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The disrupted-in-schizophrenia 1 (DISC1) gene was identified as a genetic risk

factor for chronic mental illnesses (CMI) such as schizophrenia, bipolar dis-

order and severe recurrent depression. Insoluble aggregated DISC1 variants

were found in the cingular cortex of sporadic, i.e. non-genetic, CMI patients.

This suggests protein pathology as a novel, additional pathogenic mechanism,

further corroborated in a recent transgenic rat model presenting DISC1 aggre-

gates. Since the potential role of aggregation of DISC1 in sporadic CMI is

unknown, we investigated whether DISC1 undergoes aggregation in cell

culture and could spread between neuronal cells in a prion-like manner, as

shown for amyloid proteins in neurodegenerative diseases. Co-culture exper-

iments between donor cells forming DISC1 aggregates and acceptor cells

showed that 4.5% of acceptor cells contained donor-derived DISC1 aggregates,

thus indicating an efficient transfer in vitro. DISC1 aggregates were found inside

tunnelling nanotubes (TNTs) and transfer was enhanced by increasing TNT

formation and notably by dopamine treatment, which also induces DISC1

aggregation. These data indicate that DISC1 aggregates can propagate between

cells similarly to prions, thus providing some molecular basis for the role of

protein pathology in CMI.
1. Introduction
Schizophrenia is a purely clinical diagnosis for a chronic brain disorder that is

characterized clinically by positive symptoms such as delusions, thought

disorders and hallucinations, as well as negative symptoms such as flattened

affect or lack of drive, and cognitive symptoms such as working memory deficits.

Anatomical abnormalities such as enlarged ventricles and cellular abnormalities

in cortical layering of inter-neurons have been reported in schizophrenia [1], but

the pathogenesis of this disease is largely unknown. It is proposed that the disease

has a strong neurodevelopmental component [2–4], but that a second hit has to

occur in order for the disease to break out and to initiate its chronic course.

Genetics has been successful in identifying molecular players related to

schizophrenia and other chronic mental illnesses (CMI) [5,6]. The disrupted-in-

schizophrenia 1 (DISC1) gene was identified in a large Scottish family where

the balanced translocation mutation t(1; 11) (q42.1; q14.3) led to C-terminally

truncated DISC1 protein, and in an American family where it led to aberrant

translation of the C-terminus of the protein [7], which was also significantly

associated with schizophrenia and other CMI cases [8]. DISC1 protein is involved

in neurite outgrowth and cortical development [9–11], and a wealth of evidence

has corroborated DISC1 as a gene related to behavioural control [3].

Given that proteins found in many sporadic, chronic brain diseases are also

found mutated and aggregated in rare familial cases [12], we investigated the
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solubility status of DISC1 in post-mortem brains of CMI and

found it insoluble in 15% of cases with CMI but not healthy

controls or patients with neurodegenerative diseases [13,14].

Further studies revealed that DISC1-forming aggresomes

were cell-invasive in vitro [14] and in vivo [15]. Furthermore,

a transgenic rat model overexpressing DISC1 and displaying

DISC1 aggregates displayed disturbed dopamine homeo-

stasis and behavioural abnormalities [16], supporting the

pathogenicity of DISC1 aggregates generated endogenously.

These studies established that the DISC1 protein can

become misfolded similarly to proteins instrumental in clas-

sical neurodegenerative diseases [17], however without

causing significant cell death. So far, however, the cell

biology mechanism behind DISC1 aggregate formation and

function (or dysfunction) has remained unexplored.

Over the past decade, a great number of studies provided

evidence for cell-to-cell transmission of various neuro-

degenerative disease-specific proteins in a prion-like manner

[18–20]. The proposed model is that protein aggregates

formed in one cell can be passively released by membrane rup-

ture or damage, perhaps accompanying cell death, or be

actively released by exocytosis, and in turn be taken up by

neighbouring cells [18,19,21]. This newly evolved transmission

hypothesis for neurodegenerative diseases not only provides a

plausible explanation for the stereotypical spreading patterns

of the pathology that have long been observed in multiple

diseases, but also offers a fresh perspective on the processes

underlying the onset and progression of neurodegeneration

[18,19,22]. Of note, the prion-like cell-to-cell transmission is a

biological phenomenon of information transfer that does not

necessarily have to incur cell death, as yeast prions have clearly

demonstrated [23,24]. This is important, since CMI have not

been demonstrated to involve neurodegeneration as seen in

classical neurodegenerative diseases [25].

