importantly, testicular macrophages are
known to produce ROS during infection and in response to LPS
(352), and LPS is known to induce oxidative stress (353–355). The
release of ROS by activate macrophages not only affects invad-
ing pathogens, but may also expose adjacent host tissue and cells
to oxidative stress. It has been proposed that Leydig cells may
be particularly susceptible to extracellular sources of ROS during
immune responses due to their close proximity to interstitial testic-
ular macrophages (356, 357). In addition to this, as ROS produced
by C. trachomatis infection could be an important factor in the
damage of sperm cells, it is thought that low molecular weight and
enzymatic secretions of the male genital tract may play an active
role in suppressing the deleterious effects of ROS, leading to the
preservation of fertility (102, 358). ROS such as superoxide anion
are able to rapidly combine with NO to form reactive nitrogen
species (RNS). The RNS in turn induces nitrosative stress, which
adds to the pro-inflammatory burden of ROS (359). In addition
to this uncontrolled NO production alone has been implicated in
chronic inflammation during Chlamydia infection (360, 361).

In addition to the presence of ROS, the presence of small
anti-bacterial molecules in the male reproductive tract may also
contribute to a sustained inflammatory response. Defensins are
small, positively charged peptides that disrupt bacterial infection
by forming multimeric pores in the pathogens membrane (186).
A large majority of epithelial cells produce beta defensins, includ-
ing those of the epididymis and testis, with a large number of
epididymal-specific beta defensins being identified in both the
mouse and rat (362–367). Most of these epididymal defensins
are developmentally or hormonally regulated, with evidence that
some might play a role in sperm maturation (362, 365). Normally,

epithelial defensing production is stimulated by TLR activations
and cytokines during inflammation, with studies showing that LPS
induces mRNA expression of defensin and defensin-like spag11,
as well as pro-inflammatory cytokines in the rat epididymal caput,
cauda and testis (368). Importantly, it has been shown recently that
stimulation of mouse macrophages with beta defensin 14 results
in the synergistic and enhanced expression of pro-inflammatory
cytokine and chemokines induced by TLR ligand re-stimulation
(369). It is, therefore, possible that infection with Chlamydia may
stimulate the up-regulation of beta defensins in the male repro-
ductive tract, which may in turn activate mouse macrophages to
produce an inflammatory response. Therefore, chronic, or recur-
rent chlamydial infection may lead to chronic inflammation, and
subsequent tissue and cell damage.

CONCLUSION
Chlamydia infection is a public health concern, with the devel-
opment of a vaccine capable of preventing infection without
activating harmful immune responses the best solution for con-
trolling this sexually transmitted disease. Unfortunately, as yet, no
vaccine has been developed that has been able to block infection,
highlighting the dynamic and complex nature of the immunobi-
ological response that is mounted against the invading bacteria.
Clearance of chlamydial infection requires the coordinated action
of both the innate and adaptive immune systems, with multi-
ple levels of cross-talk and redundancies in place. The problem
is compounded even more in regions of the male reproductive
tract, particularly the testis, whose blood–testis barrier allows the
cells within to mature and function without risk of attack from
the immune system. However this barrier, also prevents a normal
immune response from occurring, and the underlying mecha-
nisms of this response remain unclear. It is also unknown how the
presence of the blood–testis barrier would affect the delivery of an
effective vaccine. Therefore, research aiming to provide a greater
understanding of the role and regulation of the immune response
within the male reproductive tract would aid in the development
of Chlamydial vaccine.
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