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There is growing evidence that inflammation plays a role in major depressive disorder 
(MDD). As the main role of regulatory T cells (Tregs) is to control inflammation, this might 
denote a Treg insufficiency in MDD. However, neither a qualitative nor a quantitative 
defect of Tregs has been ascertained and no causality direction between inflammation 
and depression has been established. Here, after reviewing the evidence supporting 
a relation between Treg insufficiency and MDD, we conclude that a novel therapeutic 
approach based on Treg stimulation could be valuable in at least the subset of patients 
with inflammatory MDD. Low-dose interleukin-2 appears to be a good candidate as it 
is not only a safe stimulator of Tregs in humans but also an inhibitor of pro-inflammatory 
Th17 lymphocytes. Here, we discuss that a thorough immune investigation as well as 
immunotherapy will be heuristic for deciphering the pathophysiology of MDD.

Keywords: regulatory t cell, major depressive disorders, inflammation, immunotherapy, low-dose interleukin-2

iNtrODUctiON

On inflammation and Major Depressive Disorder (MDD)
Major depressive disorder is a disabling psychiatric disorder that afflicts more than 10% of the adult 
population in the USA and is associated with a global social cost of 66.5 million disability-adjusted life 
years (1). Currently ranked as the fourth cause of disability and premature death in the world, MDD 
is expected to be the second leading contributor to overall disease burden by 2030 (2). Approximately 
one in six individuals will suffer from MDD once in their lifetime (3). The first episode of MDD 
is often the onset of a chronic relapsing and remitting illness that leads to an increased premature 
mortality and morbidity primarily attributable to suicide and cardiovascular-related disorders (4). 
Despite well-conducted antidepressant treatment, approximately one-third of all patients with 
depression fail to respond to conventional antidepressant therapies (5).

The role of inflammation in depression has recently been reviewed in depth (6). The observation 
of an immune inflammatory response to stress, together with the link between stress and depression, 
establishes a first indirect link between inflammation and depression (7–9). The risk of depression 
is high in many disorders with an inflammatory component, including cardiovascular diseases, diabetes, 
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metabolic syndrome, infections, and autoimmune disorders such 
as rheumatoid arthritis or psoriasis (10, 11). Reinforcing the link 
between inflammation and depression, genetic studies have 
shown that mutation in inflammatory-related genes (such as CRP 
or IL-6) increased the risk on MDD onset (12–14).

Meta-analysis of clinical studies in MDD has highlighted 
increased blood levels of various pro-inflammatory cytokines 
and their soluble receptors, such as interleukin-6 (IL-6), 
tumor necrosis factor-alpha (TNF-alpha), IL-1β, soluble IL-2 
receptor, and C-reactive protein (CRP), in MDD compared to 
healthy controls (15–17). It has been estimated that 47% of MDD 
patients have a CRP level of >3.0 mg/L and 29% a CRP level of 
>5.0  mg/L, leading to the concept that MDD is mediated by 
inflammation (18). Altogether, although there is no direct 
evidence of causality, depression and inflammation appear to 
be interconnected, possibly fueling and feeding off each other. 
Thus, when inflammation and depression cooccur, treating both 
of them may enhance recovery from both disorders, reduce the 
risk of recurrence, and effect improvement in patients with a 
resistant depression (19).

Further support in favor of the role of inflammation in depres-
sion comes from the clinical use of pro- or anti-inflammatory 
treatment. The treatment of normal individuals with drugs that 
have an inflammatory effect, such as interferon-gamma, is associ-
ated with symptoms of depression (20, 21). By contrast, depression 
has been improved by anti-inflammatory treatments, particularly 
in subgroups of MDD patients with low-grade inflammation  
(22, 23). A trial with add-on infliximab (an inhibitor of the 
inflammatory TNF-alpha) has revealed an increased clinical 
response compared with antidepressants alone in patients with 
treatment-resistant depression, but only in those with a CRP of 
>5 mg/L (22). Several other studies are ongoing in order to evalu-
ate the antidepressant effect of anti-inflammatory drugs (24–26).