Tunnelling nanotubes (TNTs) are membranous F-actin-

based conduits connecting remote cells that were first

characterized in rat pheochromocytoma (PC12) cells in

culture [26]. Subsequent studies confirmed that TNT-like

structures were present in different cultured cell types such

as epithelial [27], immune [28] and neuronal cells [29–31],

with the particularity that they contained actin fibres and

did not have any contact with the substratum (bottom of

the culture dish or Ibidi). Endosomes, mitochondria, endo-

plasmic reticulum, calcium and surface proteins were found

to pass through TNTs in various cell types [32,33]. Further-

more, TNTs can be hijacked by different pathogens, leading

to the spreading of infection [30,34–36]. Interestingly, we

have shown that infectious prion particles transferred via

TNTs resulted in the transmission of infectivity to the recipi-

ent cells [30]. Moreover, amyloid-b (A-b) [37], polyglutamine

huntingtin aggregates [29], alpha synuclein [38] and tau [39]

were found in TNTs, supporting the hypothesis that they

could be a preferential highway for the spreading of

proteinaceous aggregates [32,38,39].

In light of these findings, we hypothesized that cell-to-cell

spreading of aggregates, so far restricted to neurodegenerative

diseases, could apply to DISC1-related CMI, i.e. CMI where

DISC1 aggregates are implicated in the pathogenesis. To this

aim, by quantitative microscopy we characterized the for-

mation, size and sub-cellular localization of GFP-DISC1

aggregates in neuronal cells. We also show that DISC1 aggre-

gates transfer between neuronal cells in co-culture. This

intercellular transfer is not mediated by secretion and uptake,
but relies on cell-to-cell contact. Furthermore, only small aggre-

gates transfer between cells and are found inside TNTs; the

transfer of DISC1 aggregates is affected by modulation

(increase/decrease) of TNT number.
2. Results
2.1. Characterization of DISC1 aggregate formation in

neuronal cells
Recent evidence demonstrated the ability of DISC1 to form

insoluble aggregates in vitro and in vivo [17], however the

mechanism of aggregate formation is largely unknown. We

first investigated the kinetics of formation of DISC1 aggregates

in catecholaminergic murine neuronal-like cells (CAD cells). To

do so, we overexpressed GFP-tagged full-length DISC1 protein

[14,15] and followed the aggregation process by quantifying

the number and size of aggregates at different time points

(12 h, 24 h and 36 h) post-transfection. In line with previous

reports, we found that GFP-DISC1 formed aggregates in

CAD cells at all time points (figure 1a). Furthermore, quantifi-

cation of the number of DISC1 aggregates revealed that while

the amount of DISC1 aggregates was similar at 12 h and 24 h

post-transfection (on average 161 and 187 DISC1 aggregates

per cell at 12 h and 24 h post-transfection, respectively), the

number significantly decreased at 36 h after transfection

(on average 125 DISC1 aggregates per cell) (figure 1a,b). Of

interest, at this time after transfection, DISC1 aggregates were

twice as small as aggregates present in cells at 12 h and 24 h

post-transfection (on average 0.41 mm2 at 36 h post-

transfection compared to 0.87 mm2 and 0.80 mm2 at 12 h and

24 h post-transfection, respectively) (figure 1a,c). Consistently,

at 12 h and 24 h post-transfection, the percentage of cells

containing larger aggregates (more than 0.5 mm2) was signifi-

cantly higher compared to 36 h post-transfection (27.1%,

24.1% and 13.7% of cells containing aggregates more than

0.5 mm2 after 12 h, 24 h and 36 h post-transfection) (figure 1d).

Overall, these data indicate that DISC1 protein forms larger

aggregates at relatively short periods after transfection and

suggest that DISC1 aggregates can undergo a reduction in

size over time, maybe due to proteolysis. In addition, we

noticed that small and medium aggregates (less than 0.5 mm2)

were dispersed in the cytosol while larger aggregates (more

than 0.5 mm2) were mainly found in the peri-nuclear region

(figure 1a), compatible with aggresome structures. Time

course measurements of lactate dehydrogenase (LDH) release

at 12 h post-transfection of GFP-DISC1 showed no change com-

pared to control cells (electronic supplementary material, figure

S1). This suggests that cells were viable, thus validating their

use as donor cells in our transfer assay (see below).

2.2. DISC1 large aggregates form aggresomes in
neuronal cells

Based on our previous observations and on the fact that DISC1

was previously shown by us and others to form aggresomes in

different neuronal cells [8,17], we next examined whether larger

DISC1 aggregates formed 24 h after transfection were localized

in aggresome-like structures. By immunostaining CAD cells

with bona fide aggresomal markers, we could see most of the

larger DISC1 aggregates co-localized with g-tubulin (electronic
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Figure 1. Overexpression of GFP-DISC1 leads to different number and size of aggregates in neuronal cells. (a) Representative confocal images of CAD neuronal cells
transfected with GFP-DISC1 after 12 h (upper panel), 24 h (middle panel) and 36 h (bottom panel) showing different size of GFP-DISC1 aggregates. Cells contained
small (left), medium (middle) and large (right) DISC1 aggregates. Green, GFP-DISC1; blue, cytosolic and nuclear markers (HSC CellMask and DAPI). Scale bars,
10 mm. (b) Quantification of the average number of GFP-DISC1 aggregates per cell in (a) from three independent experiments (n.s., not significant; **p ,

0.01; by two-tailed Mann – Whitney test) showing a decrease in number of DISC1 aggregates 36 h after transfection. (c) Quantification of the average size of
GFP-DISC1 aggregates per cell in (a) from three independent experiments (n.s., not significant; *p , 0.05 by two-tailed Mann – Whitney test) showing a decrease
in size of DISC1 aggregates 36 h after transfection. (d ) Percentage of cells containing small (less than 0.2 mm2), medium (0.2 – 0.5 mm2) and large (more than
0.5 mm2) aggregates obtained from (c).
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supplementary material, figure S2a), while most of the small

and medium DISC1 aggregates did not. This suggests that

DISC1 aggregates may coalesce in large aggregates at the micro-

tubule-organizing centre. We also demonstrated that in cells

containing larger DISC1 aggregates, vimentin microfilaments

reorganized and engulfed larger DISC1 aggregates (electronic

supplementary material, figure S2b), in contrast to cells contain-

ing small DISC1 aggregates, where the vimentin network

was similar to control cells and did not surround the small

aggregates (electronic supplementary material, figure S2b).

Altogether, these results suggest that in CAD cells also, the

largest DISC1 aggregates form aggresomes.

We next addressed the sub-cellular localization of small

and medium size range DISC1 aggregates by using several

organelle markers. We found no co-localization between

DISC1 aggregates and early endosomes or lysosomes (elec-

tronic supplementary material, figure S3). Only a small

number of aggregates co-localized with Vamp3-positive ves-

icles (13+1.6%, data not shown) (electronic supplementary

material, figure S3). These data indicate that the majority of
small and medium DISC1 aggregates are not confined in

endolysosomal vesicles and might be free in the cytosol.
2.3. DISC1 aggregate transfer between neuronal cells is
cell-contact dependent

We next investigated whether DISC1 aggregates can trans-

fer between CAD cells in culture similarly to prion and

prion-like proteins involved in neurodegenerative diseases

[21,40,41]. To this end, we set up a co-culture experiment

where GFP-DISC1 transfected ‘donor’ cells forming aggregates

were co-cultured with H2B-mCherry-transfected ‘acceptor’