On inflammation and regulatory  
t cells (tregs)
The main role of Tregs is to control inflammation and immune 
tolerance, the two being interrelated (27). Tregs act by inhibiting 
pro-inflammatory cellular responses and by secreting anti-
inflammatory cytokines (28). The experimental ablation of Tregs 
in an otherwise healthy animal leads to severe inflammation 
(29). Likewise, any inflammatory or autoimmune disease might 
denote, in essence, the inability of Tregs to control inflammation, 
thus a Treg insufficiency (30). It could be due to a decreased num-
ber or function of Tregs or, conversely, to an increased number 
or function of effector T cells (Teffs), as well as to the microen-
vironment of the immune response, which would affect Treg 
efficiency. Tregs are thus key targets for the treatment of many 
autoimmune and inflammatory diseases, in particular by their 
activation/induction through the administration of low doses 
of IL-2 (ld-IL-2) (30). Interestingly, the proof-of-concept trial of 
ld-IL-2 in an autoimmune disease showed not only that it safely 
activates Tregs but also that it has an overall anti-inflammatory 
effect (31). Indeed, the changes in the overall transcriptomic 
profile of peripheral blood mononuclear cell induced by ld-IL-2 
clearly revealed an anti-inflammatory pattern (31). In addition, 
ld-IL-2 was also shown to improve chronic graft-versus-host 

disease, which is considered as an alloantigen-induced chronic 
inflammation, after hematopoietic stem cell transplantation (32).

In this review, we discuss how Treg insufficiency may contribute 
to the pathogenesis of MDD and likewise how Treg stimulation 
with ld-IL-2 can be envisioned as a treatment for MDD patients 
with low-grade inflammation and possibly beyond.

PHYsiOLOGY AND reGULAtiON  
OF tregs

The Forkhead box P3 (FoxP3) transcription factor and the alpha 
chain of the IL-2 receptor (CD25) are the markers of Tregs (33). 
We recently reviewed their role and regulation by IL-2 (30). We 
here summarize the aspects of their physiology that pertain to 
their role in depression.

The major roles of Tregs are to control inflammation and 
prevent autoimmune diseases (33). Indeed, the efficient depletion 
of Tregs in healthy individuals at any time in life induces a rapid 
inflammatory response that leads to multiorgan autoimmunity 
(29). This revealed that, in healthy individuals, there are Teffs 
ready to attack normal tissues, but they are kept under control by 
Tregs. This led to the concept that there is a Treg/Teff balance in 
health, which is dysregulated in autoimmune and inflammatory 
disorders. In humans, many but not all autoimmune diseases 
have been associated with a qualitative or a quantitative defect of 
Tregs, such as in type 1 diabetes, multiple sclerosis, rheumatoid 
arthritis, and systemic lupus erythematous (34–36). However, 
even for diseases without a Treg deficiency, the failure to control 
inflammation denotes Treg insufficiency (30).

Since their discovery, decades of studies have revealed that 
Tregs are in fact heterogeneous in terms of origin, phenotype, and 
function. Ontogeny distinguishes Tregs that differentiate during 
T cell development in the thymus (tTregs) from peripheral Tregs 
(pTregs) that develop from naïve CD4+ cells upon TCR/CD28 
costimulation in the presence of cytokines such as TGF-β and 
IL-2 (37). tTreg cells are considered to be relatively homogene-
ous and stable in comparison with pTregs (34, 37, 38). History 
of activation distinguishes naïve Tregs from activated/memory 
Tregs, the latter being essentially self-antigen-specific (39) and 
enriched in deep lymphoid organs (40–42). Tissue localization 
then distinguishes (i) circulating Tregs, which are found in 
secondary lymphoid organs and fluids, from (ii) tissue-resident 
Tregs, which are resident in non-lymphoid tissues such as gut, fat, 
and skin (33). All these characteristics are closely linked to the 
role of these cells in specific settings. Resident Tregs have been 
described as having specific functions—often trophic—linked to 
their environment. For instance, in the muscle, Tregs can con-
tribute to muscle repair by the production of amphiregulin (43). 
Tregs in the brain can also have trophic functions as they promote 
oligodendrocyte differentiation and re-myelination (44).

In humans, Tregs are mainly discriminated based on the 
combination of FOXP3hiCD25hiCD127lo markers, with CD45RO+   
activated/memory or CD45RA+ naïve phenotypes (45).

IL-2 is the key cytokine that regulates the development, homeo-
stasis, and function of Tregs. Mice that do not produce IL-2 or 
the high-affinity IL-2 receptor die of severe lymphoproliferative-
driven autoimmunity (46), a phenomenon later explained by a 
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failure in Treg (47). By contrast, the development of pro-inflam-
matory Th17 and T-follicular helper cells is opposed by IL-2 (48, 
49). Patients with autoimmune diseases such as type 1 diabetes 
(50), rheumatoid arthritis (51), and systemic lupus erythemato-
sus (52), compared with healthy individuals, have a genetically 
determined low IL-2 production, which reduces their Treg fitness. 
The role of IL-2, and likewise of Tregs, in autoimmune diseases 
was recently further highlighted by the meta-analysis of a shared 
genetic architecture across 10 pediatric autoimmune diseases 
which revealed a central role of the IL-2 pathway (53).