cells for 15 h (figure 2a). We analysed the rate of transfer by

flow cytometry and found 2.5% of double positive cells

(i.e. acceptor H2B-mCherry cells containing GFP-DISC1 aggre-

gates) upon overnight co-culture, compared to control

conditions (0.5% of double positive cells) (figure 2b,c). These

data suggest that GFP-DISC1 aggregates transferred from

one cell population to another in co-culture. To investigate
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Figure 2. Transfer of DISC1 aggregates between neuronal cells is cell-contact dependent. (a) Schematic depicting the co-culture system used to quantify transfer of
DISC1 aggregates using flow cytometry. Neuronal donor CAD cells were transfected with GFP-DISC1 for 12 h then co-cultured with acceptor H2B-mCherry transfected
cells for 15 h. Cells were then analysed by flow cytometry to quantify the number of double positive cells (i.e. rate of transfer). (b) Percentage of double positive
cells scored by flow cytometry after three independent co-culture experiments described in (a) in control, co-culture, supernatant and filter conditions (see Material
and methods). In the co-culture conditions 2.5% of double positive cells were scored, whereas when cell contact was abolished (filter and supernatant conditions)
the rate of transfer was drastically decreased. Data show mean + s.e.m (**p , 0.01 by two-tailed Mann – Whitney test). (c) Representative box plots of transfer
experiment in (b). (d ) Representative confocal images of donor GFP-DISC1 transfected cells (in green) co-cultured with acceptor H2B-mCherry transfected cells (in
red) for 12 h showing several transferred GFP-DISC1 aggregates in acceptor cells (inset). Scale bar, 10 mm (n.s., not significant). (e) Quantification of percentage of
acceptor cells containing GFP-DISC1 aggregates after co-culture for 12 h, 24 h and 36 h from three independent experiments in (d ) (n.s., not significant, by two-
tailed Mann – Whitney test). Quantification of the average number ( f ) and size (g) of GFP-DISC1 aggregates in acceptor cells over the time course from three
independent experiments (n.s., not significant; **p , 0.01 by two-tailed Mann – Whitney test) showing that the size of GFP-DISC1 aggregates in acceptor
cells increased over time. (h) Representative confocal images of GFP-DISC1 and RFP-DISC1 transfected cells co-cultured for 24 h from three experiments. The
white arrow points to the co-localized DISC1 aggregates.

rsob.royalsocietypublishing.org
Open

Biol.7:160328

4



rsob.royalsocietypublishing.org
Open

Biol.7:160328

5
the mechanism of transfer, we examined whether the transfer

of DISC1 aggregates relies on secretion. To this aim, we co-

cultured donor and acceptor cells separately using a filter

that allowed passage of secretory vesicles, but impaired cell-

to-cell contact. To directly assess secretion and uptake, we

cultured the acceptor cells with the overnight conditioned

media of GFP-DISC1 transfected cells. Under both conditions,

we observed a large decrease in the rate of intercellular transfer

of DISC1 aggregates compared to the co-culture condition

(0.50%, 0.32% and 0.09% of double positive cells for mixture

control, filter and supernatant conditions, respectively;

figure 2b,c). These data indicate that the intercellular transfer

of DISC1 aggregates relies on cell-to-cell contact.

In order to visualize and quantify more precisely the

transfer, we combined confocal microscopy with advanced

quantitative image analysis using the ICY software (http://

icy.bioimageanalysis.org/), which allowed us to identify and

characterize the aggregates that were transferred. By carrying

out a time course experiment of co-culture post-transfection,

we found that around 4.5% of H2B-mCherry acceptor cells con-

tained GFP-DISC1 aggregates and that the transfer rate did not

change over time (5.90+0.44% at 12 h, 4.32+0.57% at 24 h

and 4.77+0.64% at 36 h) (figure 2d,e). This result is in line

with the flow cytometry analysis. Importantly, we show that

transfer is not mediated by the presence of GFP, as in control

conditions we observed no transfer of the GFP protein between

co-cultures of GFP-vector transfected cells and H2B-mCherry

transfected cells (electronic supplementary material, figure

S4). To better characterize the transfer of DISC1 aggregates,

we measured the number and size of GFP-DISC1 aggregates

in acceptor cells. We found that the average number of GFP-

DISC1 aggregates in acceptor cells was much less than the

number in donor cells (figure 2d,f ). Furthermore, while the

size of aggregates in acceptor cells was smaller than the size

in donor cells after 12 h and 24 h of co-culture, it increased

after 36 h of co-culture (0.39+0.07 mm2 post 12 h co-culture,

0.35+0.04% mm2 post 24 h co-culture and 0.74+0.07% mm2

post 36 h co-culture) (figure 2d,g). This suggests that after trans-

fer into acceptor cells, DISC1 aggregates might coalesce to form

larger aggregates.

It has been shown that in cell where DISC1 aggregates form

they are able to co-recruit soluble pools of endogenous DISC1

[42]. Therefore, next we asked whether DISC1 aggregates that

have been transferred from donor cells (forming the aggregates)

had a similar ability to recruit more DISC1 proteins once arrived

in the acceptor cells. To this aim we co-cultured overnight GFP-

DISC1 and RFP-DISC1 transfected CADs cells and looked at

DISC1 transfer and sub-cellular localization. We found GFP-

DISC1 aggregates in the RFP-DISC1 transfected CADs cells,

and noticed GFP-DISC1 aggregates co-localized with RFP-

DISC1 aggregates. The same event happened in the reverse

direction (figure 2h), suggesting that DISC1 aggregates can

recruit more DISC1 protein after transfer.
2.4. DISC1 small aggregates transfer more efficiently
than larger aggregates

Because aggresome formation requires a microtubule-based

cytoskeleton, the microtubule depolymerizing drug nocoda-

zole was shown to cause dispersion of aggresomes [43,44].

We used this approach to investigate the efficiency of transfer

of smaller aggregates. As predicted, after nocodazole treatment
the size of DISC1 aggregates was significantly reduced

(0.83 mm2 and 0.45 mm2 for control and nocodazole conditions,

respectively; figure 3a,b). In these conditions, more DISC1

aggregates transferred between cells in co-culture compared

to controls (4.8% and 6.6% in control and nocodazole con-

ditions, respectively; figure 3c,d). Consistently, the size of

DISC1 aggregates in donor and acceptor cells was significantly

reduced upon nocodazole treatment (0.79 mm2 and 0.45 mm2

for donor cells and 0.45 mm2 and 0.18 mm2 for acceptor

cells in control and nocodazole conditions, respectively;

figure 3e), indicating that small DISC1 aggregates transferred

more efficiently between cells.
2.5. DISC1 aggregate transfer is mediated by tunnelling
nanotubes

We have previously shown that prion, polyglutamine hunting-

tin proteins, alpha-synuclein fibrils and tau aggregates use

TNTs as an efficient route to transfer between cells [29,30,38–

40]. Since transfer of DISC1 aggregates is dependent upon

cell-to-cell contact, which is compatible with TNT involvement,

we next investigated whether transfer of DISC1 aggregates was

mediated by TNTs. By confocal microscopy we found

GFP-DISC1 aggregates inside TNTs (figure 4a). To test the

hypothesis that TNTs can mediate the transfer of DISC1 aggre-

gates, we analysed this transfer in cells overexpressing either

Myo10 or VASP, which respectively increase and decrease

TNT formation [38]. As shown in figure 4b,c, the percentage

of acceptor cells containing GFP-DISC1 aggregates was

increased when TNT formation was induced by Myo10,

while the percentage decreased when TNT formation was

reduced by VASP (5.28+0.5% in control, 10.02+0.38% in

cells co-transfected with Myo10 and 3.68+0.12% in cells

co-transfected with VASP). This supports a role for TNTs

in the transfer of GFP-DISC1 aggregates between cells. Of

note, after co-culturing transfected cells, we also found that

the number and size of aggregates in acceptor cells was not

changed by either VASP or Myo10 (figure 4d,e).
2.6. Dopamine promotes DISC1 aggregate transfer
between neuronal-like cells

It has been reported that elevated cytosolic dopamine causes an

increase in DISC1 multimerization, insolubility, and complex-

ing with the dopamine transporter [16]; therefore, we wanted

to know whether dopamine would affect the formation and

transfer of DISC1 aggregates in our system. After cells were

incubated with dopamine (100 mM), the size of GFP-DISC1

aggregates increased and the average number of GFP-DISC1

aggregates per cell decreased (figure 5a–c). This indicates that

dopamine does not influence DISC1 expression level, but pro-

motes the formation of DISC1 aggregation. Interestingly, we

detected consistently more acceptor cells containing DISC1

aggregates in dopamine-treated cells (5.51+0.55% in normal

control condition, 6.35+0.63% in buffer of dopamine con-

dition, 10.00+1.00% in dopamine condition) (figure 5d). This

supports the physiologically relevant hypothesis that dopamine

could promote the formation of DISC1 aggregates and, in turn,

their transfer between cells.
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decrease in DISC1 aggregates size in both donor and acceptor cells upon nocodazole treatment.
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3. Discussion
Protein aggregates involved in neurodegenerative diseases

lead to neuronal dysfunction and neurotoxicity when they

accumulate in cells [22,45]. Not all transmissible protein aggre-

gates are cell-toxic, however. For example, yeast prions are

transmissible [46] and fulfil physiological functions by increas-

ing their adaptation to starvation [23,24,47–49]. Similarly,
DISC1 aggregates have been reported to lead to both loss of

function due to the impairment of its binding to biological

ligands (e.g. NDEL1) [13] or gain of function by leading

to novel interactions [14,16]. Furthermore, large DISC1 aggre-

gates have been shown to have a pathological effect in

neurons by disrupting the intracellular transport of key orga-

nelle cargoes, such as mitochondria, possibly resulting in a

novel DISC1-based mechanism for neuronal pathology [42].
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The DISC1 protein consists of large parts with coiled coil

regions [50], part of them leading to multimeric interactions

or insolubility [51,52]. DISC1 aggregate formation can be accel-

erated by overexpression [13,14,42], and environmental factors
like oxidative stress [16] could induce tertiary structural

changes that result in the formation of protein aggregates.