Although Tregs control inflammation, inflammation con-
trols Tregs (30). Tregs tend to lose their functional capacity 
and become unstable in highly inflammatory environment  
(54, 55). On the other hand, Tregs suppress inflammation by 
multiple mechanisms, including reducing costimulation to acti-
vate Teffs, consuming IL-2, and secreting immunosuppressive 
cytokines such as IL-10 (56). They also stimulate dendritic cells 
to produce the anti-inflammatory regulatory enzyme indola-
mine 2,3 dioxygenase (IDO), which in turn activates Tregs and 
suppresses inflammation in part by tryptophan consumption 
(57, 58). These anti-inflammatory effects of Tregs are confirmed 
by their capacity to improve various models of inflammatory 
diseases in mice, such as in atherosclerosis, acute lung injury, 
muscular dystrophy, and beryllium-induced granulomatous 
inflammation (35). In these models, ld-IL-2 stimulates Tregs 
and improves the conditions (30). These results highlight the 
broad therapeutic potential of IL-2 for tipping the balance of 
Treg/Teff cells toward Treg cells. Some Tregs may experience 
a phenotypic plasticity, notably related to the instability of 
FoxP3 expression leading to a possible Th1/Th17 polarization 
(33, 36, 37). This could notably be an issue for Treg cell-based 
therapy in high inflammatory conditions. However, (i) thymic-
derived Tregs that constitutively express CD25 are the main 
target of ld-IL-2 and are not prone to such instability; (ii) when 
present, the inflammation associated with MDD is a mild 
systemic inflammation rather than a focal high inflammation 
like in some autoimmune diseases, and (iii) the activation of 
the STAT5 pathway by IL-2R signaling actually contributes to 
stabilize FOXP3 expression and likewise the Treg-suppressive 
phenotype. These observations are in line with the fact that no 
Treg instability has been described in the clinical trials investi-
gating ld-IL-2 in over 20 different clinical settings.

tregs AND tHe PAtHOPHYsiOLOGY  
OF MDD

immunopathophysiology of MDD
It is known that stress, a major risk factor of MDD, is associated 
with the activation of the hypothalamic–pituitary–adrenal (HPA) 
axis, leading to the release of catecholamine (6). Catecholamine 
seems to act on the pathophysiology of MDD through damage-
associated molecular patterns, which eventually activate the 
NLRP3 inflammasome (6, 59), a pro-inflammatory multiprotein 
complex activated by pathogenic microorganisms and by sterile 
stressors (e.g., ATP, oxidative stress). The inflammasome is 
responsible for secretion of the inflammatory IL-1β (60), which in 

turn could drive the inflammatory response associated with MDD. 
Pro-inflammatory cytokines can mediate brain inflammation 
either directly by crossing the blood–brain barrier or indirectly 
(6, 59). IL-1β inhibits the enzyme tetrahydrobiopterin, which is 
essential for the synthesis of dopamine, therefore decreasing the 
availability of this neurotransmitter (6, 61). Possibly in response 
to the increase in pro-inflammatory cytokines in MDD, the acti-
vation of IDO has been observed (59, 62). This leads to a decrease 
of the neurotransmitter serotonin (5-HT) and an increase in 
N-methyl-d-aspartate signaling (metabotropic glutamate recep-
tor). The coexistence of increased IDO, the anti-inflammatory 
role of which is in part mediated by Tregs, with an inflammatory 
state is paradoxical and could suggest a defect in Tregs in MDD 
mediated by inflammation. Altogether, several lines of evidence 
suggest that inflammatory processes play an important role in 
MDD, but it should be recognized that these lines of evidence are 
quite indirect.

tregs in MDD
Studies in rodents indicate that Tregs may play a protective role 
against depressive-like behavior. In animal models of depression, 
using the chronic unpredictable mild-stress paradigm, a decrease 
in Tregs has been shown to be significantly associated with the 
onset of depressive-like behavior (63). In vivo, Treg depletion prior 
to exposure of mice to stress led to a higher rate of depressive-like 
behavior and pro-inflammatory profile compared to untreated 
mice (64). In a rat model of postpartum depression, Tregs were 
negatively associated with pro-inflammatory cytokines. In addi-
tion, the treatment of mice with the antidepressant fluoxetine is 
associated with an increased percentage of Tregs (65). Finally, it 
has been shown that in response to acute stress, as well as during 
repeated stress, the activation of the HPA axis promotes immune 
cell trafficking (59).

Importantly, the transfer of T  cells from mice exposed to 
chronic social defeat, but which do not develop depressive-like 
behavior, to naïve mice led to an antidepressant behavioral phe-
notype (6). This is one rare direct line of evidence linking Tregs 
and behavior.