There is neither positive nor negative evidence for increased

b-sheet structures and/or amyloids in insoluble DISC1 in
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post-mortem brains [17]; however, endogenous overexpression

of DISC1 does not lead to amyloid as measured by thioflavin T

staining, contrary to recombinant DISC1 598–785 that clearly

forms thioflavin-positive amyloid [16]. Hydrogen peroxide

[14,42] and dopamine [16] were found to enhance the for-

mation of DISC1 aggregates, which are recruited into

aggresomes around the microtubule-organizing centre, a pro-

cess that relies on the minus end-directed microtubule motor

cytoplasmic dynein.

Recent studies have implicated cell-to-cell transmission

of misfolded proteins as a common mechanism for the onset

and progression of various neurodegenerative disorders [18].

A prion-like self-propagating mechanism may be applied to

a wide range of disease-associated proteins, including Ab,

tau, a-synuclein and polyglutamine huntingtin aggregates

[21,22,41]. For these proteins, cell lysates containing aggregates

and/or synthetic fibrils assembled from recombinant proteins

could act as templates or ‘seeds’ that effectively recruit their

soluble counterpart in cultured cells and/or living animals to

elongated fibrils [53,54]. For the pathogenesis of chronic mental

illnesses such as schizophrenia, protein pathology has not been

demonstrated so far, even though phenotypically proteostasis

abnormalities can be observed in virtually all chronic brain dis-

eases. Notably, previous investigations in human post-mortem
brain [32] and atransgenic rat [16] suggest that protein misassem-

bly of DISC1 could play a role in defining a subset of patients

with schizophrenia or other CMI, termed DISC1opathies [17].

In order to test the hypothesis that DISC1 aggregates

transfer between neuronal cells, we employed an in vitro co-

culture system [29,55] in which mouse catecholaminergic

neuronal cells (CAD) expressing full-length GFP-DISC1

(forming aggregates) were co-cultured with a distinct popu-

lation of acceptor cells expressing H2B-mCherry. By flow

cytometry, after 24 h of co-culture, we found 2.5% double

positive cells, which indicates that GFP-DISC1 aggregates

transfer. These results were validated and further character-

ized by quantitative confocal microscopy, which showed

4.5% average transfer. Importantly, we demonstrated that

DISC1 transfer was dependent on cell-to-cell contact and

that TNTs, previously shown to mediate the intercellular

transfer of amyloidogenic proteins, were involved

[29,30,37–39,56,57]. This is the first direct demonstration

that GFP-DISC1 aggregates formed in neuronal cells can effi-

ciently transfer to neighbouring cells. Interestingly, our data

show that after DISC1 aggregates transfer to other cells they

co-localize with DISC1 from the receiving cell in larger

aggregates, thus supporting the hypothesis of cell-to-cell

transmission of the pathology in a prion-like manner.
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When we characterized the time course of formation of

GFP-DISC1 aggregates in the CAD cell model, we found that

different sizes of DISC1 aggregates were formed over time

and that small aggregates did not co-localize with any sub-

cellular compartment markers, while they appeared to coalesce

in the cytosol in large aggresomes. Consistently, when we

disrupted the microtubule network using nocodazole, the

formation of DISC1 aggresomes was reduced.

Compared to proteins related to neurodegenerative

diseases, the efficiency of transfer of DISC1 aggregates is

lower [29,30,56,58,59]. The inefficient transmission of DISC1

aggregates may be due to the low cell invasiveness and

limited movement of these aggregates as previously reported

[17,42]. By analysing the acceptor cells that received DISC1

aggregates, we found that small aggregates are transferred

efficiently between cells. Consistently, when we disrupted

aggresome formation with nocodazole, the amount of inter-

cellular transfer of small DISC1 aggregates was increased.

Dopamine has been shown to enhance aggregation of the

prion protein and of a-synuclein [60,61], while previous data

indicated that DISC1 aggregation could be promoted by dopa-

mine [16]. In our hands, after treatment with dopamine the size

of GFP-DISC1 aggregates increased, but we detected a consist-

ent increase in the transfer of small DISC1 aggregates.