In humans, adolescents at a high risk for mood disorder exhibit 
a decreased number of Tregs that is negatively correlated with their 
inflammatory state (66). Similarly, several studies have found a 
decrease in Tregs in MDD patients (67–69) that is also associated 
with a pro-inflammatory phenotype in those patients (68).

Thus, both human and animal studies show an association 
between an increased risk of MDD and a decreased number of 
Tregs associated with an increased inflammation. Since depressed 
patients resistant to antidepressant treatment are mostly those 
with an inflammatory profile, the effect of treatment on Tregs has 
been studied. In MDD patients with decreased Tregs at baseline 
compared with non-Treg-related MDD, Tregs are increased dur-
ing effective antidepressant treatment, whatever antidepressant 
is prescribed (70). This suggests that Tregs may be a predictor of 
treatment (70, 71).

However, it should be kept in mind that the associations 
described above do not prove causality. Social factors and habits, 
as well as the disease itself, may influence diet, hygiene, and 
exposure to infectious agents, all of which can affect immune 
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homeostasis and/or influence the microbiota and likewise the 
inflammatory context.

HYPOtHesis ON MecHANisMs LiNKiNG 
treg iNsUFFicieNcY AND MDD

Gut Microbiota, tregs, and MDD
There is now robust evidence that the microbiota influences the 
immune system and vice versa. More specifically, there are close 
interactions between the gut microbiota and Tregs (72–74):  
(i) while there are numerous Tregs in the intestinal mucosa at the 
steady state, germ-free mice have a reduced number of such Tregs; 
(ii) some specific strains of bacteria have been associated with 
more inflammatory or more regulatory-tuned intestinal milieu; 
(iii) the transfer of gut microbiota from mice with autoimmune 
diseases is sufficient to transmit the disease to germ-free mice; and 
(iv) by contrast, the transfer of defined Clostridium strains was 
recently shown to induce Tregs and improve colitis and allergic 
diarrhea in mice (75, 76). With this in mind, there are different 
lines of evidence suggesting a “ménage à trois” between the gut 
microbiota, Tregs, and MDD. MDD is known to be associated 
with an increased intestinal permeability or “leaky gut,” for 
which there is no clear explanation (62). Since Tregs are major 
sensors of immune tolerance in the gut, one can hypothesize a 
causal (forward or reverse) link between the deregulation of 
Tregs, “leaky gut,” and MDD. In this regard, low levels of vita-
min D, which affect microbiota composition and impair Treg 
activation, correlate with MDD onset (77–79), and, reciprocally, 
vitamin D supplementation decreases depressive symptoms 
and oxidative stress markers in MDD patients (80). Similarly, 
low fatty acid levels have also been associated with MDD onset  
(81, 82). A meta-analysis of 13 studies including 1,233 MDD patients 
revealed that antidepressant plus fatty acid supplementation was 
more effective than antidepressant alone (83). Interestingly, this 
effect is especially seen in patients with an inflammatory profile 
(23). Early psychic trauma has been shown to alter gut microbiota 
(84). One explanation for this gut–brain crosstalk is that it is 
sustained by the immune system (85). It is worth noting that fecal 
transplantation of microbiota from patients with MDD to germ-
free mice results in depressive-like behaviors (84), which is direct 
evidence of a causal link between MDD and microbiota.

Adipose tissue, tregs, and MDD
Metabolic syndrome is defined by lipid disturbance, insulin 
resistance, and abdominal obesity and has been extensively 
associated with the onset of MDD, especially in young patients 
(86). Obesity comprises an inflammatory disorder in which fat 
Tregs seem to play an important role (87). Inflammation related 
to obesity is in part related to the onset of MDD (10). An elevated 
body mass index and waist circumference are correlated with an 
increased risk of MDD (88, 89). Obese patients with MDD exhibit 
a poorer response to standard antidepressant treatments (90). 
There are different lines of evidence suggesting another “ménage 
à trois,” between obesity, fat Tregs, and MDD. High leptin 
levels lead to obesity, and the administration of leptin has also 
been shown to increase depressive-like behaviors in mice (91).  

In humans, several studies have found an association between 
high leptin levels and the onset of MDD in obese patients (92–94). 
Altogether, as leptin is a potent antagonist of fat Tregs, the above 
results suggest a causal link between high leptin level, Treg insuf-
ficiency, and MDD. Conversely, PPAR gamma is a major regula-
tor of adipogenesis (95, 96). It also contributes to Treg activation 
and development, especially in Tregs from adipose tissues (97). 
Interestingly, it has been shown that PPAR gamma agonists such 
as pioglitazone have the ability to decrease depressive symptoms 
in MDD (98, 99).

interleukin-2 (iL-2) and MDD
Interleukin-2 is the major cytokine needed for the activation of 
Tregs. sIL-2R (sCD25), the soluble form of IL-2Ra (CD25), is 
increased in patients with MDD (17, 100–102). The biological 
activity of sIL-2R is not known and its affinity for IL-2 is low. 
Nevertheless, sCD25 could decrease the bioavailability of IL-2, 
which in turn would impact on Treg survival and expansion.

In conclusion, many of the commonly reported abnormalities 
found in MDD could contribute or be linked to a defect in Treg 
activation.

PsYcHOiMMUNe PHArMAcOtHerAPY: 
MODULAtiON OF iMMUNitY tO 
reGULAte MOOD

One-third of all patients with depression fail to respond to conven-
tional antidepressant therapies (5). Forty-seven percent of them 
exhibit a CRP of >3 mg/L (22) and thus have an inflammatory 
condition characterizing Treg insufficiency, which may not only 
be involved in the onset of MDD but could also be associated with 
treatment resistance. Treg stimulation could thus be used as an 
adjunct treatment of MDD—particularly in resistant-depressed 
patients—which could reverse the inflammation and possibly 
neurotransmitter modification observed in MDD patients.

Interleukin-2, the Treg master regulator, has pleiotropic func-
tions. It can induce the development of thymic and pTregs, but 
also maintains their functional competence and stability (30). 
IL-2 is also able to support the proliferation of Teffs such as CD4+ 
and CD8+. Nevertheless, Tregs have a greater avidity for IL-2 due 
to their constitutive expression of high-affinity IL-2R, leading 
to a 10- to 20-fold lower activation threshold for IL-2R signal-
ing than Teffs and a  >100-fold increase in sensitivity to gene 
activation downstream of IL-2R (103). This raises the possibility 
of achieving specificity for Treg stimulation by using ld-IL-2 
(30). In 2006, ld-IL-2 was used for the first time with the aim of 
stimulating Tregs in 10 patients with hepatitis C virus-induced 
vasculitis. ld-IL-2 was well tolerated and expanded and activated 
Tregs without activating Teffs, which led to significant clinical 
improvements (31). Since then, ld-IL-2 has been evaluated in 
many other diseases. For example, in chronic graft-versus-host 
disease, ld-IL-2 improved the manifestation of the disease at 
multiple sites in the majority of glucocorticoid-resistant patients 
(32). In alopecia areata patients, ld-IL-2 induced the recruitment 
of Treg around hair follicles and a dramatic hair regrowth in a 
majority of patients (104). In SLE, multiple studies have shown 
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a dramatic decrease of disease activity in most of the patients 
included (105) (Humrich team). Phase-IIb double-blind placebo-
controlled trials are now underway, and their results should 
help better define the efficacy of the treatment. All these studies 
have confirmed the excellent safety profile of ld-IL-2 and have 
sometimes indicated remarkable clinical improvements related 
to Treg expansion. Several additional clinical trials evaluating 
ld-IL-2 in multiple autoimmune and inflammatory diseases 
are ongoing, including TRANSREG (NCT01988506), which 
includes patients suffering from 1 of 11 selected autoimmune 
diseases. This study currently shows that ld-IL-2 treatment is 
well tolerated even in the long term (106). Altogether, the safety 
of ld-IL-2, its effects on boosting Tregs and inhibiting Teff cells, 
and Treg insufficiency strongly support its clinical investigation 
in MDD (Figure 1).

cONcLUsiON

Regulatory T cells appear to link many biological abnormalities 
found in MDD, shedding light on how stress, inflammation, and 
neurobiological modifications can be linked to its pathophysiology. 

Tregs can also explain the associations between MDD and many 
inflammatory diseases related to Treg insufficiency, explaining the 
high rate of depression in these populations. As such, Tregs could 
be envisioned as a biomarker of MDD as they can be measured 
accurately and reproducibly and as a potential therapeutic target 
in MDD patients. Likewise, the use of ld-IL-2 as an adjunct to 
antidepressant treatment holds great promise in MDD and more 
largely in the field of psychiatric treatment. The correlative data 
linking Tregs and MDD together with the safety, tolerability, and 
efficacy profile of ld-IL-2 should prompt clinical evaluation of 
this novel therapeutic approach. Incidentally, a clinical benefit of 
ld-IL-2 treatment in MDD will not only help alleviate the disease 
burden but also provide evidence of a direct contribution of the 
immune system (and Tregs) to psychiatric disorders.
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