Of interest, dopamine D2 receptor agonist increased polyQ-

huntingtin protein aggregation, which was blocked by a

dopamine D2 receptor antagonist [62]. Since in schizophrenia

baseline occupancy of D2 receptors by dopamine is increased

[63] and the CAD cell line expresses D1, D2, D3 and D5 dopa-

mine receptors [64], one possible explanation is that dopamine

promotes faster DISC1 aggregation via the D2 receptor. This

is consistent with previous evidence showing that elevated

cytosolic dopamine causes an increase in DISC1 multi-

merization, insolubility and complexing with the dopamine

transporter [16], and further supports the role of dopamine in

the development of CMI.

Several mechanisms could be involved in protein aggre-

gate transmission between cells. In the co-culture system

used here, we observed no transmission by supernatant

or in the condition of co-culture filter, indicating that the

intercellular transfer of DISC1 aggregates is not mediated

by secretion and requires cell-to-cell contact. As previously

shown for prion and other proteins involved in neurode-

generative diseases [29,30,38,39,56,57], we found that

DISC1 aggregates can also transfer between cells through

TNTs. This was also supported by the finding that the effi-

ciency of transfer was increased upon induction of TNT

formation by Myo10, a positive regulator of TNTs, and

reduced by VASP, a negative regulator of TNTs. Our results

support the hypothesis that TNTs represent a highway for

the intercellular transmission (spreading) of aggregated

proteins. It is important to state that our findings, even

though they show similarity in the cell-to-cell transmission

of protein aggregates seen in neurodegenerative diseases,

do not necessarily imply that these aggregates are toxic.

In fact, from yeast prions we know that transmissible

protein aggregates can fulfil functions, as has also been

demonstrated for other cellular systems [65]. How and

whether the transmissibility of DISC aggregates is linked

to the pathogenesis of schizophrenia remains unclear, and

further studies are warranted to decipher the mechanism

of DISC1 aggregate formation and its implication in the

neuropathology of CMI.
4. Material and methods
4.1. Cell lines, plasmids and transfection procedures
The mouse catecholaminergic neuronal CAD cell line (mouse

catecholaminergic neuronal cell line, Cath.aDifferentiated) was

grown in Gibco’s OptiMEM supplemented with 10% fetal

bovine serum (FBS) and 1% penicillin–streptomycin. GFP-

DISC1 and RFP-DISC1 plasmids were from Carsten Korth.

RFP-VASP was obtained from Sandrine Etienne-Manneville

(Pasteur Institute, Paris, France) and RFP-Myo10 was a gift

from Staffan Strömblad (Center for Biosciences, Department

of Biosciences and Nutrition, Karolinska Institutet, Stockholm,

Sweden). GFP-vector and H2B-mCherry were from AddGene.

CAD cells were transiently transfected with Lipofectamine

2000 (Invitrogen) according to the manufacturer’s instructions.
4.2. Flow cytometry
CAD cells were transfected separately with GFP-DISC1, GFP-

vector and H2B-mCherry constructs in 25 cm2 flasks as

described above.

For co-culture experiments, 12 h after transfection, H2B-

mCherry expressing CAD cells were co-cultured with cells

expressing either GFP-DISC1 or GFP-vector at a ratio of 1 : 1

in 12-well plates. After 24 h of co-culture, cells were scraped

in PBS supplemented with 1% FBS, filtered using a 40 mm

nylon cell strainer and fixed in 2% paraformaldehyde (PFA)

for flow cytometry analysis (BD Biosciences LSRFortessa cell

analyser). Each experiment was performed in triplicate and

repeated three times. 10 000 cells were recorded each time.

GFP-DISC1 or GFP-vector-expressing cells were also

plated on a 0.4 mm Transwell plate (Costar) placed on top of

H2B-mCherry-expressing cells in order to impair cell-to-cell

contact. After 24 h of co-culture, filters were removed

and H2B-mCherry-expressing cells were analysed by flow

cytometry as described above.

In order to test secretion involvement in transfer, CAD cells

were transfected separately with GFP-DISC1 and GFP-vector.

After 12 h, cells were gently washed with PBS then fresh

medium was added for an additional 24 h. This conditioned

medium from GFP-DISC1 and GFP-vector CADs was used

to culture H2B-mCherry-expressing CADs (transfected the

day before). After 24 h of incubation, H2B-mCherry-expressing

cells were analysed by flow cytometry as described above.
4.3. Immunofluorescence of cells
GFP-DISC1 and GFP-vector transfected CAD cells were plated

on IbidiTM m-Dishes 35 mm high (Biovalley) for 24 h. Cells were

fixed with 4% PFA or cold methanol for vimentin and g-tubulin

experiments. After permeabilization with a blocking solution

of 0.01% saponin and 2% BSA, primary antibodies to detect

markers of lysosomes (anti-Lamp1, rat), early endosomes

(anti-EEA1, rabbit) and ERC (Anti-Vamp3, rabbit, Abcam)

were diluted in blocking solution (0.01% saponin and 2%

BSA), followed by extensive washing with PBS, secondary anti-

body addition and washing. Cells were mounted using Aqua-

Polymount (Polysciences, Inc.) and images acquired using a

Zeiss LSM700 confocal microscope. Co-localization studies

were done using an objects-based colocalization method of

the ICY software (http://icy.bioimageanalysis.org/).

http://icy.bioimageanalysis.org/
http://icy.bioimageanalysis.org/
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4.4. TNT detection
GFP-DISC1 or GFP-vector–transfected cells were co-cultured

for 24 h with cells transfected with H2B-mCherry at a ratio of

1 : 1. Cells were then fixed with fixative solution 1 (2% PFA,

0.05% glutaraldehyde and 0.2 M HEPES in PBS) for 20 min at

room temperature, followed by a second 20 min fixation with

fixative solution 2 (4% PFA and 0.2 M HEPES in PBS).

The cells were gently washed with PBS and labelled with

WGA-rhodamine (Sigma; 1 : 300 in PBS) for 20 min at room

temperature, washed and sealed with Aqua-Polymount.

Image stacks covering the whole cellular volume were acquired

using a confocal microscope (Zeiss LSM700). To evaluate the

number of TNT-connected cells, manual analysis was per-

formed and only the numbers of GFP-DISC1 or GFP-vector

transfected cells, which possessed TNTs, were counted. Each

experiment was performed at least in triplicate. Image analyses

of raw data, such as Z-projections, were obtained using ICY

software [55].

4.5. Image processing and quantification
To quantify the percentage of cells containing GFP-DISC1

aggregates and to evaluate the number of TNT-connected

cells, a manual analysis was performed as previously described

[38]. Experiments were done in triplicate and repeated three

times. FACS raw data were analysed using FLOWJO software.

To quantify the number of GFP-DISC1 aggregates in CAD

cells and their size (expressed as percentage of the cell volume)

at the different time points, a computer batch run was per-

formed with ICY software, using aggregates detector plugin.

The statistical tests (Tukey’s multiple comparisons tests) were

performed with PRISM software.

4.6. Toxicity measurements
Cell death in neuron-like cells was quantified by measuring

LDH (LDH plus kit, Roche Diagnostics) release into the culture

medium following the manufacturer’s instructions. Briefly,

CAD cells at 24 h post-transfection with GFP-DISC1 were

plated in 96-well plates and kept in culture for 6 h, 16 h, 24 h,

36 h and 48 h. The LDH level corresponding to high (HD)

and low neuronal death (LD) as well as background (BK)

levels was determined in sister cultures maintained in parallel.
To calculate the percentage of cell death in control and

experimental conditions the following formula was used after

subtraction of BK levels to all measurements: % of cell

death¼ ((experimental value 2 LD value)/(HD 2 LD)) � 100.
4.7. Dopamine induced DISC1 protein aggregation in
CAD cells

CAD cells were cultured with Opti-MEM with 10% FBS and 1%

penicillin–streptomycin (Gibco). GFP-DISC1 transfection was

performed as above. GFP-DISC1 transfected CAD cells were

seeded in Ibidi for 12 h, treated with 100 mM dopamine (with

20 mM ascorbic acid to prevent oxidation) for 24 h and fixed

with 4% PFA in PBS. To perform transfer experiments, GFP-

DISC1 transfected CAD cells and H2B-mCherry transfected

CAD cells were seeded in co-culture for 12 h, treated with

100 mM dopamine (with 20 mM ascorbic acid to prevent oxi-

dation) for 24 h and fixed with 4% PFA in PBS. Cells were

stained with Cell Mask Blue and mounted with Aqua-Poly-

mount. Image stacks covering the whole cellular volume

were acquired using a confocal microscope (Zeiss LSM700).
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